Summary and Review

Lecture Note 1

- Sample Space S : the set of all possible outcome of an experiment.
- Event E : any subsetof the sample space S is known as an event.
- Complement E^{c} : consist of all outcomes in the sample space S that are not in E.
- Probabilities $P(E)$ defined on Events satisties the three conditions. (Page 6, Lecture Note 1)
- Operations: $P(E \cup F), P(E \cap F)$.
- Conditional Probability $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$
- Two events E and F are said to be independence if $P(E \cap F)=P(E) P(F)$ or $P(E \mid F)=P(E)$.
- Bayes' Formula: $P(E)=P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(1-P(F))$ and

$$
P\left(F_{j} \mid E\right)=\frac{P\left(E \cap E_{j}\right)}{P(E)}=\frac{P\left(E \mid F_{j}\right) P\left(F_{j}\right)}{\sum_{i=1}^{n} P\left(E \mid F_{i}\right) F\left(F_{i}\right)}
$$

- Random variables: These quantities of interest, or more formally, these real-valued functions defined on the sample space.
- Discrete random variables, Continuous random variables.
- Cumulative distribution function. (Page 26, Lecture Note 1)
- The Bernolli Random Variable, The Binomial Random Variable (Page 28, Lecture Note 1)
- The Geometric Random Variable, The Poisson Random Variable (Page 29, Lecture Note 1)
- Density function for Continuous Random variable (Page 30, Lecture Note 1)
- The uniform random variable, The Exponential Random Variables (Page 31, Lecture Note 1)
- The Gamma Random Variables, Normal Random Variables (Page 32, Lecture note 1)
- Expectation of a random variable for discrete random variable and continuous random variable. (Page 33, 34, Lecture note 1)
- Jointly Distribution of random variables, marginal distribution of random variables
- Independent random variables $P(X \leq a, Y \leq b)=P(X \leq a) P(Y \leq b)$ and $f(x, y)=f(x) f(y)$, and for any functions h and $g, \mathrm{E}[g(X) h(Y)]=$ $\mathrm{E}[g(X)] \mathrm{E}[h(Y)]$.
- Covariance and Variance of random variables $\operatorname{Cov}(X, Y)=\mathrm{E}(X-\mathrm{E} X)(Y-$ $\mathrm{E} Y)=\mathrm{E}(X Y)-\mathrm{E} X \mathrm{E} Y$.
- Joint Probability Distribution of Functions of Random, Jacobian determinant Variables (page 43, 44, Lecture note 1)
- Moment Generating Functions (page 45, Lecture Note 1)
- Strong Law of large Number
- Central limit theory
- Condtional probability $\left({ }^{* * *}\right)$ (Lecture note 1 , section 1.12)
- Condtional Expectation (${ }^{* * *}$) (Lecture note 1, section 1.12)
- Computing Expectations and Probabilities by Conditioning (***) (Lecture note 1 , section 1.12)

Lecture Note 2

- Definition of Stochastic process
- Discrete-time process and continuous-tiem process
- State space of a stochastic process
- Stationary process, strong stationary, weak stationary.
- autocovariance
- Definition of Markov Chain. Definition of State. (page 5, Lecture note 2)
- Transition probability and transition probability matrix of the markov chain (Page 5,6, Lecture not 2)
- Definition of Absobing states (Page 7, Example 3, Lecture Note 2)
- Chapman-Kolmogorov Equation (page 8)
- Classifiction of States
- Definition of Accessible and Communicate (page 11, Lecture Note 2)
- Defintion of Class for the state. (page 12, Lecture Note 2)
- Definition of irreducible (page 12, Lecture Note 2)
- Definition of Recurrent and Transient for the state (page 13, Lecture Note 2, Proposition 1 and Corollary 1.)
- Definition of positive recurrent and null recurrent (Page 17, Lecture Note 2)
- Definition of the long-run proportion of time that the Markov chain is in state (Page 18, 19 . Lecture note 2, Proposition 3, Theorem 1)
- Definition of Stationary probabilities of makove chain
- Definition of Limiting probability (Page 24,25, Lecture Note 2)
- Defintion of periodic, aperiodic, ergoic (Page 25, 26, Lecture Note 2)
- Mean Time Spend in Transient States, definition and calculation formulas (***) (Page 29, 30, 31, Lecture Note 2)
- Definition of Branching Process, calculation of Expectatin and variance of states for the branching process (Page 33-38, Lecture Note 2)
- Definition of Continuous-Time Markov Chains (Page 39, Lecture Note 2)
- Defintion of stationary or homogeneous transition probabilities (Page 39, Lecture Note 2)
- Definiton of Memoryless (Page 40, Lecture Note 2)
- The exponetnail distribution, mean, moment generating function, variance, memoryless. (Page 41-43, Lecture Note 2)
- Defintion of Counting process, indepdnent increments, statinary increments (Page 44, Lecture Note 2)
- Definition of Possion process (Page 45, 46Lecture Note 2)
- Defintion of the rate of Possion process (Page 45, Lecture Note 2)
- Mean Possion process, Properties of Posssion process, independent and stationary increments (Page 45, Lecture Note 2)
- Definition of Birth and Death process and its transition probability formula (pag 47, 48 Lecture Note 2)
- Definition of the Queueing System $\mathrm{M} / \mathrm{M} / 1$, and A Multiserver Exponential Queueing System (Page 50,51, Lecture Note 2)

