
4. Queueing Theory

4.1 Introduction

• In this Lecture note we will study a class of models in which customers arrive
in some random manner at a service facility. Upon arrival they are made
to wait in queue until it is their turn to be served. Once served they are
generally assumed to leave the system.

• For such models we will be interested in determining, among other things,
such quantities as the average number of customers in the system (or in the
queue) and the average time a customer spends in the system (or spends
waiting in the queue).
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4.2 Prelimnaries

In this section we will derive certain identities that are valid in the great majority
of queueing models.

4.2.1 Cost Equations

Some fundamental quantities of interest for queueing models are

• L: the average number of customers in the system;

• LQ: the average number of customers waiting in queue;

• W : the average amount of time a customer spends in the system;

• WQ: the average amount of time a customer spends waiting in queue.
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A large number of interesting and useful relationships between the preceding
and other quantities of interest can be obtained by making use of the following
idea: Imagine that entering customers are forced to pay money (according to
some rule) to the system. We would then have the following basic cost identity:

average rate at which the system earns

= λa × average amount an entering customer pays

where λa is defined to be average arrival rate of entering customers. That is, if
N(t) denotes the number of customer arrivals by time t, then

λa = lim
t→∞

N(t)

t
.
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Heuristic Proof of the equation above: Let T be a fixed large number

• In two different ways, we will compute the average amount of money the
system has earned by time T .

1. On one hand, this quantity approximately can be obtained by multiplying the
average rate at which the system earns by the length of time T .

2. On the other hand, we can approximately compute it by multiplying the
average amount paid by an entering customer by the average number of
customers entering by time T (this latter factor is approximately λaT ).

• Hence, both sides of the equation above when multiplied by T are
approximately equal to the average amount earned by T . The result
then follows by letting T →∞
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By choosing appropriate cost rules, many useful formulas can be obtained
as special cases of the above equation, and those formulas are valid for almost
all queueing models regardless of the arrival process, the number of servers, or
queue discipline.

• By supposing that each customer pays $1 per unit time while in the system,
it yields the so-called Little’s formula,

L = λaW

• Similarly if we suppose that each customer pays $1 per unit time while in
queue, then it yields

LQ = λaWQ

• By supposing the cost rule that each customer pays $1 per unit time while
in service we obtain that the

average number of customers in service = λaE[S]

where E[S] is defined as the average amount of time a customer spends in
service.
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4.2.2 Steady-State Probabilities

Let X(t) denote the number of customers in the system at time t and define
Pn, n ≥ 0, by

Pn = lim
t→∞

P{X(t) = n}

where we assume the preceding limit exists. In other words, Pn is the limiting
or long- run probability that there will be exactly n customers in the system.

• It is sometimes referred to as the steady-state probability of exactly n
customers in the system.

• It also usually turns out that Pn equals the (long-run) proportion of time
that the system contains exactly n customers.

• Two other sets of limiting probabilities are {an, n ≥ 0} and {dn, n ≥ 0},
where

an = proportion of customers that find n in the system when they arrive,

dn = proportion of customers leaving behind n in the

system when they depart
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That is, Pn is the proportion of time during which there are n in the
system; an is the proportion of arrivals that find n; and dn is the proportion of
departures that leave behind n. That these quantities need not always be equal
is illustrated by the following example.

Example 4.1. Consider a queueing model in which all customers have service
times equal to 1, and where the times between successive customers are always
greater than 1 (for instance, the interarrival times could be uniformly distributed
over (1, 2)). Hence, as every arrival finds the system empty and every departure
leaves it empty, we have

a0 = d0 = 1

However,
P0 6= 1

as the system is not always empty of customers.

*** It was, however, no accident that an equaled dn in the previous example.
That arrivals and departures always see the same number of customers is always
true as is shown in the next proposition.

7



Proposition 4.1. In any system in which customers arrive and depart one at a
time

the rate at which arrivals find n = the rate at which departures leave n

and
an = dn

Hence, on the average, arrivals and departures always see the same number
of customers. However, as Example 4.1 illustrates, they do not, in general, see
time averages. One important exception where they do is in the case of Poisson
arrivals.

Proposition 4.2. Poisson arrivals always see time averages. In particular, for
Poisson arrivals,

Pn = an
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*** Consider an arbitrary Poisson arrival. If we knew that it arrived at time
t, then the conditional distribution of what it sees upon arrival is the same as
the unconditional distribution of the system state at time t (Since the Poisson
process has independent increments). Hence, an arrival would just see the
system according to the limiting probabilities.

