
3. Markov Decision Process

3.1 Introduction

Consider a process that is observed at discrete time points to be in any one
of M possible states, which we number by 1, 2, . . . ,M . After observing the
state of the process, an action must be chosen, and we let A, assumed finite,
denote the set of all possible actions.

• If we let Xn denote the state of the process at time n and an the action
chosen at time n, then the preceding is equivalent to stating that

P (Xn+1 = j|X0, a0, X1, a1, . . . Xn = i, an = a) = Pij(a)

Thus, the transition probabilities are functions only of the present state and
the subsequent action.
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Policy

• By a policy, we mean a rule for choosing actions.

• We shall restrict ourselves to policies that are of the form that the action
they prescribe at any time depends only on the state of the process at that
time (and not on any information concerning prior states and actions).

• However, we shall allow the policy to be “randomized” in that its instructions
may be to choose actions according to a probability distribution. In other
words, a policy β is a set of numbers β = {βi(a), a ∈ A, i = 1, . . . ,M}
with the interpretation that if the process is in state i, then action a is to be
chosen with probability βi(a). Of course, we need have

0 ≤ βi(a) ≤ 1, for all i, a and
∑
a

βi(a) = 1, for all i

2



• Under any given policy β, the sequence of states {Xn, n = 0, 1, . . .}
constitutes a Markov chain with transition probabilities Pij(β) given by

Pij = Pβ{Xn+1 = j|Xn = i} =
∑
a

Pij(a)βi(a)

• Let us suppose that for every choice of a policy β, the resultant Markov chain
{Xn, n = 0, 1, . . .} is ergodic ( An irreducible, positive recurrent, aperiodic
Markov chain) .

• For any policy β, let πia denote the limiting (or steady-state) probability
that the process will be in state i and action a will be chosen if policy β is
employed. That is,

πia = lim
n→∞

Pβ{Xn = i, an = a}

The vector π = (πia) must satisfy

(i) πia ≥ 0 for all i, a,
(ii)

∑
i

∑
a πia = 1,

(iii)
∑
a πja =

∑
i

∑
a πiaPij(a) for all j. 3



• Notice
βi(a) = P (β choose a|state is i) =

πia∑
a πia

• Thus for any policy β, there is a vector π = (πia) that satisfies (i)–(iii) and
with the interpretation that πia is equal to the steady-state probability of
being in state i and choosing action a when policy β is employed.

• Moreover, it turns out that the reverse is also true. Namely, for any vector
π = (πia) that satisfies (i)–(iii), there exists a policy β such that if β is
used, then the steady-state probability of being in i and choosing action a
equals πia.
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Reward

• The preceding is quite important in the determination of “optimal” policies.
For instance, suppose that a reward R(i, a) is earned whenever action a is
chosen in state i. Since R(Xi, ai) would then represent the reward earned
at time i, the expected average reward per unit time under policy β can be
expressed as

expected average reward under β = lim
n→∞

Eβ

[∑n
i=1R(Xi, ai)

n

]

• Now, if πia denotes the steady-state probability of being in state i and
choosing action a, it follows that the limiting expected reward at time n
equals

lim
n→∞

E[R(Xn, an)] =
∑
i

∑
a

πiaR(i, a) = expected average reward under β
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Maximizing Reward and Optimal Policy

• Hence, the problem of determining the policy that maximizes the expected
average reward is

max
π=(πia)

∑
i

∑
a

πiaR(i, a)

subject to πia ≥ 0, for all i, a,∑
i

∑
a

πia = 1, and
∑
a

πia =
∑
i

∑
a

πiaPij(a) for all j

• linear program and can be solved by a standard linear programming algorithm
known as the simplex algorithm.

• If π∗ = (π∗ia) maximizes the preceding, then the optimal policy will be given
by β∗ where

β∗i (a) =
π∗ia∑
a π
∗
ia
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Remarks

(i) It can be shown that there is a π∗ maximizing the above equation that has
the property that for each i,π∗ia is zero for all but one value of a, which
implies that the optimal policy is nonrandomized. That is, the action it
prescribes when in state i is a deterministic function of i.

(ii) The linear programming formulation also often works when there are
restrictions placed on the class of allowable policies. For instance, suppose
there is a restriction on the fraction of time the process spends in some
state, say, state 1. Specifically, suppose that we are allowed to consider only
policies having the property that their use results in the process being in state
1 less than 100α percent of time. To determine the optimal policy subject to
this requirement, we add to the linear programming problem the additional
constraint ∑

a

π1a ≤ α

since
∑
a π1a represents the proportion of time that the process is in state 1.
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3.2 Markov Decision Processes for Customer Lifetime Value

For more details in the practice, the process of Markov Decision Process can be
also summarized as follows:

(i) At time t,a certain state i of the Markov chain is observed.

