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Page 17, Example 4.3.
Since λ = 1

12, µ = 1
8, we have

L = 2,W = 24

Hence, the average number of customers in the system is 2, and the average
time a customer spends in the system is 24 minutes. Now suppose that the
arrival rate increases 20 percent to λ = 1

10. What is the corresponding change
in L and W? Similar as before, it gives

L = 4,W = 40

Hence, an increase of 20 percent in the arrival rate doubled the average number
of customers in the system. From these equations we can see that when λ/µ is
near 1, a slight increase in λ/µ will lead to a large increase in L and W .
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Page 18, Example 4.4
To do so, let

f(α) =
α

µ− λα
and note that W (α) = f(α) + f(1− α).
Differentiation yields that

f ′(α) =
µ− λα+ λα

(µ− λα)2
= µ(µ− λα)−2

and f ′′(α) = 2λµ(µ− λα)− 3
Because µ > λα, we see that f ′′(α) > 0. Similarly, because µ > λ(1− α), we
have that f ′′(1− α) > 0. Hence,

W ′′(α) = f ′′(α) + f ′′(1− α) > 0

Equating W ′(α) = f ′(α) − f ′(1 − α) to 0 yields the solution α = 1 − α, or
α = 1/2. Hence, W (α) is minimized when α = 1/2, with minimal value

min
0≤α≤1

W (α) =W (1/2) =
1

µ− λ/2
. 3



Page 18, Remark 1

We have used the fact that if one event occurs at an exponential rate λ, and
another independent event at an exponential rate µ, then together they occur
at an exponential rate λ+µ. To check this formally, let T1 be the time at which
the first event occurs, and T2 the time at which the second event occurs. Then

P{T1 ≤ t} = 1− e−λt, P{T2 ≤ t} = 1− e−µt

Now if we are interested in the time until either T1 or T2 occurs, then we are
interested in T = min(T1, T2). Now,

P{T ≤ t} = 1− P{T > t} = 1− P{min(T1, T2) > t}

However, min(T1, T2) > t if and only if both T1 and T2 are greater than t;
hence,

P{T ≤ t} = 1− P{T1 > t, T2 > t}
= 1− P{T1 > t}P{T2 > t} = 1− e−λte−µt = 1− e−(λ+µ)t

Thus, T has an exponential distribution with rate λ+ µ, and we are justified in
adding the rates. 4



Page 18, Remark 2
Now ,

P{N = n|W ∗ = t} = fN,W ∗(n, t)

fW ∗(t)
=
P{N = n}fW ∗|N(t|n)

fW ∗(t)

where fW ∗|N(t|n) is the conditional density of W ∗ given that N = n, and
fW ∗(t) is the unconditional density of W ∗. Now, given that N = n, the
time that the customer spends in the system is distributed as the sum of n+1
independent exponential random variables with a common rate µ, implying that
the conditional distribution of W ∗ given that N = n is the gamma distribution
with parameters n+ 1 and µ. Therefore, with C = 1/fW ∗(t),

P{N = n|W ∗ = t} = CP (N = n)µe−µt
(µt)n

n!

= C(λ/µ)n(1− λ/µ)µe−µt(µt)
n

n!
= K

(µt)n

n!

where K = C(1− λ/µ)µe−µt does note depend on n.

5



Page 18, Remark 2 Continuous
Summing over n yields

1 =

∞∑
n=0

P (N = n|T = t) = K

∞∑
n=0

(µt)n

n!
= Keλt

Thus, K = e−λt, showing that

P{N = n|W ∗ = t} = e−λt
(λt)n

n!

Therefore, the conditional distribution of the number seen by an arrival who
spends a total of t time units in the system is the Poisson distribution with
mean λt.