*** The result that Poisson arrivals see time averages is called the PASTA
principle.

Example 8.2. People arrive at a bus stop according to a Poisson process with
rate λ. Buses arrive at the stop according to a Poisson process with rate µ,
with each arriving bus picking up all the currently waiting people. Let WQ be
the average amount of time that a person waits at the stop for a bus. Because
the waiting time of each person is equal to the time from when they arrive until
the next bus, which is exponentially distributed with rate µ, we see that

WQ = 1/µ

Using LQ = λaWQ, now shows that LQ, the average number of people waiting
at the bus stop, averaged over all time, is

LQ = λ/µ 9



If we let Xi be the number of people picked up by the ith bus, then with Ti
equal to the time between the (i− 1)st and the ith bus arrival,

E[Xi|Ti] = λTi

which follows because the number of people that arrive at the stop in any time
interval is Poisson with a mean equal to λ times the length of the interval.
Because Ti is exponential with rate µ, it follows upon taking expectations of
both sides of the preceding that

E[Xi] = λE[Ti] = λ/µ

Thus, the average number of people picked up by a bus is equal to the time
average number of people waiting for a bus, an illustration of the PASTA
principle. That is, because buses arrive according to a Poisson process, it
follows from PASTA that the average number of waiting people seen by arriving
buses is the same as the average number of people waiting when we average
over all time.
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Exponential Models

4.3.1 A Single-Server Exponential Queueing System

• Suppose that customers arrive at a single-server service station in accordance
with a Poisson process having rate λ. That is, the times between successive
arrivals are independent exponential random variables having mean 1/λ.

• Each customer, upon arrival, goes directly into service if the server is free
and, if not, the customer joins the queue.

• When the server finishes serving a customer, the customer leaves the system,
and the next customer in line, if there is any, enters service. The successive
service times are assumed to be independent exponential random variables
having mean 1/µ.

• The preceding is called the M/M/1 queue. The two Ms refer to the fact
that both the interarrival and the service distributions are exponential (and
thus memoryless, or Markovian), and the 1 to the fact that there is a single
server. 11



To analyze it, we shall begin by determining the limiting probabilities Pn ,
for n = 0, 1, . . .. To do so, think along the following lines.

• Suppose that we have an infinite number of rooms numbered 0, 1, 2, . . ., and
suppose that we instruct an individual to enter room n whenever there are n
customers in the system.

• Now suppose that in the long run our individual is seen to have entered room
1 at the rate of ten times an hour. Then at what rate must he have left room
1? Clearly, at this same rate of ten times an hour. For the total number of
times that he enters room 1 must be equal to (or one greater than) the total
number of times he leaves room 1.

• This sort of argument thus yields the general principle that will enable us to
determine the state probabilities. Namely, for each n ≥ 0, the rate at which
the process enters state n equals the rate at which it leaves state n.
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• Hence, from our rate-equality principle above we get our equations,

λP0 = µP1

(λ+ µ)Pn = λPn−1 + µPn+1, n ≥ 1

• The equation above, which balance the rate at which the process enters
each state with the rate at which it leaves that state are known as balance
equations.

• In order to solve the equation above, we rewrite them to obtain

P1 =
λ

µ
P0,

Pn+1 =
λ

µ
Pn +

(
Pn −

λ

µ
Pn−1

)
Solving in terms of P0 yields

Pn+1 =
λ

µ
Pn +

(
Pn −

λ

µ
Pn−1

)
=
λ

µ
Pn =

(
λ

µ

)n+1

P0 13



• To determine P0 we use the fact that the Pn must sum to 1, and thus

1 =

∞∑
n=0

Pn =

∞∑
n=0

(
λ

µ

)n
P0 =

P0

1− λ/µ

or

P0 = 1− λ

µ
, Pn =

(
λ

µ

)n(
1− λ

µ

)
, n ≥ 1

• Notice that for the preceding equations to make sense, it is necessary for λ/µ
to be less than 1. For otherwise

∑∞
n=0(λ/µ)

n would be infinite and all the
Pn would be 0.
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Remark

• In solving the balance equations for the M/M/1 queue, we obtained as an
intermediate step the set of equations

λPn = µPn+1, n ≥ 0

These equations could have been directly argued from the general queueing
result (shown in Proposition 4.1) that the rate at which arrivals find n in
the system-namely λPn-is equal to the rate at which departures leave behind
n-namely, µPn+1.

• We can also prove that Pn = (λ/µ)n(1 − λ/µ) by using a queueing cost
identity. Suppose that, for a fixed n > 0, whenever there are at least n
customers in the system the nth oldest customer (with age measured from
when the customer arrived) pays 1 per unit time.

Letting X be the steady state number of customers in the system, because
the system earns 1 per unit time whenever X is at least n, it follows that

average rate at which the system earns = P{X ≥ n} 15



• Also, because a customer who finds fewer than n− 1 in the system when it
arrives will pay 0, while an arrival who finds at least n− 1 in the system will
pay 1 per unit time for an exponentially distributed time with rate µ,

average amount a customer pays =
1

µ
P{X ≥ n− 1}

Therefore, the queueing cost identity yields

P{X ≥ n} = (λ/µ)P{X ≥ n− 1}, n > 0

Iterating this gives

P{X ≥ n} = (λ/µ)P{X ≥ n− 1} = (λ/µ)2P{X ≥ n− 2}
= · · · = (λ/µ)nP{X ≥ 0} = (λ/µ)n.