(ii) After the observation of the state, an action, let us say k, is taken from a set
of possible decisions Ai. Different states may have different sets of possible
actions.

(iii) An immediate gain (or loss) q
(k)
i is then incurred according to the current

state i and the action k taken.

(iv) The transition probabilities p
(k)
ji are then affected by the action k.

(v) When the time parameter t increases, transition occurs again and the above
steps (i)–(iv) repeat.
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• A policy D is a rule of taking action. It prescribes all the decisions that
should be made throughout the process. Given the current state i, the value
of an optimal policy vi(t) is defined as the total expected gain obtained with
t decisions or transitions remaining.

• For the case of one-period remaining, i.e. t = 1, the value of an optimal
policy is given by

vi(1) = max
k∈Ai
{q(k)i }

• For the case of two periods remaining, we have

vi(2) = max
k∈Ai

q(k)i + α
∑
j

p
(k)
ji vj(1)


where α is the so called discount factor. Since the subsequent gain is
associated with the transition probabilities which are affected by the action
taken, an optimal policy should consider both the immediate and subsequent
gain. 9



• The model can be easily extended to a more general situation, the process
having n transitions remaining.

vi(n) = max
k∈Ai

q(k)i + α
∑
j

p
(k)
ji vj(n− 1)


From the above equation, the subsequent gain of vi(n) is defined as the
expected value of vj(n− 1).

• Since the number of transitions remaining is countable or finite, the process
is called the discounted finite horizon MDP. For the infinite horizon MDP,
the value of an optimal policy can be expressed as

vi = max
k∈Ai

q(k)i + α
∑
j

p
(k)
ji vj


The finite horizon MDP is a dynamic programming problem and the infinite
horizon MDP can be transformed into a linear programming problem.
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Stationary Policy

A stationary policy is a policy where the decision depends only on the state
the system is in and is independent of n.

• For instance, a stationary policy D prescribes the action D(i) when the
current state is i. Define D̄ as the associated one-step- removed policy, then
the value of policy wi(D) is defined as

wi(D) = q
D(i)
i + α

∑
j

p
D(i)
ji wj(D̄).

• Given a Markov decision process with an infinite horizon and a discount
factor α, 0 < α < 1, choose, for each i, an alternative ki such that

max
k∈Ai

q(k)i + α
∑
j

p
(k)
ji vj

 = q
(ki)
i + α

∑
j

pkijivj.

• Define the stationary policy D by D(i) = ki. Then for each i, wi(D) = vi ,
i.e. the stationary policy is an optimal policy. 11



Example. We consider a nonine game company that plans to stay in business for 4 more

years and then it will be closed without any salvage value. Each year, the volume of players only

depends on the volume in the last year, and it is classified as either high or low. If a high volume

of players occurs, the expected profit for the company will be 8 million dollars; but the profit

drops to 4 million dollars when a low volume of players is encountered. At the end of every year,

the profit of this year is collected, and then the company has the option to take certain actions

that influence the performance of their service and hence the volume of players in the future

may be altered. But some of these actions are costly so they reduce instant profit. To be more

specific, the company can choose to: take no action, which costs nothing; perform only regular

maintenance to the service system, which costs 1 million; or fully upgrade the service system,

which costs 3 million. When the volume of players in the last year was high, it stays in the high

state in the coming year with probability 0.4 if no action is taken; this probability is 0.8 if only

regular maintenance is performed; and the probability rises to 1 if the system is fully upgraded.

When the volume of players in the last year was low, then the probability that the player volume

stays low is 0.9 with no action taken, 0.6 with regular maintenance, and 0.2 when the service

system is fully upgraded. Assume the discount factor is 0.9 and that the company experienced

a low volume of players last year. Determine the optimal (profit maximizing) strategy for the

company, and Determine the optimal policy and the values for the Markov decision process.

The parameters of this problem can be summarized in Table 1.1.
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Table 1: A summary of the policy parameters

State i Alternative k q
(k)
i p

(k)
i1 p

(k)
i2

1 (high volume) 1 (No action) 8 0.4 0.6

2 (Regular Maintenance) 7 0.8 0.2

3 (Fully Update) 5 1 0

2(low volume) 1(No action) 4 0.1 0.9

2 (Regular Maintenance) 3 0.4 0.6

3 (Fully Update) 1 0.8 0.2
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Customer Life Time

• The customer equity should be measured in making the promotion plan so
as to achieve an acceptable and reasonable budget. A popular approach is
the Customer Life Time (CLV).

