
Case Study I

Case 1. Weekly egg prices at a German agricultural market between April
1967 and May 1990

Case 2. GE daily returns for GE common stock from December 1999 to
December 2000.

Case 3. The log series of quarterly earning per share of Johnson and Johson
from 1960 to 1980.

Case 4. The monthly simple returns of the CRSP Decile 1 index from
January 1960 to December 2003 for 528 observations.

Case 5. The 1-year and 3-year U.S. treasury constant maturity rates.
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1. German Egg Prices

(a) Egg prices
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• The sample mean and variance are 12.38 and 6.77, respectively.

• The data exhibit a clear nonstationary feature. Take the first-order difference
of the series, which looks more stationary like.

• Figures of autocorrelation and partial autocorrelation suggests that
ARMA(p,q) model with p ≤ 7 and q ≤ 7.
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(a) ACF of prices
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(b) ACF of difference
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(c) PACF of price
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(d) PACF of difference

3



• The optimal AR model based on AICC is AR(7) with the AICC-value 698.24.
The estimated AR-coefficient b̂1, . . . , b̂7 are

1 2 3 4 5 6 7

b̂j 0.322 -0.159 0.021 -0.004 -0.055 -0.023 -0.163

b̂j/{SE(b̂j)} 5.651 -2.666 0.035 -0.071 -0.906 -0.378 -2.869

• The fitted model

Xt = 0.321Xt−1 − 0.160Xt−2 − 0.057Xt−5 − 0.023Xt−6 − 0.165Xt−7 + εt,

where εt ∼ N (0, 0.567) and the corresponding AICC-value is 694.34
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• The MA(7) model is also used to fit the data. The estimated MA-coefficient
â1, . . . , b̂7 are

1 2 3 4 5 6 7
âj 0.320 -0.038 -0.054 -0.023 -0.048 -0.046 -0.195

âj/{SE(âj)} 5.541 -0.629 -0.896 -0.386 -0.790 -0.757 -3.210

• The fitted model

Xt = εt − 0.345εt−1 − 0.173εt−7,

where σ̂2 = 0.570 and the corresponding AICC-value is 689.34. The standard
errors of the two coefficients in the model above is 0.054 and 0.051.
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• The optimal ARMA model with p = 1 or 2 and 1 ≤ q ≤ 7 based on AICC is
the ARMA (1,2)

Xt = 0.906Xt−1 + εt − 0.619εt−1 − 0.381εt−2,

with σ̂2 = 0.563 and the corresponding AICC-value is 690.58. The standard
error for three coefficients in the model are 0.022, 0.053 and 0.052.

• According to AICC, both MA(7) and ARMA(1,2) are comparable with each
other.

• From standard residuals and their ACF and PACF plots, slightly more
than 5% (but< 6%) of residuals from both modelsare beyond the bound
±1.96. But ACF and PACF plots show that there still exists weak but
significant autocorrelation in the residuals at some discrete lags. They failed
in Portmanteau χ2 Test.
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• One possible remedy is to include variables at the lags at which (partial)
autocorrelation is significant. However it is in general difficult to interpret
the resulting model.

• Converting MA(7) and ARMA(1,2) to the original egg price data {Yt}, two
competitive ARIMA models are obtained.

Yt = Yt−1 + εt + 0.345εt−1 − 0.173εt−7, {εt} ∼ WN(0, 0.570),

and

Yt = −0.001 + 1.906Yt−1 − 0.906Yt−2 + εt − 0.619εt−1 − 0.318εt−2,

{εt} ∼ WN(0, 0.563).
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2. GE daily returns

GE. daily−12/17/99 to 12/15/00
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ACF of price
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Theoretical Quantiles
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ACF of residuals of AR(1)

• AR(1) model
Yt = β0 − φYt−1 + εt

• The estimate of β0 is -0.00000361 and its standard deviation is 0.0014009.
t-ratio is -0.03.
The estimate of φ is 0.22943, the standard deviation is 0.06213, and t-ratio
is 3.69.

• The Ljung-Box “simultaneous” χ2 test that ρ(1) = · · · = ρ(12) = 0 has
p = 0.0179. Hence the AR(1) model does not fit well.
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ACF of residuals of AR(6)
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• AR(6) model

Yt − µ = φ1(Yt−1 − µ) + · · ·+ φ6(Yt−6 − µ) + εt

µ 1 2 3 4 5 6

φ̂j -2.106E-6 -0.2531 0.1257 -0.0714 -0.0748 -0.0520 0.2227

φ̂j/{SE(φ̂j)} -0.00 -4.06 1.96 -1.11 1.16 -0.81 -3.58

• The total R-square of AR(1) is 0.0000 and for AR(6) it is 0.1139.
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• MA(2) model
Yt = µ + εt − θ1εt−1 − θ2εt−2.

• The estimate of MA(2) model

µ̂ = −0.0000247(0.0012775)

θ̂1 = −0.26477(0.006362)

θ̂2 = 0.07617(0.06385)

and the Ljung-Box χ2
p statistics is 14.47 to lag 6, 21.25 to lag 12 and 24.12

to lag 18. The corresponding p-value is 0.0059, 0.0194 and 0.0868.
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• ARMA(2,1) model

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt − θ1εt−1.