Therefore

P{X = n} = P{X ≥ n} − P{X ≥ n+ 1} = (λ/µ)n(1− λ/µ).
16



• The quantities W,WQ, and LQ now can be obtained with the help of
equations shown before. That is, since λa = λ, we have from the value of L
that

L =

∞∑
n=0

nPn =

∞∑
n=1

n(λ/µ)n(1− λ/m)n =
λ

µ− λ

W =
L

λ
=

1

µ− λ

WQ =W − E[S] =W − 1

µ
=

λ

µ(µ− λ)

LQ = λWQ =
λ2

µ(µ− λ)

Example 4.3. Suppose that customers arrive at a Poisson rate of one per every
12 minutes, and that the service time is exponential at a rate of one service per
8 minutes. What are L and W?
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Example 4.4. Suppose customers arrive to a two server system according to a
Poisson process with rate λ, and suppose that each arrival is, independently, sent
either to server 1 with probability α or to server 2 with probability 1−α. Further,
suppose that no matter which server is used, a service time is exponential with
rate µ. Letting λ1 = λα and λ2 = λ(1 − α), then because arrivals to server i
follow a Poisson process with rate λi , it follows that the system as it relates to
server i, i = 1, 2, is an M/M/1 system with arrival rate λi and service rate µ.

Hence, provided that λi < µ, the average time a customer sent to server i
spends in the system is Wi =

1
µ−λi

, i = 1, 2. Because µ− λi the fraction of all
arrivals that go to server 1 is α and the fraction that go to server 2 is 1 − α,
this shows that the average time that a customer spends in the system, call it
W (α), is

W (α) = αW1 + (1− α)W2 =
α

µ− λα
+

1− α
µ− λ(1− α)

Suppose now that we want to find the value of α that minimizes W (α).
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Remarks:

• We have used the fact that if one event occurs at an exponential rate λ,
and another independent event at an exponential rate µ, then together they
occur at an exponential rate λ+ µ.

• Given that an M/M/1 steady-state customer–that is, a customer who arrives
after the system has been in operation a long time–spends a total of t time
units in the system, let us determine the conditional distribution of N , the
number of others that were present when that customer arrived. That is,
letting W ∗ be the amount of time a customer spends in the system, we will
find P{N = n|W ∗ = t}.

• Another argument as to why W ∗ is exponential with rate µ− λ is as shown
in the appendix lecture note.

Example 4.5. For an M/M/1 queue in steady state, what is the probability
that the next arrival finds n in the system?
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A Single-Server Exponential Queueing System Having Finite Capacity

In the previous model, we assumed that there was no limit on the number
of customers that could be in the system at the same time. However, in reality
there is always a finite system capacity N, in the sense that there can be no
more than N customers in the system at any time. By this, we mean that if
an arriving customer finds that there are already N customers present, then he
does not enter the system.

As before, we let Pn, 0 ≤ n ≤ N , denote the limiting probability that there
are n customers in the system. The rate-equality principle yields the following
set of balance equations:

State Rate at which the process leaves = rate at which it enters
0 λP0 = µP1

1 ≤ n ≤ N − 1 (λ+ µ)Pn = λPn−1 + µPn+1

N µPN = λPN−1
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• We could now either solve the balance equations exactly as we did for the
infinite capacity model, or we could save a few lines by directly using the
result that the rate at which departures leave behind n − 1 is equal to the
rate at which arrivals find n− 1. Invoking this result yields

µPn = λPn−1, n = 1, . . . , N

giving

Pn =
λ

µ
Pn−1 =

(
λ

µ

)2

Pn−2 = · · · =
(
λ

µ

)n
P0, n = 1, . . . , N
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• By using the fact that
∑N
n=0Pn = 1 we obtain

1 = P0

N∑
n=0

(
λ

µ

)n
= P0

[
1− (λ/µ)N+1

1− λ/µ

]
or

P0 =
1− λ/µ

1− (λ/µ)N+1

and hence

Pn =
(λ/µ)n(1− λ/µ)
1− (λ/µ)N+1

•

L =

N∑
n=0

nPn =
(1− λ/µ)

1− (λ/µ)N+1

N∑
n=0

n

(
λ

µ

)n
which after some algebra yields

L =
λ[1 +N(λ/µ)N+1 − (N + 1)(λ/µ)N ]

(µ− λ)(1− (λ/µ)N+1)
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In deriving W , the expected amount of time a customer spends in the
system, we must be a little careful about what we mean by a customer.

• Specifically, are we including those “customers” who arrive to find the system
full and thus do not spend any time in the system?

• Or, do we just want the expected time spent in the system by a customer
who actually entered the system?

• In the first case, we have λa = λ; whereas in the second case, since the
fraction of arrivals that actually enter the system is 1− PN , it follows that
λa = λ(1 − PN). Once it is clear what we mean by a customer, W can be
obtained from

W =
L

λa

Example 4.6. Suppose that it costs cµ dollars per hour to provide service at a
rate µ. Suppose also that we incur a gross profit of A dollars for each customer
served. If the system has a capacity N , what service rate µ maximizes our total
profit?
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An exponential queueing system in which the arrival rates and the departure
rates depend on the number of customers in the system is known as a birth and
death queueing model.

• Let λn denote the arrival rate and let µn denote the departure rate when
there are n customers in the system.