• A profitable customer is defined as “a person, household, or company whose
revenues over time exceeds, by an acceptable amount, the company costs of
attracting, selling, and servicing that customer.” This excess is called the
CLV. In some literature, CLV is also referred to as “customer equity”

• In this Lecute note, CLV is defined as the present value of the projected net
cash flow that a firm expects to receive from the customer over time.

• Recognizing its importance in decision making, CLV has been successfully
applied to the problems of pricing strategy, media selection and setting
optimal promotion budget.
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• To calculate the CLV, a company should estimate the expected net cash flow
that they expect to receive from the customer over time. The CLV is the
present value of that stream of cash flow.

• However, it is a difficult task to estimate the net cash flow to be received
from the customer. In fact, one needs to answer, the following questions:

1. How many customers one can attract given a specific advertising budget?
2. What is the probability that the customer will stay with the company?
3. How does this probability change with respect to the promotion budget?

* To answer the first question, there are a number of advertising models
found.

* The second and the third questions give rise to an important concept,
the retention rate. The retention rate is defined as “the chance that the
account will remain with the vendor for the next purchase, provided that the
customer has bought from the vendor on each previous purchase”.
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A formula for calculation of CLV

The model is simple and deterministic. The CLV is the sum of two net
present values: the return from acquisition spending and the return from
retention spending. In the model, CLV is defined as

CLV = am−A︸ ︷︷ ︸
acquisition

+

∞∑
k=1

a(m− R
r

)[r(1 + d)−1]k︸ ︷︷ ︸
retention

= am−A+ a(m− R
r

)× r

1 + d− r

where a is the acquisition rate, A is the level of acquisition spending, m is the
margin on a transaction, R is the retention spending per customer per year,
r is the yearly retention rate (a proportion), and d is the yearly discount rate
appropriate for marketing investment. The acquisition rate a and retention rate
r are functions of A and R respectively, and are given by

a(A) = a0(1− e−K1A) and r(R) = r0(1− e−K2R)

where a0 and r0 are the estimated ceiling rates and K1 and K2 are two positive
constants. 16



The CLV of the customers for three different scenarios are considered in this
lecture note:

1. infinite horizon without constraint (without limit in the number of
promotions),

2. finite horizon (with a limited number of promotions), and

3. infinite horizon with constraints (with a limited number of promotions).
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Markov Chain Models for Customer Behavior

• According to the usage of the customer, a company customer can be classified
into N possible states

{0, 1, 2, . . . , N − 1}
For example, customers can be classified into four states (N D 4): low-volume
user (state 1), medium-volume user (state 2) and high-volume user (state 3)
and in order to classify all customers in the market, state 0 is introduced.

• A customer is said to be in state 0 if they are either a customer of the
competitor company or they did not purchase the service during the period
of observation.

• Therefore at any time, a customer in the market belongs to exactly one of
the states in {0, 1, 2, . . . , N}. With this notation, a Markov chain is a good
choice to model the transitions of customers among the states in the market.
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• A markov chain model is characterized by an N × N transition probability
matrix P . Here Pij(i, j = 0, 1, 2 . . . , N − 1) is the transition probability that
a customer will move to state i in the next period given that currently they
are in state j .

• The retention probability of a customer in state i(i = 0, 1, 2 . . . , N − 1) is
given by Pii.

• If the underlying Markov chain is assumed to be irreducible then the stationary
distribution p exists. This means that there is a unique

p = (p0, p1, . . . , PN−1)
T

such that

p = Pp,

N−1∑
i=0

pi = 1, pi ≥ 0.
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• By making use of the stationary distribution p, one can compute the retention
probability of a customer as follows

N−1∑
i=1

(
pi∑N−1
j=1 pj

)
(1− Pi0) = 1− 1

1− p0

N−1∑
i=1

piP0i = 1− p0(1− P00)

1− p0
.

This is the probability that a customer will purchase service with the company
in the next period.

• Apart from the retention probability, the Markov model can also help us in
computing the CLV. In this case ci is defined to be the revenue obtained
from a customer in state i . Then the expected revenue is given by

N−1∑
i=0

cipi.
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• The above retention probability and the expected revenue are computed under
the assumption that the company makes no promotion (in a non-competitive
environment) throughout the period. The transition probability matrix P can
be significantly different when there is a promotion made by the company.

