3. Appendix

Page 12, Example.

By using the MDP approach, we can compute the following:

$$
v_{i}(n)=\max _{k \in A_{i}}\left\{q_{i}^{(k)}+\alpha \sum_{j} P_{j i} v_{j}(n-1)\right\}
$$

and have

$$
\begin{aligned}
& v_{1}(4)=\max \left\{\begin{array}{c}
8+0.9 \times\left[0.4 \times v_{1}(3)+0.6 \times v_{2}(3)\right] \\
7+0.9 \times\left[0.8 \times v_{1}(3)+0.2 \times v_{2}(3)\right] \\
5+0.9 \times\left[1+v_{1}(3)\right]
\end{array}\right\} ; \\
& v_{2}(4)=\max \left\{\begin{array}{c}
4+0.9 \times\left[0.1 \times v_{1}(3)+0.9 \times v_{2}(3)\right] \\
3+0.9 \times\left[0.4 \times v_{1}(3)+0.6 \times v_{2}(3)\right] \\
1+0.9 \times\left[0.8 \times v_{1}(3)+0.2 \times v_{1}(3)\right]
\end{array}\right\} ; \\
& v_{1}(3)=\max \left\{\begin{array}{c}
8+0.9 \times\left[0.4 \times v_{1}(2)+0.6 \times v_{2}(2)\right] \\
7+0.9 \times\left[0.8 \times v_{1}(2)+0.2 \times v_{2}(2)\right] \\
5+0.9 \times\left[1 \times v_{1}(2)\right]
\end{array}\right\} ; \\
& v_{2}(3)=\max \left\{\begin{array}{c}
4+0.9 \times\left[0.1 \times v_{1}(2)+0.9 \times v_{2}(2)\right] \\
3+0.9 \times\left[0.4 \times v_{1}(2)+0.6 \times v_{2}(2)\right] \\
1+0.9 \times\left[0.8 \times v_{1}(2)+0.2 \times v_{1}(2)\right]
\end{array}\right\} ;
\end{aligned}
$$

Page 12, Example. continuous

$$
\begin{aligned}
v_{1}(2)= & \max \left\{\begin{array}{c}
8+0.9 \times\left[0.4 \times v_{1}(1)+0.6 \times v_{2}(1)\right] \\
7+0.9 \times\left[0.8 \times v_{1}(1)+0.2 \times v_{2}(1)\right] \\
5+0.9 \times\left[1 \times v_{1}(1)\right]
\end{array}\right\} ; \\
v_{2}(2)= & \max \left\{\begin{array}{l}
4+0.9 \times\left[0.1 \times v_{1}(1)+0.9 \times v_{2}(1)\right] \\
3+0.9 \times\left[0.4 \times v_{1}(1)+0.6 \times v_{2}(1)\right] \\
1+0.9 \times\left[0.8 \times v_{1}(1)+0.2 \times v_{1}(1)\right]
\end{array}\right\} ; \\
& \left\{\begin{array}{l}
v_{1}(1)=\max \{8,7,5\}=8, p_{1}(1)=1 \\
v_{2}(1)=\max 4,3,1=4, p_{2}(1)=1
\end{array}\right.
\end{aligned}
$$

With the results from the last equations, we can solve for other values by backward substitution. Let $p_{i}(n)=k^{*}$ such that

$$
\max _{k \in A_{i}}\left\{q_{i}^{(k)}+\alpha \sum_{j} p_{j i}^{(k)} v_{j}(n-1)\right\}=q_{i}^{\left(k^{*}\right)}+\alpha \sum_{j} p_{j i}^{\left(k^{*}\right)} v_{j}(n-1)
$$

Page 12, Example. continuous then $p_{i}(n)$ actually keeps track of the optimal policy for every single period. We can summarize all results from the calculations in the following Tables

Table 3.1:	A summary of results			
n	1	2	3	4
$v_{1}(n)$	8	13.48	18.15	22.27
$v_{2}(n)$	4	8.04	12.19	16.27
$p_{1}(n)$	1	2	2	2
$p_{2}(n)$	1	2	2	3

Table 3.2:	A summary of results			
n	1	2	3	4
$v_{1}(n)$	8	11.36	13.25	14.35
$v_{2}(n)$	4	6.64	8.27	9.26
$p_{1}(n)$	1	1	2	2
$p_{2}(n)$	1	1	1	1

Page 12, Example. continuous

Since the on-line gaming company started from having a low volume of players (State 2), the optimal policy for the company is as follows: with 4 more years left, choose Alternative 3 (fully upgrade); then use Alternative 2 (regular maintenance) for two consecutive years; and finally, use Alternative 1 (no action) when there is only 1 year left.

Note that the optimal policy may vary depending on the value of the discount factor. For instance, if in this example, we have a discount factor of 0.6 , then we have different results as summarized in Table 3.2. If the company starts with a low volume of players, the optimal policy is to stay with Alternative 1 (no action). We leave it as an exercise for the reader to device the results themselves.