• Loosely speaking, when there are n customers in the system then the time
until the next arrival is exponential with rate λn and is independent of the
time of the next departure, which is exponential with rate µn

• Equivalently, and more formally, whenever there are n customers in the
system, the time until either the next arrival or the next departure occurs is
an exponential random variable with rate λn + µn and, independent of how
long it takes for this occurrence, it will be an arrival with probability λn

λn+µn
.
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• The M/M/1 Queueing System
Because the arrival rate is always λ, and the departure rate is µ when the
system is nonempty, the M/M/1 is a birth and death model with

λn = λ, n ≥ 0;µn = µ, µn ≥ µ, n ≥ 1

• The M /M /1 Queueing System with Balking
Consider the M/M/1 system but now suppose that a customer that finds n
others in the system upon its arrival will only join the system with probability
αn. (That is, with probability 1 − αn it balks at joining the system.) Then
this system is a birth and death model with

λn = λαn, n ≥ 0;µn = µ, n ≥ 1

The M/M/1 with finite capacity N is the special case where

αn = 1, if n < N, else αn = 0, n ≥ N.
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• The M /M /k Queueing System
Consider a k server system in which customers arrive according to a Poisson
process with rate λ.

– An arriving customer immediately enters service if any of the k servers are
free.

– If all k servers are busy, then the arrival joins the queue.
– When a server completes a service the customer served departs the system

and if there are any customers in queue then the one who has been waiting
longest enters service with that server.

– All service times are exponential random variables with rate µ. Because
customers are always arriving at rate λ, λn = λ, n ≥ 0

The M/M/k is a birth and death queueing model with arrival rates

λn = λ, n ≥ 0

and departure rates

µn = nµ, if n ≤ k else µn = kµ, n ≥ k. 26



To analyze the general birth and death queueing model, let Pn denote the
long-run proportion of time there are n in the system.

• Then, either as a consequence of the balance equations given by

State Rate at which process leaves = rate at which process enters
n = 0 λ0P0 = µ1P1

n ≥ 1 (λn + µn)Pn = λn−1Pn−1 + µn+1Pn+1

• or by directly using the result that the rate at which arrivals find n in the
system is equal to the rate at which departures leave behind n, we obtain

λnPn = µn+1Pn+1, or Pn+1 =
λn
µn+1

Pn, n ≥ 0

• Thus

P0 = P0, P1 =
λ0
µ1
P0, P2 =

λ1
µ2
P1 =

λ1λ0
µ2µ1

P0, P3 =
λ2
µ3
P2 =

λ2λ1λ0
µ3µ2µ1

P0
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• In general

Pn =
λ0λ1 · · ·λn−1
µ1µ2 · · ·µn

P0, n ≥ 1

• Using that
∑∞
n=0Pn = 1 show that

1 = P0

[
1 +

λ0λ1 · · ·λn−1
µ1µ2 · · ·µn

]
Hence

P0 =
1

1 +
∑∞
n=1

λ0λ1···λn−1
µ1µ2···µn

, and Pn =

λ0λ1···λn−1
µ1µ2···µn

1 +
∑∞
n=1

λ0λ1···λn−1
µ1µ2···µn

, n ≥ 1

• The necessary and sufficient conditions for the long-run probabilities to exist
is that the denominator in the preceding is finite. That is, we need have that

∞∑
n=1

λ0λ1 · · ·λn−1
µ1µ2 · · ·µn

<∞
28



Example 4.7 For the M/M/k system

λ0λ1 · · ·λn−1
µ1µ2 · · ·µn

=

{
(λ/µ)n

n! if n ≤ k
λn

µnk!kn−k
if n > k

Example 4.8. Find the average amount of time a customer spends in the
system for an M/M/2 system.

Example 4.9. (M/M/1 Queue with Impatient Customers). Consider a single-
server queue where customers arrive according to a Poisson process with rate λ
and where the service distribution is exponential with rate µ, but now suppose
that each customer will only spend an exponential time with rate α in queue
before quitting the system. Assume that the impatient times are independent of
all else, and that a customer who enters service always remains until its service
is completed
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Remark. As illustrated in the previous example, often the easiest way of
determining the proportion of all events that are of a certain type A is to
determine the rates at which events of type A occur and the rate at which all
events occur, and then use that

proportion of events that are type A =
rate at which type A events occur

rate at which all events occur

For instance, if people arrive at rate λ and women arrive at rate λw , then the
proportion of arrivals that are women is λw/λ.
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• To determine W , the average time that a customer spends in the system, for
the birth and death queueing system, we employ the fundamental queueing
identity L = λaW . Because L is the average number of customers in the
system,

L =

∞∑
n=0

nPn

• Also, because the arrival rate when there are n in the system is λn and the
proportion of time in which there are n in the system is Pn, we see that the
average arrival rate of customers is

λa =

∞∑
n=0

λnPn

Consequently

W =

∑∞
n=0 nPn∑∞
n=0 λnPn

.
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• Now consider an equal to the proportion of arrivals that find n in the system.
Since arrivals are at rate λn whenever there are n in system it follows that the
rate at which arrivals find n is λnPn. Hence, in a large time T approximately
λnPnT of the approximately λaT arrivals will encounter n. Letting T go to
infinity shows that the long-run proportion of arrivals finding n in the system
is

an =
λnPn
λa
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4.4. Network of Queues