• The estimate of ARMA(2,1) model is

µ̂ = −0.0000217(0.0013272),

φ̂1 = −0.53313(0.16319),

φ̂2 = 0.07806(0.08953),

θ̂1 = −0.80566(0.14654)

and the Ljung-Box χ2
p statistics is 9.31 to lag 6, 16.72 to lag 12 and 19.68

to lag 18. The corresponding p-value is 0.0254, 0.0534 and 0.1847.
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ACF of residuals of ARMA(2,1)
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• Model selection criterions:
Akaike’s information criterion (AIC) and Schwarz’s Bayesian Criterion (SBC
or BIC)

−2 log(L) + 2(p + q) ≈ n log(σ̂2) + 2(p + q) (AIC),

−2 log(L) + log(n)(p + q) ≈ n log(σ̂2) + log(n)(p + q) (SBC).

• GE daily log returns: choosing the AR order

p AIC SBC
1 0 0
2 -0.41 3.12
3 1.03 8.09
4 2.44 13.03
5 4.43 18.54
6 -7.04 10.61
7 -6.06 15.11
8 4.50 20.20
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3. Seasonal Models

• Log earning per share of Johnson and Johnson
(a) Earning per share
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• Seasonal Differencing and Multiplicative Seasonal Models, for example,

(1−Bs)(1−B)Xt = (1− θB)(1−ΘBs)at

• Seasonal Model for Log earning per share of Johnson and Johnson.

(1−B)(1−B4)Xt = (1− 0.678B)(1− 0.314B4)at, σ̂a = 0.089.
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• The monthly simple returns of the CRSP Decile 1 index from January 1960
to December 2003 for 528 observations.

• The fitted seasonal ARMA models by the conditional likelihood

(1− 0.25B)(1− 0.99B12)Rt = 0.0004 + (1− 0.92B12)at, σ̂a = 0.071.

• The fitted seasonal ARMA models by the exact likelihood

(1− 0.264B)(1− 0.996B12)Rt = 0.0002 + (1− 0.999B12)at, σ̂a = 0.067.

• The cancellation between seasonal AR and MA factors is clearly seen. The
estimation results suggests that the seasonal behavior might be deterministic.
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• January Effect: Employ the simple linear regression

Rt = β0 + β1Jant + et

where

Jant =
{

1 if t is January
0 otherwise.
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(a) Simple return
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(b) Sample ACF

(c) January−adjusted return
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Regression Models with Time series errors

The 1-year and 3-year U.S. treasury constant maturity rates.
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• The simple regression model between two rates r3t = α + βr1t + et results in

a fitted model

r3t = 0.911 + 0.924r1t + et, σ̂e = 0.538,

with R2 = 95.8%, where the standard errors of the two coefficients are 0.032
and 0.004, respectively.
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(a) Change in 1−year rate
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(b) Change in 3−year rate
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• Nonstationary of both interest rate and the residuals leads to consideration
of the change series of interest rate.

c1t = r1t − r1,t−1 = (1−B)r1tfort ≥ 2 : changes in the 1-year interest rate

c3t = r3t − r3,t−1 = (1−B)r3tfort ≥ 2 : changes in the 3-year interest rate
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• Consider the linear regression c3t = α + βc1t + et, the change series remain
highly correlated with a fitted linear regression model given by

c3t = 0.00002 + 0.7811c1t + et, σ̂e = 0.0682,

with R2 = 84.8%. The standard errors of the two coefficients are 0.0015 and
0.0075.

• The model further confirms the strong linear dependence between interest
rates. However, the ACF shows some significant serial correlation in the
residuals, but the magnitude of the correlation is much smaller.
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• The weak serial dependence in the residuals can be modeled by using the
simple time series models. Because residuals of the mdoel are serial correlated,
we shall identify a simple ARMA model for the residuals. From the figure of
ACF of residual, MA(1) model was used for residuals, the linear regression
model has been modified as

c3t = α + βc1t + et, et = at − θ1at−1.

• The fitted version of the model is given by

c3t = 0.0002 + 0.782c1t + et, et = at + 0.2115at−1, σ̂a = 0.0668,

with R2 = 85.4%. The standard errors of the parameters are 0.0018, 0.0077
and 0.0221 respectively.

• The model no longer has a significant lag-1 residual ACF, even though some
minor serial correlation remain at lag 4 and 6.
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• the high R2 and coefficient 0.924 of the first model are misleading because
the residuals of the model show strong serial correlation.

• For the change series, R2 and the coefficient of c1t of the models are
close. In this particular instance, adding MA(1) model to the change series
only provides a marginal improvement. This is not surprising because the
estimated MA coefficient is small numerically, even though it is statistically
highly significant.

• The analysis demonstrates that it is important to check residual serial
dependence in linear regression analysis.

• Because the constant term in the above equation is insignificant, the model
shows that the two weekly interest rate series are related as

r3t = r3,t−1 + 0.782(r1t − r1,t−1) + at + 0.212at−1.

The interest rates are concurrently and serially correlated.
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