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P4 Strictly Stationary process, for any m,

p(zt1 , . . . , ztm) = p(zt1+k , . . . , ztm+k)

Weakly Stationary process

Ezt = µ,Cov(zt , zt+k) = γk , k = 0, 1, . . . .

I Example: white noise process {at , t = 0,±1,±2, . . .} are a
sequence of uncorrelated variable from fixed distribution with
mean E(at) = 0,Var(at) = σ2 and Cov(at , at−k) = 0 for all
k 6= 0.



P8.

γ0 = E(at + ψ1at−1 + ψ2at−2 + · · · )2

= Ea2t + ψ2
1Ea
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t−1 + ψ2

2Ea
2
t−2 + · · ·

= σ2
∞∑
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ψ2
j

γk = E(zt − µ)(zt−k − µ)

= E(at + ψ1at−1 + ψ2at−2 + · · · )(at−k + ψ1at−k−1 + · · · )
= 1 · ψkEa

2
t−k + ψ1ψk+1Ea

2
t−k−1 + ψ2ψk+2Ea

2
t−k−2 + · · ·

= σ2
∞∑
j=0
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I Example ψ1 = −θ and ψj = 0, j ≥ 2, then zt − µ = at − θat−1, the
first order moving average process.

I Example ψj = φj , the first-order autoregressive process

zt − µ = at + φat−1 + φ2at−2 + · · ·
= at + φ(at−1 + φat−2 + φ2at−3 + · · · )
= φ(zt−1 − µ) + at

P9. For AR(1), it is important that |φ| < 1 (Stationary Condition), since
otherwise the ψ weight would not converge.

P11.
1− φ1B − φ2B2 = (1− G1B)(1− G2B) = 0,

G−11 and G−12 are its roots. For the stationarity, it requires that the

roots are such that |G−11 | > 1 and G−12 | > 1.



I Example: φ1 = 0.8, φ2 = −0.15
The solution of

(1− 0.8B + 0.15B2) = (1− 0.5B)(1− 0.3B) = 0

is given by G−11 = 1/0.5 = 2 and G−12 = 10/3, which are both
larger than 1 in absolute value. Hence the process is stationary.

I Example: φ1 = 1.5, φ2 = −0.5
The solution of

(1− 1.5B + 0.5B2) = (1− B)(1− 0.5B) = 0

is given by G−11 = 1 and G−12 = 2, which has one root at 1. Hence
the process is not stationary.

I Example: φ1 = 1, φ2 = −0.5
The solution of

(1− B + 0.5B2) = 0

are complex and given by G−11 = 1 + i and G−12 = 1− i ,

|G−11 | = |G−12 | =
√

1 + 1 =
√

2 are both larger than 1. Hence the

process is stationary.



P14. For k = 1

ρ1 = φ1ρ0 + φ2ρ−1 = φ1 + φ2ρ1 =
phi1

1− φ2

For k = 2

ρ2 = φ1ρ1 + φ2ρ0 =
φ21

1− φ2
+ φ2

I By γ0(1− φ1ρ1 − φ2ρ2) = σ2, then

γ0 =
1− φ2
1 + φ2

σ2

(1− φ2)2 − φ21

P16. ρ = (ρ1, ρ2, . . . , ρp)T ,φ = (φ1, φ2, . . . , φp)T



I For the AR(1) model, the Yule-Walker equation is given by
ρ1 = φ.

I For the AR(2) model the Yule-Walker equation are

ρ1 = φ1 + ρ1φ2

ρ2 = ρ1φ1 + φ2

which leads to

φ1 =
ρ1(1− ρ2)

1− ρ21
, φ2 =

ρ2 − ρ21
1− ρ21



I φ(B)ρk = 0, k = 1, 2, . . . , determines the behavior of the
authorcorrelation function. It can be shown that its solution is

ρk = A1G
k
1 + · · ·+ ApG

k
p , k = 1, 2, . . .

where G−1i , i = 1, . . . , p are the distinct roots of
φ(B) = (1− G1B)(1− G2B) · · · (1− GpB).