Consider a two-server system in which customers arrive at a Poisson rate λ at
server 1. After being served by server 1 they then join the queue in front of
server 2. We suppose there is infinite waiting space at both servers. Each server
serves one customer at a time with server i taking an exponential time with
rate µi for a service, i = 1, 2. Such a system is called a tandem or sequential
system

let us define the state by the pair (n,m)–meaning that there are n customers
at server 1 and m at server 2. The balance equations are

State Rate that the process leaves = rate that it enters
0, 0 λP0,0 = µ2P0,1

n, 0;n > 0 (λ+ µ1)Pn,0 = µ2Pn,1 + λPn−1,0
0,m;m > 0 (λ+ µ2)P0,m = µ2P0,m+1 + µ1P1,m−1
n,m;nm > 0 (λ+ µ1 + µ2)Pn,m = µ2Pn,m+1 + µ1Pn+1,m−1 + λPn−1,m

33



• We first note that the situation at server 1 is just as in an M/M/1 model.
It follows that what server 2 faces is also an M/M/1 queue. Hence the
probability that there are n customers at server 1 is

P{n at server 1} =
(
λ

µ1

)n(
1− λ

µ1

)
and, similary

P{m at server 2} =
(
λ

µ2

)m(
1− λ

µ2

)
• Now, if the numbers of customers at servers 1 and 2 were independent

random variables, then it would follow that

Pn,m =

(
λ

µ1

)n(
1− λ

µ1

)(
λ

µ2

)m(
1− λ

µ2

)

• Pn,m, as given by the equation above, satisfy all of the balance equations
34



• From the preceding we see that L, the average number of customers in the
system, is given by

L =
∑
n,m

(n+m)Pn,m =
∑
n

n

(
λ

µ1

)n(
1− λ

µ1

)
+
∑
m

(
λ

µ2

)m(
1− λ

µ2

)

=
λ

µ1 − λ
+

λ

µ2 − λ

• and from this we see that the average time a customer spends in the system
is

W =
L

λ
=

1

µ1 − λ
+

1

µ2 − λ
Example 4.10. Consider a system of two servers where customers from outside
the system arrive at server 1 at a Poisson rate 4 and at server 2 at a Poisson
rate 5. The service rates of 1 and 2 are respectively 8 and 10. A customer upon
completion of service at server 1 is equally likely to go to server 2 or to leave
the system (i.e., P11 = 0, P12 =

1
2 ); whereas a departure from server 2 will go

25 percent of the time to server 1 and will depart the system otherwise (i.e.,
P21 =

1
4, P22 = 0). Determine the limiting probabilities, L, and W . 35



4.5. The System M/G/1

Preliminaries: Work and Another Cost Identity
For an arbitrary queueing system, let us define the work in the system at any
time t to be the sum of the remaining service times of all customers in the
system at time t. For instance, suppose there are three customers in the
system–the one in service having been there for three of his required five units of
service time, and both people in queue having service times of six units. Then
the work at that time is 2 + 6 + 6 = 14. Let V denote the (time) average work
in the system.

• Now recall the fundamental cost equations, which states that the

average rate at which the system earns = λa×average amount a customer pays

and consider the following cost rule: Each customer pays at a rate of y/unit
time when his remaining service time is y, whether he is in queue or in
service.
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• Thus, the rate at which the system earns is just the work in the system; so
the basic identity yields

V = λaE[amount paid by a customer]

• Now, let S and W ∗Q denote respectively the service time and the time a
given customer spends waiting in queue. Then, since the customer pays at
a constant rate of S per unit time while he waits in queue and at a rate of
S − x after spending an amount of time x in service, we have

E[amount paid by a customer] = E

[
SW ∗Q +

∫ S

0

(S − x)dx

]

and thus

V = λaE[SW
∗
Q] +

λaE[S
2]

2
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• In addition, if a customer’s service time is independent of his wait in queue
(as is usually, but not always the case),5 then we have from the equation
above that

V = λaE[S]W
∗
Q +

λaE[S
2]

2

Application of Work to M/G/1 The M/G/1 model assumes

(i) Poisson arrivals at rate λ;

(ii) a general service distribution; and

(iii) a single server.
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• In addition, we will suppose that customers are served in the order of their
arrival. Now, for an arbitrary customer in an M/G/1 system,

customer’s wait in queue = work in the system when he arrives

Hence by taking expectations of both sides yields,

WQ = average work as seen by an arrival

• But, due to Poisson arrivals, the average work as seen by an arrival will equal
V , the time average work in the system. Hence, for the model M/G/1,

WQ = V = λE[S]WQ +
λE[S2]

2

yield the so called Pollaczek-Khintchine formula.

WQ =
λE[S2]

2(1− λE[S])
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The quantities L,LQ, and W can be obtained from the above equation as

LQ = λWQ =
λ2E[S2]

2(1− λE[S])
,

W =WQ + E[S] =
λE[S2]

2(1− λE[S])
+ E[S],

L = λW =
λ2E[S2]

2(1− λE[S])
+ λE[S]

Example 4.11. Suppose that customers arrive to a single server system in
accordance with a Poisson process with rate λ, and that each customer is one
of r types. Further, type i with probability αi,

∑r
i=1αi = 1. Also, suppose that

the amount of time it takes to serve a type i customer has distribution function
Fi , with mean µi and variance σi.