In addition, as a by-product of our analysis, we have

fW ∗(t) = 1/C =
1

K
(1− λ/µ)µe−µt = (µ− λ)e−(µ−λ)t

In other words, W ∗, the amount of time a customer spends in the system, is
an exponential random variable with rate µ − λ. (As a check, we note that
E[W ∗] = 1/(µ− λ).)
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Page 18, Remark 3

If we let N denote the number of customers in the system as seen by an
arrival, then this arrival will spend N + 1 service times in the system before
departing. Now,

P{N + 1 = j} = P{N = j − 1} = (λ/µ)j−1(1− λ/µ), j ≥ 1

In words, the number of services that have to be completed before the arrival
departs is a geometric random variable with parameter 1−λ/µ. Therefore, after
each service completion our customer will be the one departing with probability
1 − λ/µ. Thus, no matter how long the customer has already spent in the
system, the probability he will depart in the next h time units is µh+ o(h), the
probability that a service ends in that time, multiplied by 1− λ/µ. That is, the
customer will depart in the next h time units with probability (µ− λ)h+ o(h),
which says that the hazard rate function of W ∗ is the constant µ− λ. But only
the exponential has a constant hazard rate, and so we can conclude that W ∗ is
exponential with rate µ− λ.
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Page 19, Example 4.5

Although it might initially seem, by the PASTA principle, that this probability should just

be (λ/µ)n(1 − λ/µ), we must be careful. Because if t is the current time, then the time

from t until the next arrival is exponentially distributed with rate λ, and is independent of the

time from t since the last arrival, which (in the limit, as t goes to infinity) is also exponential

with rate λ. Thus, although the times between successive arrivals of a Poisson process are

exponential with rate λ, the time between the previous arrival before t and the first arrival

after t is distributed as the sum of two independent exponentials. (This is an illustration of the

inspection paradox, which results because the length of an interarrival interval that contains a

specified time tends to be longer than an ordinary interarrival interval)

Let Na denote the number found by the next arrival, and let X be the number currently

in the system. Conditioning on X yields

P{Na = n} =

∞∑
k=0

P (Na = n|X = k)P (X = k)

=

∞∑
k=0

P (Na = n|X = k)(λ/µ)
k
(1− k/µ)

=

∞∑
k=n

P (Na = n|X = k)(λ/µ)
k
(1− λ/µ)

=

∞∑
i=0

P (Na = n|X = n+ i)(λ/µ)
n+i

(1− λ/µ) 8



Page 19, Example 4.5 Continuous
Now, for n > 0, given there are currently n + i in the system, the next arrival will find n if

we have i services before an arrival and then an arrival before the next service completion. By

the lack of memory property of exponential interarrival random variables, this gives

P (Na = n|X = n+ i) =

(
µ

λ+ µ

)i λ

λ+ µ
, n > 0

Consequently, for n > 0

P (Na = n) =

∞∑
i=0

(
µ

λ+ µ

)i λ

λ+ µ

(
λ

µ

)n+i
(1− λ/µ)

= (λ/µ)
n
(1− λ/µ)

λ

λ+ µ

∞∑
i=0

(
λ

λ+ µ

)i
= (λ/µ)

n+1
(1− λ/µ)

On the other hand, the probability that the next arrival will find the system empty when there

are currently i in the system, is the probability that there are i services before the next arrival.

Therefore, P{Na = 0|X = i} = ( µ
λ+µ)

i, giving

P (Na = 0) =
∞∑
i=0

(
µ

λ+ µ

)i(λ
µ

)i
(1− λ/µ)

= (1− λ/µ)
∞∑
i=0

(
λ

λ+ µ

)i
= (1 + λ/µ)(1− λ/µ)
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Page 19, Example 4.5 Continuous
As a check, note that

∞∑
i=0

P{Na = n} = (1−λ/µ)
[
1 + λ/µ+

∞∑
n=1

(λ/µ)
n+1

]
= (1−λ/µ)