I The stationary condition imply that |G−1i | > 1, i = 1, . . . , p.
Hence the ACF is described by a mixture of damped
exponential (for real roots) and damped sine waves(for
complex roots).



P17. Alternative interpretation of Partial Autocorrelations
The partial correlation coefficient between two random
variables X and Y , conditional on a third variable W , is the
ordinary correlation coefficient calculated from the conditional
distribution p(x , y |w). It can be thought of as the correlation
between X − E(X |W ) and Y − E(Y |W ), and the assumption
of joint normality of (X ,Y ,W ) is given by

ρXY ·W =
E(X − E(X |W ))(Y − E(Y |W ))

{E(X − E(X |W )2E(Y − E(Y |W )2}
1
2

=
ρXY − ρXW ρYW

[(1− ρ2XW )(1− ρ2YW ]
1
2

I In the context of a lag 2 partial autocorrelation, the variables
are X = zt ,Y = zt−2,W = zt−1, and
ρXY = ρ2, ρXW = ρYW = ρ1. Hence

ρ22 = ρztzt−2·zt−1 = Corr(zt − E(zt |zt−1), zt−2 − E(zt−2|zt−1))

=
ρ2 − ρ21
1− ρ21



P23. Example: Second-Order Moving Average Process[MA(2)]

zt−µ = at−θ1at−1−θ2at−2 or zt−µ = (1−θ1B−θ2B2)at

I Hence ψ0 = 1, ψ1 = −θ1, ψ2 = −θ2, ψ = 0; j > 2. Then

γ0 = (1 + θ21 + θ22)σ2, γ1 = (−θ1 + θ1θ2)σ2, γ2 = −θ2σ2

γk = 0, for k > 2

I The autocorrelations are

ρ1 =
−θ1 + θ1θ2
1 + θ21 + θ22

, ρ2 =
−θ2

1 + θ21 + θ22
, ρk = 0, for k > 2



I If MA(2) process is in term of an infinite autoregressive
rerpesentation,

zt − µ = π1(zt−1 − µ) + π2(zt−2 − µ) + · · ·+ at ,

then the π weight can be obtained from

π(B) = 1− π1B − π2B2 − · · · = (1− θ1B − θ2B2)−1

and

(1− π1B − π2B2 − · · · )(1− θ1B − θ2B2) = 1

and are given by

B1 : −π1 − θ1 = 0, π1 = −θ1

B2 : −π2 + θ1π1 − θ2 = 0, π2 = θ1π1 − θ2 = −θ21 − θ2
B j : −πj + θ1πj−1 + θ2πj−2 = 0, πj = θ1πj−1 + θ2πj−1, j > 2.



I MA(2) continuous. For invertibility, the π weight is required
converged, which in turn implies conditions on the parmater
θ1 and θ2, the roots of
(1− θ1B − θ2B2 = 0 = (1− H1B)(1− H2B) lie outside the
unit circle. Hence

θ1 + θ2 < 1, θ2 − θ1 < 1,−1 < θ2 < 1.

I Partial autocorrelation function for MA(1)

φ11 = ρ1 =
−θ

1 + θ2
=
−θ(1− θ2)

1− θ4

φ22 =
ρ2 − ρ21
1− ρ21

=
−ρ21

1− ρ21
=

−θ2

1 + θ2 + θ4
=
−θ2(1− θ2)

1− θ6

φ33 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 ρ1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 0
0 ρ1 0

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 0
ρ1 1 ρ1
0 ρ1 ρ1

∣∣∣∣∣∣
=

ρ31
1− 2ρ21

=
−θ3(1− θ2)

1− θ8



P26. ARMA(1,1) Model, ψ weight

zt − µ = at + ψ1at−1 + ψ2at−2 + · · · = 1− θB

1− φB
at

or
(1− φB)(at + ψ1at−1 + ψ2at−2 + · · · ) = 1− θB

Hence
B1 : ψ1 − φ = −θ, ψ1 = φ− θ

B2 : ψ2 − φψ1 = 0, ψ2 = φψ1 = (φ− ψ)φ

B j : ψj − φψj−1 = 0, ψj = φψj−1 = (φ− θ)φj−1, j > 0

I π representation for ARMA(1,1)

at = zt−µ−π1(zt−1−µ)−π2(zt−2−µ)−· · · = π(B)(zt−µ) =
1− φB

1− θB
(zt−µ)