(a) Find the average amount of time a type j customer spends in the system,
j = 1, . . . , r.

(b) Find the average number of type j customers in the system, j = 1, . . . , r.
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Busy Periods
The system alternates between idle periods (when there are no customers in the
sys- tem, and so the server is idle) and busy periods (when there is at least one
customer in the system, and so the server is busy).

• Let I and B represent, respectively, the length of an idle and of a busy
period.

• Because I represents the time from when a customer departs and leaves the
system empty until the next arrival, it follows, since arrivals are according to
a Poisson process with rate λ, that I is exponential with rate λ and thus

E[I] =
1

λ

• The long-run proportion of time the system is empty is equal to the ratio of
E[I] to E[I] + E[B]. That is

P0 =
E[I]

E[I] + E[B] 41



• We note that

average number of customers in service = λE[S]

where E[S] is defined as the average amount of time a customer spends in
service. However, as the left-hand side of the preceding equals 1 − P0, we
have

P0 = 1− λE[S], and then E[B] =
E[S]

1− λE[S]
• Another quantity of interest is C, the number of customers served in a busy

period. The mean of C can be computed by noting that, on the average, for
every E[C] arrivals exactly one will find the system empty (namely, the first
customer in the busy period). Hence,

a0 =
1

E[C]

and, as a0 = P0 = 1− λE[S] because of Poisson arrivals, we see that

E[C] =
1

1− λE[S] 42



Variations on the M/G/1

• The M/G/1 with Random-Size Batch Arrivals

Suppose that, as in the M/G/1, arrivals occur in accordance with a Poisson process having

rate λ. But now suppose that each arrival consists not of a single customer but of a random

number of customers. As before there is a single server whose service times have distribution

G.

• Priority Queues

Priority queueing systems are ones in which customers are classified into types and then

given service priority according to their type. Consider the situation where are two types

of customers, which arrive according to independent Poisson processes with respective rates

λ1 and λ2, and have service distributions G1 and G2. We suppose that type 1 customers

are given service priority, in that service will never begin on a type 2 customer if a type 1

is waiting. However, if a type 2 is being served and a type 1 arrives, we assume that the

service of the type 2 is continued until completion. That is, there is no preemption once

service has begun.
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• M/G/1 Optimization example.

Consider a single-server system where customers arrive according to a Poisson process with

rate λ, and where the service times are independent and have distribution function G. Let

ρ = λE[S], where S represents a service time random variable, and suppose that ρ < 1.

Suppose that the server departs whenever a busy period ends and does not return until there

are n customers waiting. At that time the server returns and continues serving until the

system is once again empty. If the system facility incurs costs at a rate of c per unit time

per customer in the system, as well as a cost K each time the server returns, what value of

n, n ≥ 1, minimizes the long-run average cost per unit time incurred by the facility, and

what is this minimal cost?

• The M/G/1 Queue with Server Breakdown

Consider a single server queue in which customers arrive according to a Poisson process with

rate λ, and where the amount of service time required by each customer has distribution

G. Suppose, however, that when working the server breaks down at an exponential rate α.

That is, the probability a working server will be able to work for an additional time t without

breaking down is e−at. When the server breaks down, it immediately goes to the repair

facility. The repair time is a random variable with distribution H. Suppose that the customer

in service when a breakdown occurs has its service continue, when the server returns, from

the point it was at when the breakdown occurred. (Therefore, the total amount of time a

customer is actually receiving service from a working server has distribution G.)
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4.6. The Model G/M/1

The model G/M/1 assumes that the times between successive arrivals have
an arbitrary distribution G. The service times are exponentially distributed with
rate µ and there is a single server.

• The immediate difficulty in analyzing this model stems from the fact that
the number of customers in the system is not informative enough to serve as
a state space.

• For in summarizing what has occurred up to the present we would need to
know not only the number in the system, but also the amount of time that
has elapsed since the last arrival (since G is not memoryless).

• To get around this problem we shall only look at the system when a customer
arrives; and so let us define Xn, n ≥ 1, by

Xn = the number in the system as seen by the nth arrival

It is easy to see that the process {Xn, n ≥ 1} is a Markov chain.
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• To compute the transition probabilities Pij for this Markov chain let us first
note that, as long as there are customers to be served, the number of services
in any length of time t is a Poisson random variable with mean µt. Hence

Pi,i+1−j =

∫ ∞
0

e−µt
(µt)j

j!
dG(t), j = 0, 1, . . . , i

• The formula for Pi0 is a little different (it is the probability that at least i+1
Poisson events occur in a random length of time having distribution G) and
can be obtained from

Pi0 = 1−
i∑

j=0

Pi,i+1−j

• The limiting probabilities πk, k = 0, 1, . . . , can be obtained as the unique
solution of

πk =

∞∑
i=0

πiPik =

∞∑
i=k−1

πi

∫ ∞
0

e−µt
(µt)t+1−k

(i+ 1− k)!
dG(t), k ≥ 1,

∞∑
k=0

πk = 1
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• By some mathematical techniques, we can obtain that

πk = (1− β)βk, k = 0, 1, . . .

where β is the solution of the following equation

β =

∫ ∞
0

e−µt(1−β)dG(t).

