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P4 Strictly Stationary process, for any m,
p(zt,, . zt,) = P(Zty ks - - - s Ztp k)
Weakly Stationary process
Ez = p, Cov(zt, ze4k) = Yk, k =0,1,.. ..

» Example: white noise process {a;, t = 0,+1,+2 ...} are a
sequence of uncorrelated variable from fixed distribution with
mean E(a;) = 0, Var(a;) = ¢ and Cov(as, a;_x) = 0 for all

k #0.



P8.

Yk

v = E(ar+ a1 +Yoaro+--- )2
= Eaf + w%Eaf,l + ngaf,z 4+

o0
2 2
o* > Y]
=0

E(ze — p)(ze—k — 1)

E(a; + ¥1ac—1 + voar—o+ - )(@t—k + V13——1+ -
1-Ba;_y + vrheniBa; ) + othoBa; 4 5+

o0
2
o> btk
=0



» Example ¢y = —0 and ¢; =0, > 2, then z; — 1 = a; — 0a;_;, the
first order moving average process.

> Example v¢; = @, the first-order autoregressive process

zZe—p = a+oa1+dia o+
= ar+ P#(ar—1 + par_o + ¢23t—3 +--4)
= ¢(ze-1— ) +a

P9. For AR(1), it is important that |¢| < 1 (Stationary Condition), since
otherwise the v weight would not converge.
P11.
1—¢1B—¢2B>=(1— GB)(1— G,B) =0,

G; ' and G, ! are its roots. For the stationarity, it requires that the
roots are such that |G, !| > 1 and G, *| > 1.



» Example: ¢; =0.8,¢, = —0.15
The solution of

(1-0.8B+0.15B8%) = (1 — 0.5B)(1 — 0.38) =0

is given by G;* =1/0.5 =2 and G, ' = 10/3, which are both

larger than 1 in absolute value. Hence the process is stationary.
» Example: ¢1 = 1.5,¢, = —0.5

The solution of

(1-15B+05B%)=(1-B)(1-05B)=0

is given by G;* =1 and G, ' = 2, which has one root at 1. Hence
the process is not stationary.
> Example: ¢1 =1,¢, = —0.5
The solution of
(1-B+05B8%) =0

are complex and given by Gfl =1+/and G{l =1-—1,
|G Y = |Gz_1| = /1T +1 = /2 are both larger than 1. Hence the
process is stationary.



P14.

For k=1

hi
p1 = ¢1po + P2p—1 = 1+ P2p1 = P
1—¢2
For k =2

2

p2 = ¢1p1 + P2po = 1 iﬁ@ + ¢

By 70(1 — ¢1p1 — ¢2p2) = 02, then

1= o?
1+ ¢ (1— )2 — 93

Yo

P16. P = (9171027 cee 7:0P)Ta¢ = (¢13¢27 s 7¢P)T




» For the AR(1) model, the Yule-Walker equation is given by
p1= ¢
» For the AR(2) model the Yule-Walker equation are

p1 = @1+ p192

p2 = p191 + P2

which leads to

p1(1 = p2) b = p2 — pi
1—p7 1-p7

¢1 =



» ¢(B)pxk =0,k =1,2,..., determines the behavior of the
authorcorrelation function. It can be shown that its solution is

pk=A1Gf + -+ AGK k=1,2,...

where GI-_l7 i=1,...,p are the distinct roots of
¢(B)=(1— G1B)(1 - G2B)--- (1 - G,B).

» The stationary condition imply that ]Gfl| >1,i=1...,p.
Hence the ACF is described by a mixture of damped
exponential (for real roots) and damped sine waves(for
complex roots).



P17. Alternative interpretation of Partial Autocorrelations
The partial correlation coefficient between two random
variables X and Y, conditional on a third variable W, is the
ordinary correlation coefficient calculated from the conditional
distribution p(x, y|w). It can be thought of as the correlation
between X — E(X|W) and Y — E(Y|W), and the assumption
of joint normality of (X, Y, W) is given by
E(X — E(X|W))(Y — E(Y|W))
{E(X — E(X|W)?E(Y — E(Y|W)?}
PXY — PXwWPYW
(3~ PR = P2
> In the context of a lag 2 partial autocorrelation, the variables
are X =z;,Y =z o, W =2_4, and
pxXY = p2, Pxw = pyw = p1. Hence

PXYy w =

N

P22 = Przpz .y = Corr(ze — E(ze|ze-1), z—2 — E(ze-2|2t-1))
2
P2 —P1

1-p3



P23. Example: Second-Order Moving Average Process|[MA(2)]
Ze—p = ar—brar_1—6ra_o or zg—p= (1—918—0282)at
> Hence v9 = 1,91 = —01,9» = —0>,% = 0;j > 2. Then
Y =(1+ 0% + 05)02,71 = (-6, + 0102)02,72 = —050°
v, = 0,for k > 2