B1 : −π1 − θ = −φ, π1 = φ− θ

B2 : −π2 + θπ1 = 0, π2 = θπ1 = (φ− θ)θ

B j : −πj + θπj−1, πj = θπj−1 = (φ− θ)θj−1



I Autocorrelation function of ARMA(1,1), set Ezt = µ = 0

γk = φγk−1 + E(atzt−k)− θE(at−1zt−k)

If k > 1, E(atzt−k) = θE(at−1zt−k) = 0, Therefore

γk = φγk−1, for k > 1

E(atzt) = E[at(at + ψ1zt−1 + ψ2zt−2 + · · · )] = Ea2t = σ2

E(atzt−1) = E[at−1(at+ψ1zt−1+ψ2zt−2+· · · )] = Eψ1a
2
t−1 = (φ−θ)σ2

Then
k = 0 : γ0 = φγ1 + σ2 − θ(φ− θ)σ2

k = 1 : γ1 = φγ0 − θσ2

Solve this equation system to get γ0 and γ1. ( check by yourself )



P49. AR(1) process: Suppose we are given past observations
zn, zn−1, . . . and wish to predict zn+l . For ` = 1

zn(l) = E(zn+1|zn, zn−1, . . .)
= E{[µ+ φ(zn − µ) + an+1]|zn, zn−1, . . .}
= µ+ φ(zn − µ).

Since E(zn|zn, zn−1, . . .) = zn,E(an+1|zn, zn−1, . . .) = 0.
For ` = 2,

zn(2) = E(zn+2|zn, zn−1, . . .)
= E{[µ+ φ(zn+1 − µ) + an+2]|zn, zn−1, . . .}
= µ+ φ[zn(1)− µ] = µ+ φ2(zn − µ)

The `-step-ahead prediction can be written as

zn(`) = E(zn+`|zn, zn−1, . . .)
= E{[µ+ φ(zn+`−1 − µ) + an+`]|zn, zn−1, . . .}
= µ+ φ[zn(`− 1)− µ] = · · · = µ+ φ`(zn − µ)



I AR(1) continuous. The forecast errors corresponding to the
above forecasts are

en(1) = zn+1−zn(1) = µ+φ(zn−µ)+an+1−[µ+φ(zn−µ)] = an+1.

en(2) = zn+2 − zn(2)

= µ+ φ(zn+1 − µ) + an+2 − [µ+ φ2(zn − µ)]

= an+2 + φ[(zn+1 − µ)− φ(zn − µ)] = an+2 + φan+1

Similarly, it can be shown that

en(`) = an+` + φan+`−1 + · · ·+ φ`−1an+1

and

V [en(`)] = σ2(1 + φ2 + · · ·+ φ2(`−1)) = σ2
1− φ2`

1− φ2



I AR(1) continuous. Consider the yield series. It is shown that this
series can be described by an AR(1) model with µ̂ = 0.97, φ̂ = 0.85
and σ̂2 = 0.024. Since the last observation is z156 = 0.49, the
forecasts are

ẑ156(1) = 0.97 + 0.85(0.49− 0.97) = 0.56

ẑ156(2) = 0.97 + 0.852(0.49− 0.97) = 0.62

ẑ156(3) = 0.97 + 0.853(0.49− 0.97) = 0.68

and their variance are

Var[e156(1)] = 0.024

Var[e156(2)] = 0.024
1− .854

1− .852
= 0.041

Var[e156(3)] = 0.024
1− .856

1− .854
= 0.054



I AR(2) process zt = φ1zt−1 + φ2zt−2 + at with µ = 0. The one-step
ahead (` = 1 forecast given the observations zn, zn−1, . . . can be
expressed as

zn(1) = E(zn+1|zn, zn−1, . . .)
= E[(φ1zn + φ2zn−1 + an+1)|zn, zn−1, . . .]
= φ1zn + φ2zn−1

For ` = 2

zn(2) = E(zn+2|zn, zn−1, . . .)
= E[(φ1zn+1 + φ2zn + an+2)|zn, zn−1, . . .]
= φ1zn(1) + φ2zn.