As πk is the limiting probability that an arrival sees k customers, it is just
the ak as defined in Section 4.2. Hence,

ak = (1− β)βk, k ≥ 0
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• We can obtain W by conditioning on the number in the system when a
customer arrives. This yields

W =
∑
k

E[time in system|arrival sees k](1− β)βk

=
∑
k

k + 1

µ
(1− β)βk = 1

µ(1− β)

• Then

WQ = W − 1

µ
=

β

µ(1− β)

L = λW =
λ

µ(1− β)

LQ = λWQ =
λβ

µ(1− β)

where λ is the reciprocal of the mean interarrival time. That is,

1

λ
=

∫ ∞
0

xdG(x) 48



To obtain the Pk we first note that the rate at which the number in the
system changes from k − 1 to k must equal the rate at which it changes from
k to k − 1. Notice that

• rate number in system goes from k − 1 to k = λak−1.

• rate number in system goes from k to k − 1 = Pkµ.

Then these rates yields

Pk =
λ

µ
ak−1 =

λ

µ
(1− β)βk−1

and as P0 = 1−
∑∞
k=1Pk, we otain

P0 = 1− λ

µ
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The G/M/1 Busy and Idle Periods

• Suppose that an arrival has just found the system empty-and so initiates a
busy period and let N denote the number of customers served in that busy
period. Since the N th arrival (after the initiator of the busy period) will
also find the system empty, it follows that N is the number of transitions for
the Markov chain (of Section above) to go from state 0 to state 0. Hence,
1/E[N ] is the proportion of transitions that take the Markov chain into state
0

• Hence, 1/E[N ] is the proportion of transitions that take the Markov chain
into state 0; or equivalently, it is the proportion of arrivals that find the
system empty. Therefore,

E[N ] =
1

a0
=

1

1− β
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• The sum of a busy and idle period can be expressed as the sum of N
interarrival times. Thus, if Ti is the ith interarrival time after the busy period
begins, then

E[Busy] + E[Idle] = E

[
N∑
i=1

Ti

]
= E[N ]E[T ] =

1

λ(1− β)

• For a second relation between E[Busy] and E[Idle], we can use the same
argument that

1− P0 =
E[Busy]

E[Idle] + E[Busy]

and since P0 = 1− λ/µ, we obtain that

E[Busy] =
1

µ(1− β)
,

E[Idle] =
µ− λ

µ(1− β)
.
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4.7. Multiserver Queues

By and large, systems that have more than one server are much more difficult
to analyze than those with a single server.

Erlang’s Loss System

• A loss system is a queueing system in which arrivals that find all servers busy
do not enter but rather are lost to the system.

• The simplest such system is the M/M/k loss system in which customers
arrive according to a Poisson process having rate λ, enter the system if at
least one of the k servers is free, and then spend an exponential amount of
time with rate µ being served. The balance equations for this system are

State Rate leave = Rate enter
0 λP0 = µP1

1 (λ+ µ)P1 = 2µP2 + λP0

2 (λ+ 2µ)P2 = 3µP3 + λP1

i, 0 < i < k (λ+ iµ)Pi = (i+ 1)µPi+1 + λPi−1
k kµPk = λPk−1 52



• Rewriting gives

P1 =
λ

µ
P0,

P2 =
λ

2µ
P1 =

(λ/µ)2

2
P0,

P3 =
λ

3µ
P1 =

(λ/µ)3

3!
P0,

...

Pk =
λ

kµ
P1 =

(λ/µ)k

k!
P0,

and using
∑k
i=0Pi = 1, we obtain

Pi =
(λ/µ)i/i!∑k
j=0(λ/µ)

j/j!
, i = 0, 1, . . . , k
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• Since E[S] = 1/µ, where E[S] is the mean service time, the preceding can
be written as

Pi =
(λE[S])i/i!∑k
j=0(λE[S])

j/j!
, i = 0, 1, . . . , k

• Consider now the same system except that the service distribution is general–
that is, consider the M/G/k with no queue allowed. This model is sometimes
called the Erlang loss system. It can be shown (though the proof is advanced)
that the equation above (which is called Erlang’s loss formula) remains valid
for this more general system.

• It is easy to see that equation above is valid when k = 1. For in this case,
L = P1,W = E[S],and λa = λP0 .Using that L = λaW gives

P1 = λP0E[S]

which implies, since P0 + P1 = 1, that

P0 =
1

1 + λE[S]
, P1 =

λE[S]

1 + λE[S]
. 54



The M/M/k Queue

The M/M/k infinite capacity queue can be analyzed by the balance equation
technique. We obtain that

Pi =


(λ/µ)i/i!

k−1∑
i=0

(λ/µ)i

i! +
(λ/µ)k

k!
kµ

kµ−λ

, i ≤ k

(λ/kµ)ikk

k! P0, i > k

where we need to impose the condition λ < kµ.
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The G/M/k Queue

In this model we again suppose that there are k servers, each of whom serves
at an exponential rate µ. However, we now allow the time between successive
arrivals to have an arbitrary distribution G. To ensure that a steady-state (or
limiting) distribution exists, we assume the condition 1/µG < kµ where µG is
the mean of G.