» The autocorrelations are

—01 + 010> —05
_Hgg,pk:O, for k > 2



If MA(2) process is in term of an infinite autoregressive
rerpesentation,

ze — p=m(z-1 — p) + m2(ze—2 — p) + -+ ax,
then the 7 weight can be obtained from
m(B)=1-mB—mB*— - =(1—61B—0,B*)""
and
(1-mB-mB?>— - )1-6,B-6,B*)=1
and are given by
Bl:—m —60:=0, m = —6;

322—7T2+917T1—92:0, 7T2=917T1—92:—9%—¢92

B . —7TJ'—|-917TJ',1+927['J',2 =0, Uy :917'('_,',14-9271]',1,] > 2.



MA(2) continuous. For invertibility, the m weight is required

converged, which in turn implies conditions on the parmater
61 and 05, the roots of
(1—61B— 60,82 =0=(1— H1B)(1 — H,B) lie outside the
unit circle. Hence

01 +0,<1,0,—-0;1<1,—1<6, <1.

» Partial autocorrelation function for MA(1)

—0  —0(1-6?)
e e
5 i —pi = —0P(1-67)
2T 12 T 12 1+602 468 1— 65
1 pop L ppom
pr 1 p2 pr 1 0
a3 = p2 p1 p3| |0 pi O]  p} —63%(1-67)
2T oo, 1 g 0| 1-28 168
pr 1 p pr 1 p
P2 p1 1 0 ¢ m




P26. ARMA(1,1) Model, ¢ weight

Zr — = ar + Yrar—1 + Ypar—o+ - = ;:Zgat
or

(1—¢B)(at +Yrae-1+rat—2+---)=1—6B
Hence

B :iypp—p=—0,1=¢—0
B* : 4y — dipr = 0,902 = ¢tp1 = (¢ — ¥)ob
B i — 1 =0, = dhj1=(¢—0)¢ >0
> 7 representation for ARMA(1,1)

30 = e pma(ze 1) —ma(ze 2 ) - = w(B) () = 1o (e)

B':i—m—0=—¢,m=¢—10
B%: —m 4 6m =0,m =0m = (¢ —0)0
B —mj 4+ Omj_1, = 011 :((;579)9/71



> Autocorrelation function of ARMA(1,1), set Ez; = pn =0
Y = ¢vk—1 + E(arze—x) — OE(ac—12:«)
If k> 1, E(arze—k) = 0E(a¢—12+—x) = 0, Therefore
Yk = ¢Yk—1, for k > 1
E(arz:) = Elar(ar + ¥12t-1 + V2ze—2 + -+ )] = Ea? = o2

E(atzt—l) = E[at—l(3t+¢12t—1+¢22t—2+' o )] = ET/’laffl = ((15_9)02

Then
k=0:7=¢v1+ 0> —0(p—0)o?

k=1:m= ¢y —00°

Solve this equation system to get 7o and 1. ( check by yourself )



P49. AR(1) process: Suppose we are given past observations

Zpn,Zn—1, - - . and wish to predict z,4,. For £ =1
zo(l) = E(zp+1lzn, zn-1,--.)
E{lu+ ¢(zn — 1) + antallzn, z-1, - -}
o+ ¢(zn — ).
Since E(z,|zn, -1, . ..) = zn, E(an+1l|zn, Z0-1,...) = 0.
For ¢ = 2,
zp(2) = E(zpt2|2n,2n-1,---)

= E{lp+ ¢(zn41 — p) + any2]|zn, 21, .. .}
= pu+ ¢[Zn(1) - N] = [+ ¢2(Zn - /~L)

The /-step-ahead prediction can be written as
zp(0) = E(zpielzn, zn-1,...)

E{[n + ¢(znyo-1 — 1) + anvel|zn, zn-1, - - -}
= pAelza(l—1)—pl = = p+¢(za— p)



» AR(1) continuous. The forecast errors corresponding to the
above forecasts are

en(1) = zn41—2n(1) = pt+d(zn—p)+ans1—[pt+d(zn—p)] = ans1.
en(2) = zpt2 — zn(2)

= p+ H(zog1 — 1) + an2 — [+ 0% (20 — )]
ant2 + ¢[(Zn+1 - M) - ¢(Zn - N)] = apt+2 + Pant1

Similarly, it can be shown that

en(g) =antet Panpe-1+ -+ Qseilan-‘rl
and

1_¢2€
1- g2

VieaD)] = 02(1+ ¢ + - + 2 D) = o



> AR(1) continuous. Consider the yield series. It is shown that this
series can be described by an AR(1) model with 2 = 0.97, $ = 0.85
and 2 = 0.024. Since the last observation is z;55 = 0.49, the
forecasts are