• When promotions are allowed, what is the best promotion strategy such that
the expected revenue is maximized? Similarly, what is the best strategy when
there is a fixed budget for the promotions, e.g. the number of promotions is
fixed?
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Estimation of the Transition Probabilities: An example in the computer
service company

• In the captured database of customers, each customer has four important
attributes (A,B,C,D): A is the “Customer Number”, each customer has a
unique identity number. B is the “Week”, the time (week) when the data
was captured. C is the “Revenue” which is the total amount of money the
customer spent in the captured week. D is the “Hour”, the number of hours
that the customer consumed in the captured week.

• The total number of weeks of data available is 20. Among these 20 weeks,
the company has a promotion for 8 consecutive weeks and no promotion for
the other 12 consecutive weeks.

• For each week, all the customers are classified into four states 0,1,2,3,
according to the amount of “hours” consumed, see Table 2. We recall that
a customer is said to be in state 0, if they are a customer of a competitor
company or they did not use the service for the whole week.

Table 2: The four classes of customer
State 0 1 2 3

Hours 0.00 1-20 21-40 >40
22



• From the data, one can estimate two transition probability matrices, one
for the promotion period (8 consecutive weeks) and the other one for the
no-promotion period (12 consecutive weeks). For each period, the number
of customers switching from state i to state j is recorded. Then, divide this
number the total number of customers in the state i, and one obtains the
estimates for the one-step transition probabilities.

• Hence the transition probability matrices under the promotion period P (2)

and the no-promotion period P (2) are given respectively below:

P (1) =


0.8054 0.4163 0.2285 0.1372
0.1489 0.4230 0.3458 0.2147
0.0266 0.0992 0.2109 0.2034
0.0191 0.0615 0.2148 0.4447


and

P (2) =


0.8762 0.4964 0.3261 0.2380
0.1064 0.4146 0.3837 0.2742
0.0121 0.0623 0.1744 0.2079
0.0053 0.0267 0.1158 0.2809
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Retention Probability and CLV

• The stationary distributions of the two Markov chains having transition
probability matrices p(1) and p(1) are given respectively by

p(1) = (0.2306, 0.0691, 0.0738, 0.6265)T

and
p(2) = (0.1692, 0.0285, 0.0167, 0.7856)T

• The retention probabilities in the promotion period and no-promotion period
are given respectively by 0.6736 and 0.5461.

• the expected revenue from a customer in the promotion period (assume that
the only promotion cost is the discount rate) and no-promotion period are
given by 2.42 and 17.09 respectively

Table 3: The average revenue of the four classes of customers

State 0 1 2 3

Promotion 0.00 6.97 18.09 43.75

No-promotion 0.00 14.03 51.72 139.20 24



• Although one can obtain the CLVs of the customers in the promotion period
and the no-promotion period, one would expect to calculate the CLV in a
mixture of promotion and no-promotion periods.

• This is especially true when the promotion budget is limited (the number
of promotions is fixed) and one would like to obtain the optimal promotion
strategy.

• Stochastic dynamic programming with Markov process provides a good
approach for solving the above problems.

• Moreover, the optimal stationary strategy for the customers in different
states can also be obtained by solving the stochastic dynamic programming
problem.
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Stochastic Dynamic Programming Models

In this section, stochastic dynamic programming models are presented for
maximizing the CLV under an optimal promotion strategy. The notations of the
model are given as follows:

1. N , the total number of states (indexed by i = 0, 1, . . . , N − 1)

2. Ai, the set containing all the actions in state i (indexed by k)

3. T , number of months remaining in the plan horizon (indexed by t = 1, . . . , T )

4. dk, the resource required for carrying out the action k in each period.

5. c
(k)
i , the revenue obtained from a customer in state i with the action k in each period.

6. p
(k)
ij , the transition probability for a customer moving from state j to state i under the

action k in each period.

7. α, discount rate.

The recursive relation for maximizing the revenue is given as follows:

vi(t) = max
k∈Ai

c(k)i − dk +

N−1∑
j=0

p
(k)
ji vj(t− 1)

 .
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Infinite Horizon Without Constraints
From the standard results in stochastic dynamic programming, for each i, the
optimal values vi for the discounted infinite horizon Markov decision process
satisfy the relationship

vi = max
k∈Ai

c(k)i − dk +

N−1∑
j=0

p
(k)
ji vj

 .