∞∑
i=0

(λ/µ)
i
= 1

Note that P{Na = 0} is larger than P0 = 1−λ/µ, showing that the next arrival is more

likely to find an empty system than is an average arrival, and thus illustrating the inspection

paradox that when the next customer arrives the elapsed time since the previous arrival is

distributed as the sum of two independent exponentials with rate λ. Also, we might expect

because of the inspection paradox that E[Na] is less than L, the average number of customers

seen by an arrival. That this is indeed the case is seen from

E[Na] =

∞∑
n=1

n(λ/µ)
n+1

(1− λ/µ) =
λ

µ
L < L
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Page 23, Example 4.6 To solve this, suppose that we use rate µ. Let us
determine the amount of money coming in per hour and subtract from this the
amount going out each hour. This will give us our profit per hour, and we can
choose µ so as to maximize this. Now, potential customers arrive at a rate λ.
However, a certain proportion of them do not join the system—namely, those
who arrive when there are N customers already in the system. Hence, since
PN is the proportion of time that the system is full, it follows that entering
customers arrive at a rate of λ(1−PN). Since each customer pays $A, it follows
that money comes in at an hourly rate of λ(1− PN)A and since it goes out at
an hourly rate of cµ, it follows that our total profit per hour is given by

profit per hour = λ(1− PN)A− cµ = λA

[
1− (λ/µ)N(1− λ/µ)

1− (λ/µ)N+1

]
− cµ

=
λA[1− (λ/µ)N ]

1− (λ/µ)N+1
− cµ

For instance if N = 2, λ = 1, A = 10, c = 1, then

profit per hour =
10[1− (1/µ)2]

1− (1/µ)3
− µ =

10(µ3 − µ)
µ3 − 1

− µ
11



Page 23, Example 4.6 Continuous
In order to maximize profit we differentiate to obtain

d

dµ
[profit per hour] = 10

(2µ3 − 3µ2 + 1)

(µ3 − 1)
− 1

The value of µ that maximizes our profit now can be obtained by equating to
zero and solving numerically.
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Page 29, Example 4.7
Using that λn

µnk!kn−k
= (λ/kµ)nkk/k! we see that

P0 =
1

1 +
∑k
n=1(λ/µ)

n/n! +
∑∞
n=k+1(λ/kµ)

nkk/k!,

Pn = P0(λ/µ)
n/n!, if n ≤ k

Pn = P0(λ/kµ)
nkk/k!, if n > k

It follows from the preceding that the condition needed for the limiting
probabilities to exist is λ < kµ. Because kµ is the service rate when all
servers are busy, the preceding is just the intuitive condition that for limiting
probabilities to exist the service rate needs to be larger than the arrival rate
when there are many customers in the system.
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Page 29, Example 4.8
Letting µ2 = 2µ, the long run proportions for the M/M/2 system can be
expressed as

Pn = 2(λ/µ2)
nP0, n ≥ 1

This yields that

1 =

∞∑
n=0

Pn = P0

(
1 + 2

∞∑
n=1

(λ/2µ2)
n

)
= P0

(
1 +

λ/µ

1− λ/µ2

)
= P0

(
1 + λ/µ2

1− λ/µ2

)

Thus

P0 =
1− λ/µ2

1 + λ/µ2

To determine W , we first compute L. This gives

L =

∞∑
n=1

nPn = 2P0

∞∑
n=1

n(λ/µ2)
n = 2P0

λ/µ2

(1− λ/µ2)2
=

λ/µ

(1− λ/µ2)(1 + λ/µ2)

Because L = λW , the preceding gives

W =
1

(µ− λ/2)(1 + λ/µ2)
14



Page 29, Example 4.8 continuous
It is interesting to contrast the average time in the system when there is a single
queue as in the M/M/2, with when arrivals are randomly sent to be served
by either server. As shown in Example 4.4, the average time in the system in
the latter case is minimized when each customer is equally likely to be sent to
either server, with the average time being equal to 1

µ−λ/2 in this case. Hence,

the average time that a customer spends in the system when using a single
queue as in the M/M/2 system is 1