• Let Xn be the number in the system at the moment of the nth arrival, then
{Xn, n ≥ 0} is a Markov chain.

• To derive the transition probabilities of the Markov chain, it helps to first
note the relationship

Xn+1 = Xn + 1− Yn, n ≥ 0

where Yn denotes the number of departures during the interarrival time
between the nth and (n + 1)st arrival. The transition probabilities Pij can
now be calculated as follows:

56



Case 1. j > i+ 1.
In this case it easily follows that Pij = 0.

Case 2. j ≤ i+ 1 ≤ k.
Conditioning on the length of this interarrival time yields,

Pij = P{i+ 1− j of i+ 1 services are completed in an interarrival time}

=

∫ ∞
0

P{i+ 1− j of i+ 1 are completed|interarrival time is t}dG(t)

=

∫ ∞
0

(
i+ 1
j

)
(i− e−µt)i+1−j(e−µt)jdG(t)

where the last equality follows since the number of service completions in a
time t will have a binomial distribution.
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Case 3. i+ 1 ≥ j ≥ k.
To evaluate Pij in this case we first note that when all servers are busy,the
departure process is a Poisson process with rate kµ. Hence, again conditioning
on the interarrival time we have

Pij = P{i+ 1− j departures}

=

∫ ∞
0

P{i+ 1− j departures in time t}dG(t)

=

∫ ∞
0

e−kµt
(kµt)i+1−j

(i+ 1− j)!
dG(t)

58



Case 4. i+ 1 ≥ k > j.
In this case since when all servers are busy the departure process is a Poisson
process, it follows that the length of time until there will only be k in
the system will have a gamma distribution with parameters i + 1 − k, kµ
(the time until i + 1 − k events of a Poisson process with rate kµ occur is
gamma distributed with parameters i+ 1− k, kµ). Conditioning first on the
interarrival time and then on the time until there are only k in the system
(call this latter random variable Tk ) yields

Pij =

∫ ∞
0

P{i+ 1− j departures in time t}dG(t)

=

∫ ∞
0

∫ t

0

P{i+ 1− j departures in t|Tk = s}kµe−kµs
(kµs)i−k

(i− k)!
dsdG(t)

=

∫ ∞
0

∫ t

0

(
k

j

)
(1− e−µ(t−s))k−j(e−µ(t−s))jkµe−kµs

(kµs)i−k

(i− k)!
dsdG(t)

where the last equality follows since of the k people in service at time s the
number whose service will end by time t is binomial with parameters k and
1− e−µ(t−s).
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We now can verify either by a direct substitution into the equations πj =∑
i πiPij, , that the limiting probabilities of this Markov chain are of the form

πk−1+j = cβj, j = 0, 1, . . .

Substitution into any of the equations πj =
∑
i πiPij when j > k yields that

β is given as the solution of

β =

∫ ∞
0

e−kµt(1−β)dG(t)

The values π0, π1, . . . , πk−2 can be obtained by recursively solving the first
k − 1 of the steady-state equations, and c can then be computed by using∑∞
i=0 πi = 1.
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The M/G/k Queue

Consider the M/G/k system in which customers arrive at a Poisson rate λ
and are served by any of k servers, each of whom has the service distribution G.

• If we attempt to mimic the analysis presented in the section before for the
M/G/1 system, then we would start with the basic identity

V = λE[S]WQ + λE[S2]/2

and then attempt to derive a second equation relating V ad WQ.

• Now if we consider an arbitrary arrival, then we have the following identity:

work in system when customer arrives = k×time customer spends in queue+R

where R is the sum of the remaining service times of all other customers in
service at the moment when our arrival enters service.
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• The foregoing follows because while the arrival is waiting in queue, work
is being processed at a rate k per unit time (since all servers are busy).
Thus, an amount of work k×time in queue is processed while he waits in
queue. Now, all of this work was present when he arrived and in addition the
remaining work on those still being served when he enters service was also
present when he arrived–so we obtain the equation above.

• For an illustration, suppose that there are three servers all of whom are busy
when the customer arrives. Suppose, in addition, that there are no other
customers in the system and also that the remaining service times of the
three people in service are 3, 6, and 7. Hence, the work seen by the arrival is
3 + 6 + 7 = 16. Now the arrival will spend 3 time units in queue, and at the
moment he enters service, the remaining times of the other two customers
are 6− 3 = 3 and 7− 3 = 4. Hence, R = 3 + 4 = 7 and as a check of the
equation above we see that 16= 3× 3 + 7.
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• Taking expectations of the equation above and using the fact that Poisson
arrivals see time averages, we obtain

V = kWQ + E[R]

which, along with the equation shown before, would enable us to solve for
WQ if we could compute E[R]. However there is no known method for
computing E[R] and in fact, there is no known exact formula for WQ.

• The following approximation for WQ was obtained in the reference by using
the foregoing approach and then approximating E[R]:

WQ ≈
λkE[S2](E[S])k−1

2(k − 1)!(k − λE[S])2
[
k−1∑
n=0

(λE[S])n

n! + (λE[S])k

(k−1)!(k−λE[S])

]

• The preceding approximation has been shown to be quite close to WQ when
the service distribution is gamma. It is also exact when G is exponential. 63