Therefore we have

vi ≥ c(k)i − dk + α

N−1∑
j=0

p
(k)
ji vj

for each i. This suggests that the problem of determining the vi value can be
transformed into the following linear programming problem

minx0 =
N−1∑
i=0

vi

subject to

vi ≥ c(k)i − dk + α
N−1∑
j=0

p
(k)
ji vj, for i = 0, . . . , N − 1;

vi ≥ 0, for i = 0, . . . , N − 1. 27



• The above linear programming problem can be solved easily by using
speadsheet software such as EXCEL.

• Returning to the model for the computer service company, there are 2
actions available (either (P ) promotion or (NP ) no-promotion) for all
possible states. Thus A={P,NP} for all i = 0, . . . , N − 1. Moreover,
customers are classified into 4 clusters, thus N = 4 (possible states of a
customer are 0,1,2,3).

• Since no promotion cost is incurred for the action (NP ), therefore dNP = 0.
For simplification, d is used to denote the only promotion cost instead of dP
in the application.

• Table 4 presents the optimal stationary policies(i.e.,to have promotion of
Di = P or no-promotion Di = NP depends on the state i of the customer)
and the corresponding revenues for different discount factors α and fixed
promotion costs d .
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Figure 1: For solving infinite horizon without constraint
114 5 Markov Decision Processes for Customer Lifetime Value

Fig. 5.1 For solving infinite horizon problem without constraint

is required, i.e. D2 D D3 D NP (see the first column of the upper left hand box
of Table 5.3). The other values can be interpreted similarly. From the numerical
examples, the following conclusions are drawn:

• When the fixed promotion cost d is large, the optimal strategy is that the company
should not conduct any promotion on the active customers and should only
conduct the promotion scheme to inactive (purchase no service) customers and
customers of the competitor company. However, when d is small, the company
should take care of the low-volume customers to prevent this group of customers
from switching to the competitor companies.
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Table 4: Optimal stationary policies and their CLVs

5.3 Stochastic Dynamic Programming Models 115

Table 5.3 Optimal stationary policies and their CLVs

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 4791 1149 687 4437 1080 654 4083 1012 621

v0 1112 204 92 1023 186 83 934 168 74

v1 1144 234 119 1054 216 110 965 198 101

v2 1206 295 179 1118 278 171 1030 261 163

v3 1328 415 296 1240 399 289 1153 382 281

D0 P P P P P P P P P

D1 P P P P P P P P P

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 3729 943 590 3375 879 566 3056 827 541

v0 845 151 65 755 134 58 675 119 51

v1 877 181 94 788 164 88 707 151 82

v2 942 245 156 854 230 151 775 217 145

v3 1066 366 275 978 351 269 899 339 264

D0 P P P P P P P P P

D1 P P NP P NP NP NP NP NP

D2 NP NP NP NP NP NP NP NP NP

D3 NP NP NP NP NP NP NP NP NP

• It is also clear that the CLV of a high-volume user is larger than the CLV of other
groups.

• The CLVs of each group depend on the discount rate ˛ significantly. Here the
discount rate can be viewed as the technology depreciation of the computer
services in the company. Therefore, in order to generate the revenue of the
company, new technology and services should be provided.

5.3.2 Finite Horizon with Hard Constraints

In the computer service and telecommunication industry, the product life cycle is
short, e.g., it is usually one year. Therefore, the case of finite horizon with limited
budget constraint is considered. This problem can also be solved efficiently by using
stochastic dynamic programming and the optimal revenues obtained in the previous
section are used as the boundary conditions. The model’s parameters are defined as
follows:

n = number of weeks remaining
p = number of possible promotions remaining
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From the numerical examples, the following conclusions are drawn:

1. When the fixed promotion cost d is large, the optimal strategy is that the
company should not conduct any promotion on the active customers and
should only conduct the promotion scheme to inactive (purchase no service)
customers and customers of the competitor company. However, when d is
small, the company should take care of the low-volume customers to prevent
this group of customers from switching to the competitor companies.

2. It is also clear that the CLV of a high-volume user is larger than the CLV of
other groups.

3. The CLVs of each group depend on the discount rate significantly. Here the
discount rate can be viewed as the technology depreciation of the computer
services in the company. Therefore, in order to generate the revenue of the
company, new technology and services should be provided.
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Finite Horizon with Hard Constrains

In the computer service and telecommunication industry, the product life
cycle is short, e.g., it is usually one year. Therefore, the case of finite horizon
with limited budget constraint is considered. The model?s parameters are
defined as follows:

• n = number of weeks remaining

• p = number of possible promotions remaining
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The recursive relation for the problem is given as follows

vi(n, p) = max { c
(p)
i − dp + α

N−1∑
j=0

p
(p)
ji vj(n− 1, p− 1),

c
(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(n− 1, p)}

for n = 1, . . . , nmax and p = 1, . . . , pmax and

vn,0 = c
(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(n− 1, 0)

for n = 1, . . . , nmax.