2156(1) = 0.97 4 0.85(0.49 — 0.97) = 0.56

156(2) = 0.97 + 0.85%(0.49 — 0.97) = 0.62
5156(3) = 0.97 + 0.85°(0.49 — 0.97) = 0.68

and their variance are

Var[e156(1)] = 0.024

1—.85%
=0.024—— =0.041
Var[e156(2)] 0 0241 — 852 0.0
1—.85°
Var[6156(3)] = 0024@ = 0.054



> AR(2) process z; = ¢12:—1 + $2zr—» + a; with g = 0. The one-step
ahead (¢ = 1 forecast given the observations z,,z,_1,... can be
expressed as
z,(1) = E(zpt1l|zn, 2n-1,.-.)
= E[(¢120 + ¢220-1 + ans1)|2n, Za-1, .. ]
= ¢1Zn+ P2zp1

For ¢ =2
z,(2) = E(zpi2|2ny 2Zn-1,---)
= E[(¢1Zn+1 + (bQZn + an+2)|Zna Zn—1,-- ]
$125(1) + 225
In general,

Z2(0) = ¢12,(0—1)+p2zn(£—2), or (1—p1B—2B?)z,(¢) = 0,£ > 0

» The forecast error and its weight can be calculated by substituting
the ¢ weight of the AR(2) model. It is easily to seen that the
weights are

V1 = 1,90 = ¢7 + b2, ;= Prihj_1 + o2, > 2



» ARIMA(0,1,1) process. Given the observations z,,z,-1, .. ..
the predictions from the model z; = z;_1 + a; — 6a;_1 can be
obtained from the conditional expectation form:

zn(1) = E(Zptilzn, zn-1,--.)
E[(zn + an+1 — 0an)|zn, Zn-1, .. .| = zn — Oap
zn(2) = E(zp42|2n, Zn=1,...) = z, — Oa,
and in general
zp(0) = zy(¢ — 1),0r (1 — B)z,(¢) = 0.

The 9 weight can be obtained from
P(B) =(1—-6B)/(1— B) and it is given by 1); = 1 — @ for all
Jj > 0. Hence the forecast error is given by

en(f) = dp+e + (1 — 9)(3,,4_[_]_ +---+ an+1)
and its variance by

Vlen(£)] = o®[1 + (¢ — 1)(1 - 6)].



» ARIMA(0,1,1) process continuous. Alternatively, the forecast
can be expressed as a linear combination of the past
observations. Write the model in its autoregressive
representation

o
Zy = E TjZt—jf + at
J=1

where 7; = (1 — 0)6/~1,j > 1 are coefficients in

m(B) = (1—-B)/(1—0B). Hence

ze=(1—0)(z_1 + 0zt +0?z_3 +---) + a;. Taking the
conditional expectation of z,41 given z,,z,-1,..., we find
that

Zn(l) = (]- — 9)(2,, +0z,-1+ 92Zn—2 4+ .- )

This forecast is an exponentially weighted average of present
and past observation and is the same as that obtained from
single exponential smoothing with a smoothing constant
a=1-4.



» ARIMA(1,1,1) process: (1 —¢B)(1 — B)zs =6p+ (1 —0B)a;
or
zz =00+ (14 ¢)zem1 — ¢pz—2+ ar — far_1

Taking conditional expectation, we can calculate the
forecasting according to

Zn(]-) = E(ZnJrl’Znaanly .- ) =t + (1 + ¢)Zn — ¢zp1 — ba,

Zn(2) = E(Zn+2‘znyzn—17 .- ) =0 + (1 + ¢)Zn(1) — ¢z,

and so on
zn(0) = E(zn1t|2n, Zn—1, - ..) = Oo+(14+¢)z,(£—1)—pz,(¢—2)
or For ¢ > 2

[(1— (1+ ¢)B + 6B zo(¢) = (1 — 6B)(L — B)zo(¢) = bo.



» ARIMA(0,2,2) process: (1 — B)?z; = (1 — 61B — 62B?)a; or
zt =27t 1 — Z—2 + ar — O1as—1 — bhar >
Given the observations z,, z,_1, ..., the forecasts are
zn(1) = E(znt1l|2n, Zn—-1, .- .) = 22y — Zp—1 — 013 — O2an-1
zn(2) = E(zp42|2n, Zn—1,...) = 225(1) — z, — bra,
zn(3) = E(zp43|2n, Zn—1, . - .) = 22,(2) — z,(1)
and

z,(¢) = E(znte|2n, 2n-1,...) = 22,({ — 1) — z,({ — 2),£ >3

i (1= 2B+ B?)z,(¢) = (1 — B)?z,(¢) = 0