In general,

zn(`) = φ1zn(`−1)+φ2zn(`−2), or (1−φ1B−φ2B2)zn(`) = 0, ` > 0

.
I The forecast error and its weight can be calculated by substituting

the ψ weight of the AR(2) model. It is easily to seen that the ψ
weights are

ψ1 = φ1, ψ2 = φ21 + φ2, ψj = φ1ψj−1 + φ2ψj−2, j ≥ 2



I ARIMA(0,1,1) process. Given the observations zn, zn−1, . . . .
the predictions from the model zt = zt−1 + at − θat−1 can be
obtained from the conditional expectation form:

zn(1) = E(Zn+1|zn, zn−1, . . .)
= E[(zn + an+1 − θan)|zn, zn−1, . . .] = zn − θan

zn(2) = E(zn+2|zn, zn=1, . . .) = zn − θan
and in general

zn(`) = zn(`− 1), or (1− B)zn(`) = 0.

The ψ weight can be obtained from
ψ(B) = (1− θB)/(1− B) and it is given by ψj = 1− θ for all
j > 0. Hence the forecast error is given by

en(`) = an+` + (1− θ)(an+`−1 + · · ·+ an+1)

and its variance by

V [en(`)] = σ2[1 + (`− 1)(1− θ)2].



I ARIMA(0,1,1) process continuous. Alternatively, the forecast
can be expressed as a linear combination of the past
observations. Write the model in its autoregressive
representation

zt =
∞∑
j=1

πjzt−j + at

where πj = (1− θ)θj−1, j ≥ 1 are coefficients in
π(B) = (1− B)/(1− θB). Hence
zt = (1− θ)(zt−1 + θzt−2 + θ2zt−3 + · · · ) + at . Taking the
conditional expectation of zn+1 given zn, zn−1, . . . , we find
that

zn(1) = (1− θ)(zn + θzn−1 + θ2zn−2 + · · · ).

This forecast is an exponentially weighted average of present
and past observation and is the same as that obtained from
single exponential smoothing with a smoothing constant
α = 1− θ.



I ARIMA(1,1,1) process: (1− φB)(1− B)zt = θ0 + (1− θB)at
or

zt = θ0 + (1 + φ)zt−1 − φzt−2 + at − θat−1
Taking conditional expectation, we can calculate the
forecasting according to

zn(1) = E(zn+1|zn, zn−1, . . .) = θ0 + (1 + φ)zn − φzn−1 − θan

zn(2) = E(zn+2|zn, zn−1, . . .) = θ0 + (1 + φ)zn(1)− φzn
and so on

zn(`) = E(zn+`|zn, zn−1, . . .) = θ0+(1+φ)zn(`−1)−φzn(`−2)

or For ` ≥ 2

[(1− (1 + φ)B + φB2]zn(`) = (1− φB)(1− B)zn(`) = θ0.



I ARIMA(0,2,2) process: (1− B)2zt = (1− θ1B − θ2B2)at or

zt = 2zt−1 − zt−2 + at − θ1at−1 − θ2at−2

Given the observations zn, zn−1, . . . , the forecasts are

zn(1) = E(zn+1|zn, zn−1, . . .) = 2zn − zn−1 − θ1an − θ2an−1

zn(2) = E(zn+2|zn, zn−1, . . .) = 2zn(1)− zn − θ2an
zn(3) = E(zn+3|zn, zn−1, . . .) = 2zn(2)− zn(1)

and

zn(`) = E(zn+`|zn, zn−1, . . .) = 2zn(`− 1)− zn(`− 2), ` ≥ 3

or
(1− 2B + B2)zn(`) = (1− B)2zn(`) = 0