The above dynamic programming problem can be solved easily by using
spreadsheet software such as EXCEL.
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In the numerical experiment of the computer service company,the length
of the planning period is set to be nmax = 52 and the maximum number of
promotions is pmax = 4.By solving the dynamic programming problem, the
optimal values and promotion strategies are listed in Table 4. The optimal
solution in the table is presented as follows:

(t1, t2, t3, t4, r
∗)

where r∗ is the optimal expected revenue, and ti is the promotion week of optimal
promotion strategy and “-” means no promotion. Findings are summarized as
follows

• For different values of the fixed promotion cost d, the optimal strategy for
the customers in states 2 and 3 is to conduct no promotion.

• For those in state 0, the optimal strategy is to conduct all four promotions
as early as possible.

• In state 1, the optimal strategy depends on the value of d . If d is large,
then no promotion will be conducted. However, if d is small, promotions are
carried out and the strategy is to conduct the promotions as late as possible.
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Table 5: Optimal promotion strategies and their CLVs

118 5 Markov Decision Processes for Customer Lifetime Value

Table 5.4 Optimal promotion strategies and their CLVs

˛ State 0 State 1 State 2 State 3

0:9 .1; 2; 3; 4; 67/ .1; 45; 50; 52; 95/ (-,-,-,-,158) (-,-,-,-,276)
d D 0 0:95 .1; 2; 3; 4; 138/ .45; 48; 50; 51; 169/ (-,-,-,-,234) (-,-,-,-,335)

0:99 .1; 2; 3; 4; 929/ .47; 49; 50; 51; 963/ (-,-,-,-,1031) (-,-,-,-,1155)

0:9 .1; 2; 3; 4; 64/ .47; 49; 51; 52; 92/ (-,-,-,-,155) (-,-,-,-,274)
d D 1 0:95 .1; 2; 3; 4; 133/ .47; 49; 51; 52; 164/ (-,-,-,-,230) (-,-,-,-,351)

0:99 .1; 2; 3; 4; 872/ .47; 49; 51; 52; 906/ (-,-,-,-,974) (-,-,-,-,1098)

0:9 .1; 2; 3; 4; 60/ .49; 50; 51; 52; 89/ (-,-,-,-,152) (-,-,-,-,271)
d D 2 0:95 .1; 2; 3; 4; 128/ .48; 50; 51; 52; 160/ (-,-,-,-,225) (-,-,-,-,347)

0:99 .1; 2; 3; 4; 815/ .48; 49; 51; 52; 849/ (-,-,-,-,917) (-,-,-,-,1041)

0:9 .1; 2; 3; 4; 60/ .!; !; !; !; 87/ (-,-,-,-,150) (-,-,-,-,269)
d D 3 0:95 .1; 2; 3; 4; 123/ .49; 50; 51; 52; 155/ (-,-,-,-,221) (-,-,-,-,342)

0:99 .1; 2; 3; 4; 758/ .48; 50; 51; 52; 792/ (-,-,-,-,860) (-,-,-,-,984)

0:9 .1; 2; 3; 4; 54/ .!; !; !; !; 84/ (-,-,-,-,147) (-,-,-,-,266)
d D 4 0:95 .1; 2; 3; 4; 119/ .!; !; !; !; 151/ (-,-,-,-,217) (-,-,-,-,338)

0:99 .1; 2; 3; 4; 701/ .49; 50; 51; 52; 736/ (-,-,-,-,804) (-,-,-,-,928)

0:9 .1; 2; 3; 4; 50/ (-,-,-,-,81) (-,-,-,-,144) (-,-,-,-,264)
d D 5 0:95 .1; 2; 3; 4; 114/ (-,-,-,-,147) (-,-,-,-,212) (-,-,-,-,334)

0:99 .1; 2; 3; 4; 650/ (-,-,-,-,684) (-,-,-,-,752) (-,-,-,-,876)

for p D 1; : : : ; pmax, and

vi .0/ D c
.NP /
i ! dNP C ˛

N !1X

j D0

p
.NP /
j i vj .0/: (5.12)