Lecture Note 3

- State and Action (Page 1, Lecture Note 3)
- Defintion of Policy (Page 2, Lecture Note 3)
- Definition of the resultant Markvo chain given the policy (Page 3, Lecture Note 3)
- Definition of the limiting (or steady-state) probability. (Page 3-4, Lecture Note 3)
- Defintion of Reward, expected average reward under a special policy.
- Maximizing Reward and Optimal Policy
- Definition of Markov Decision Processes for Customer Lifetime Value (page 8-9, Lecture Note 3)
- Definition of Discount factor (page 9, Lecture Note 3)
- Definition of Stationary Policy (page 11, Lecture Note 3)

Lecture Note 4

- Definitionof Queueing System (Page 1, Lecture Note 4)
- Defintion of fundamental quantities for queueing models: L, L_{Q}, W and W_{Q} (Page 2, Lecture Note 4)
- Defintion of average arrival rate of entering customers λ_{a} (Page 3, Lecture Note 4)
- Basic cost Identity Principle (***) (Page 3, Lecture Note 4)
- Generalized relationship or Little's formula $L=\lambda_{a} W$ and $L_{Q}=\lambda_{a} W_{Q}$ (Page 5, Lecture Note 4)
- Definition of the average amount of time a customer spends in service and average number of customers in service $=\lambda_{a} \mathrm{E}[S]$. (Page 5, Lecture Note 4)
- Definition of the limiting or long- run probability that there will be exactly n customers in the system P_{n}. (Page 6, Lecture Note 4)
- Definition of Steady-State Probability (Page 6, Lecture Note 4)
- Defintion of a_{n}, proportion of customers that find n in the system when they arrive, and d_{n}, proportion of customers leaving behind n in the system when they depart. (Page 6, Lecture Note 4)
- Relationship between P_{n} and a_{n}, d_{n}. (Page 7-8, Lecture Note 4)
- PASTA Principle: The result that Poisson arrivals see time averages (***) (Page 8, Lecture Note 4)
- Definition of $M / M / 1$ queueing system: A Single-Server Exponential Queueing System. (Page 11, Lecture Note 4)
- The general principle: the rate at which the process enters state n equals the rate at which it leaves state $n .\left({ }^{* * *)}\right.$ (Page 11, Lecture Note 4)
- Calculation of $P_{n}, L, W, L_{Q}, W_{Q}$ for $\mathrm{M} / \mathrm{M} / 1$ (Page 13-17, Lecture Note 4)
- Definition of A Single-Server Exponential Queueing System Having Finite Capacity (${ }^{* * *}$) (Page 20, Lecture Note 4)
- Calculation of $P_{n}, L, W, L_{Q}, W_{Q}$ for $\mathrm{M} / \mathrm{M} / 1$ with finite capacity (${ }^{* * *}$) (Page 20, Lecture Note 4)
- Definition of the $\mathrm{M} / \mathrm{M} / 1$ Queueing System with Balking. (Pag 25, Lecture Note 4)
- Definition of The $\mathrm{M} / \mathrm{M} / \mathrm{k}$ Queueing System and Calculation of $P_{n}\left({ }^{* * *}\right)$ (Page 25-28, Lecture Note 4)
- Remarks (page 30-32, Lecture Note 4)
- Definition of Network of Queues (Page 33, Lecture Note 4)
- The balance equation for Network of Queues (Page 33-34, Lecture Note 4)
- Definition of M/G/1
- Cost rule: Each customer pays at a rate of $y /$ unit time when his remaining service time is y, and calculation of L, W, L_{Q}, W_{Q} and Pollaczek-Khintchine formula (Page 36-40, Lecture Note 4)
- Definition of Busy and Idle Periods (Page 41, Lecture Note 4)
- Variation of the M/G/1. (Page 43-44, Lecture Note 4)
- Definition of the model $G / M / 1$. (page 45 , Lecture note 4)
- Definition of state space and markov chain for the $\mathrm{G} / \mathrm{M} / 1$. (page 45 , Lecture 4)
- Basic idea of calculating the transition probability $P_{i j}, W, L, W_{Q}, L_{Q}$ for the G/M/1 system. (Page 46-49, Lecture Note 4)
- Basic idea of calculating Busy and Idle periods for the $\mathrm{G} / \mathrm{M} / 1$.
- Definition of Multiserver Queues and Erlang's Loss System (Page 52, Lecture Note 4)
- Balance equations for Multiserver Queues system.
- The $\mathrm{M} / \mathrm{M} / \mathrm{k}$ queue $\left({ }^{* * *}\right)$
- $G / M / k$ queue, basic idea of deriving the transition probability.
- M/G/k queue, basic idea of calculating W_{Q}