1+λ/µ2
multiplied by what it would be if each

customer were equally likely to be sent to either server’s queue. For instance,
if λ = µ = 1, then λ/µ2 = 1/2, and the use of a single queue results in the
customer average time in the system being equal to 2/3 times what it would
be if two separate queues were used. When λ = 1.5µ, the reduction factor
becomes 4/7; and when λ = 1.9µ, it is 20/39.
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Page 29, Example 4.9

This system can be modeled as a birth and death process with birth and
death rates

λn = λ, n ≥ 0

µn = µ+ (n− 1)α, n ≥ 1

Using the previously obtained limiting probabilities enables us to answer a variety
of questions about this system. For instance, suppose we wanted to determine
the proportion of arrivals that receive service. Calling this quantity πs, it can be
obtained by letting λs be the average rate at which customers are served and
noting that

πs =
λs
λ

To verify the preceding equation, let Na(t) and Ns(t) denote, respectively, the
number of arrivals and the number of services by time t. Then,

πs = lim
t→∞

Ns(t)

Na(t)
= lim
t→∞

Ns(t)/t

Na(t)/t
=
λs
λ
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Page 29, Example 4.9 continuous

Because the service departure rate is 0 when the system is empty and is µ
when the system is nonempty, it follows that λs = µ(1− P0), yielding that

πs =
µ(1− P0)

λ
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Page 35, Example 4.10

If we let λj denote the total arrival rate of customers to server j, then the
λj can be obtained as the solution of

λj = rj +

k∑
i=1

λiPij, i = 1, . . . , k

The above equation follows since rj is the arrival rate of customers to j coming
from outside the system and, as λi is the rate at which customers depart server i
(rate in must equal rate out), λiPij is the arrival rate to j of those coming from
server i. The total arrival rates to servers 1 and 2—call them λ1 and λ2—can
be obtained from the above eqaution. That is, we have

λ1 = 4 +
1

4
λ2,

λ2 = 5 +
1

2
λ1
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Page 35, Example 4.10 Continuous

implying λ1 = 6, λ2 = 8. Hence

P (n at server 1, m at server 2) =

(
3

4

)n
1

4

(
4

5

)m
1

5
=

1

20

(
3

4

)(
4

5

)
and

L =
6

8− 6
+

8

10− 8
= 7

W =
L

9
=

7

9
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Page 40, Example 4.11

First note that this model is a special case of the M/G/1 model, where if S
is the service time of a customer, than the service distribution G is obtained by
conditioning on the type of the customer:

G(x) = P (S ≤ x) =
n∑
i=1

P (S ≤ x|customer is type i)αi =
n∑
i=1

Fi(x)αi

To compute E[S] and E[S2], we condition on the customer’s type. This yields

E[S] =

n∑
i=1

E[S|type i]αi =
n∑
i=1

µiαi

and

E[S2] =

n∑
i=1

E[S2|type i]αi =
n∑
i=1

(µ2
i + σ2

i )αi

20



Page 40, Example 4.11 continuous

where the final equality used that E[X2] = E2[X] + Var(X). Now, because
the time that a customer spends in queue is equal to the work in the system
when that customer arrives, it follows that the average time that a type j
customer spends in queue, call it WQ(j), is equal to the average work seen by a
time j arrival. However, because type j customers arrive according to a Poisson
process with rate λαj it follows, from the PASTA principle, that the work seen
by a type j arrival has the same distribution as the work as it averages over time,
and thus the average work seen by a type j arrival is equal to V . Consequently,

WQ(j) = V =
λE[S2]

2(1− λE[S])
=
λ
∑n
i=1(µ

2
i + σ2

i )αi
2(1− λ

∑n
i=1 µiαi)

With W (j) being the average time that a type j customer spends in the
system, we have

W (j) =WQ(j) + µj
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Page 40, Example 4.11 continuous

Finally, using that the average number of type j customers in the system is
the average arrival rate of type j customers times the average time they spend
in the system (L = λaW applied to type j customers), we see that L(j), the
average number of type j customers in the system, is

L(j) = λαjW (j)
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