Since Œp
.k/
ij ! is a transition probability matrix, the set of linear equations (5.12) with

four unknowns has a unique solution. We note that (5.11) can be computed by the
value iteration algorithm, i.e., as the limit of vi .n; p/ (computed in Sect. 5.3.2), as
n tends to infinity. Alternatively, it can be solved by using the linear programming
approach [3]:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

min x0 D
N !1X

iD0

pmaxX

pD1

vi .p/

subject to

vi .p/ " c
.P /
i ! d1 C ˛

N !1X

j D0

p
.P /
j i vj .p ! 1/;

for i D 0; : : : ; N ! 1; p D 1; : : : ; pmaxI

vi .p/ " c
.NP /
i ! d2 C ˛

N !1X

j D0

p
.NP /
j i vj .p/;

for i D 0; : : : ; N ! 1; p D 1; : : : ; pmax:
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Infinite Horizon with Constrains

For the purpose of comparison, the model is extended to the infinite horizon
case. Similar to the previous model, the finite number of promotions available
is denoted by pmax. The value function vi(p), which represents the optimal
discounted utility starting at state i when there are p promotions remaining, is
the unique fixed point of the equations:

vi(p) = max

c(p)i − dp + α

N−1∑
j=0

p
(p)
ji vj(p− 1), c

(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(p)


for p = 1, . . . , pmax, and

vi(0) = c
(NP )
i − dNP + α

N−1∑
j=0

p
(NP )
ji vj(0).
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It can be solved by using the linear programming approach:

minx0 =
N−1∑
i=0

pmax∑
p=1

vi(p)

subject to

vi(p) ≥ c(p)i − d1 + α
N−1∑
j=0

p
(p)
ji vj(p− 1),

for i = 0, . . . , N − 1, p = 1, . . . , pmax;

vi(p) ≥ c(NP )
i − d2 + α

N−1∑
j=0

p
(NP )
ji vj(p),

for i = 0, . . . , N − 1, p = 1, . . . , pmax.

We note that vi(0) is not included in the linear programming constraints and
the objective function; vi(0) is solved beforehand using the equation for vi(0).
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• Tables 6 and 7 give the optimal values and promotion strategies of the
computer service company. For instance, when the promotion cost is 0
and the discount factor is 0.99, then the optimal strategy is that when the
current state is 1, 2 or 3, the promotion should be done when there are some
available promotions, i.e.,

D1(p) = D2(p) = D3(p) = P for p = 1, 2, 3, 4

and when the current state is 0, no promotion is required, i.e. D0(p) = NP
for p = 1, 2, 3, 4.

• The optimal strategy for the customers in states 1, 2 and 3 is to conduct no
promotion.

• Moreover, it is not affected by the promotion cost and the discount factor.
These results are slightly different from those for the finite horizon case.

• However, the optimal strategy is to conduct all the four promotions to
customers in state 0 as early as possible. 38



Table 6: Optimal promotion strategies and their CLVs
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Table 5.5 Optimal promotion strategies and their CLVs

d D 0 d D 1 d D 2

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 11355 3378 2306 11320 3344 2277 11277 3310 2248

v0.1/ 610 117 55 609 116 54 608 115 53

v1.1/ 645 149 85 644 148 84 643 147 84

v2.1/ 713 215 149 712 214 148 711 213 147

v3.1/ 837 337 267 836 336 267 845 335 266

v0.2/ 616 122 60 614 120 58 612 118 56

v1.2/ 650 154 89 648 152 87 647 150 86

v2.2/ 718 219 152 716 218 151 714 216 149

v3.2/ 842 341 271 840 339 269 839 338 268

v1.3/ 656 158 92 654 156 90 650 153 88

v2.3/ 724 224 155 722 221 153 718 219 151

v3.3/ 848 345 273 846 343 271 842 340 270

v0.4/ 628 131 67 624 128 63 620 124 60

v1.4/ 662 162 95 658 159 92 654 158 89

v2.4/ 730 228 157 726 225 155 722 221 152

v3.4/ 854 349 276 850 346 273 846 343 271

D0.1/ P P P P P P P P P

D1.1/ NP NP NP NP NP NP NP NP NP

D2.1/ NP NP NP NP NP NP NP NP NP

D3.1/ NP NP NP NP NP NP NP NP NP

D0.2/ P P P P P P P P P

D1.2/ NP NP NP NP NP NP NP NP NP

D2.2/ NP NP NP NP NP NP NP NP NP

D3.2/ NP NP NP NP NP NP NP NP NP

D0.3/ P P P P P P P P P

D1.3/ NP NP NP NP NP NP NP NP NP

D3.3/ NP NP NP NP NP NP NP NP NP

D0.4/ P P P P P P P P P

D1.4/ NP NP NP NP NP NP NP NP NP

D2.4/ NP NP NP NP NP NP NP NP NP

D3.4/ NP NP NP NP NP NP NP NP NP

1; 2 or 3, the promotion should be done when there are some available promotions,
i.e.,

D1.p/ D D2.p/ D D3.p/ D P for p D 1; 2; 3; 4

and when the current state is 0, no promotion is required, i.e. D0.p/ D NP for
p D 1; 2; 3; 4. Their corresponding CLVs vi .p/ for different states and different
numbers of remaining promotions are also listed (see the first column in the left
hand side of Table 5.6.

From Tables 5.5 and 5.6, the optimal strategy for the customers in states 1, 2 and
3 is to conduct no promotion. Moreover, it is not affected by the promotion cost
and the discount factor. These results are slightly different from those for the finite
horizon case. However, the optimal strategy is to conduct all the four promotions to
customers in state 0 as early as possible.
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Table 7: Optimal promotion strategies policies and their CLVs
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Table 5.6 Optimal promotion strategies and their CLVs

d D 3 d D 4 d D 5

˛ 0:99 0:95 0:90 0:99 0:95 0:90 0:99 0:95 0:90

x0 11239 3276 2218 11200 3242 2189 11161 3208 2163

v0.1/ 607 114 52 606 113 51 605 112 50

v1.1/ 641 146 83 641 146 82 640 145 81

v2.1/ 710 212 146 709 211 145 708 211 145

v3.1/ 834 334 265 833 333 264 832 332 264

v0.2/ 610 116 54 608 114 52 606 112 50

v1.2/ 645 149 84 643 147 83 641 145 81

v2.2/ 713 214 148 711 213 146 709 211 145

v3.2/ 837 336 266 835 334 265 833 333 264

v0.3/ 613 119 56 610 116 53 607 113 50

v1.3/ 647 151 86 645 148 83 642 146 81

v2.3/ 715 216 149 713 214 147 710 211 145

v3.3/ 839 338 268 837 336 266 834 333 264

v0.4/ 616 121 57 612 117 54 608 113 50

v1.4/ 650 152 87 646 149 84 643 146 81

v2.4/ 718 218 150 714 215 147 711 212 145

v3.4/ 842 340 269 838 337 266 835 334 265

D0.1/ P P P P P P P P P

D1.1/ NP NP NP NP NP NP NP NP NP

D2.1/ NP NP NP NP NP NP NP NP NP

D3.1/ NP NP NP NP NP NP NP NP NP

D0.2/ P P P P P P P P P

D1.2/ NP NP NP NP NP NP NP NP NP

D2.2/ NP NP NP NP NP NP NP NP NP

D3.2/ NP NP NP NP NP NP NP NP NP

D0.3/ P P P P P P P P P

D1.3/ NP NP NP NP NP NP NP NP NP

D2.3/ NP NP NP NP NP NP NP NP NP

D3.3/ NP NP NP NP NP NP NP NP NP

D0.4/ P P P P P P P P P

D1.4/ NP NP NP NP NP NP NP NP NP

D2.4/ NP NP NP NP NP NP NP NP NP

D3.4/ NP NP NP NP NP NP NP NP NP

5.4 An Extension to Multi-period Promotions

In the previous discussions, the problem under consideration is to decide whether
to offer the promotion at the start of each time unit with the assumption that the
promotion only lasts for a single time unit. In this section, the analysis is extended to
consider multi-period promotions proposed in [145,150]. A multi-period promotion
refers to a promotion that lasts for 2; 3; : : : ; R time units. This encourages more
purchases or continuous subscriptions than a single-period promotion does. A useful
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Extensions

• In the previous discussions, the problem under consideration is to decide
whether to offer the promotion at the start of each time unit with the
assumption that the promotion only lasts for a single time unit. The analysis
is extended to consider multi-period promotions. A multi-period promotion
refers to a promotion that lasts for 2, 3, . . . , R time units. This encourages
more purchases or continuous subscriptions than a single-period promotion
does.

• The MDP presented in the previous section is a first-order type, i.e., the
transition probabilities depend on the current state only. For the Higher-order
Markov Decision Process (HMDP), the transition probabilities depend on the
current state and a number of previous states.
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