
1. Introduction and Summary

In attempts to understand the world around us, observations are
frequently made sequentially over time. Values in the future depend, usually
in stochastic manner, on the observations available present. Such dependence
makes it worthwhile to predict the future from its past.

Indeed, in this course we will depict underlying dynamics from which the
observed data are generated and will therefore forecast and possible control
future events.

1



1.1 Examples of Time Series

Time Series is a sequence of observations taken sequentially in time. Time
series analysis deals with records that are collected over time.

• One distinguishing feature in time series is that the records are usually
dependent.

• The background of time series applications is very diverse.

• Depending on different applications, data may be collected hourly, daily,
weekly, monthly or yearly, and so on

We use notation such as {Xt} or {Yt} (t = 1, · · · , T ) to denote a time series
of length T . The unit of the time scale is usually implicit in the notation above.
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Example 1.1 (Sunspot data from 1770 to 1994) The sunspot numbers from
1770 to 1994 are plotted against time in Figure 1.1. The horizontal axis is the
index of time t, and the vertical axis represents the observed value Xt over time
t.

Dark spots on the surface of the Sun have consequences in the overall
evolution of its magnetic oscillation. They also relate to the motion of the solar
dynamo.
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Example 1.2(Canadian lynx data) This data set consists of the annual fur
returns of lynx at auction in London by the Hudson Bay Company for the period
1821—1934.

It is a proxy of the annual number of the Canada lynx trapped in the
Mackenize River district of northwest Canada and reflects to some extent the
population size of lynx in the Mackenize River district. Hence it helps us to
study the population dynamics of the ecological system in that area.

Figure 1.2 depicts the time series plot of

Xt = log10(number of lynx trapped in year 1820 + t), t = 1, 2, · · · , 114.

The periodic fluctuation displayed in this time series has profoundly influenced
ecological theory. The dataset has been constantly used to examine such
concept as “balance-of-nature”, predator and prey interaction, and food web
dynamics.

4



5



Example 1.3 (Interest rate data) Short-term risk-free interest rates play a
fundamental role in financial markets. They are directly related to consumer
spending, corporate earning, asset pricing, inflation, and the overall economy.

This example concerns the yields of the three-month, six-month, and twelve-
month Treasury bills from the secondary market rates (on Fridays). The
secondary market rates are annualized using a 360-day year of bank interest and
quoted on a discount basis. The data consist of 2,386 weekly observations from
July 17, 1959 to September 24, 1999, and are presented in Figure 1.3.

This is a multivariate time series. The correlation matrix among the three
series is as follows.

 1.0000 0.9966 0.9879
0.9966 1.0000 0.9962
0.9879 0.9962 1.0000
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Example 1.4 (The Standard and Poor’s 500 Index) The Standard and Poor’s
500 index (S&P 500) is a value -weighted index based on the prices of the
500 stocks that account for approximately 70% of the total U.S. equity market
capitalization.

Presented in Figure 1.4 are the 7,076 observations of daily closing price
of the S&P 500 index from January 3, 1972 to December 31, 1999. The
logarithm transform has been applied so that the difference is proportional to
the percentage of investment return.
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Example 1.5 (An environment data set) The environmental condition plays a
role in public health. There are many factors that are related to the quality
of air that may affect human circulatory and respiratory system. The data set
used here comprises daily measurements of pollutants and other environmental
factors in Hong Kong between January 1, 1994 and December 31, 1995. We
are interested in studying the association between the level of pollutants and
other environmental factors and the number of total daily hospital admission
for circulatory and respiratory problems.
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Example 1.5 (Signal processing-deceleration during car crashes) Time series
often appear in signal processing. As an example, we consider the signals from
crashes of vehicles. Airbag deployment during a crash is accomplished by a
microprocessor-based controller performing an algorithm on the digitized output
of an accelerometer. The accelerometer is typically mounted in the passenger
compartment of the vehicle. It experiences decelerations of varying magnitude
as the vehicle structure collapses during a crash impact.

The observed data in Figure 1.6 are the time series of the acceleration
(relative to the driver) of the vehicle, observed at 1.25 milliseconds per sample .
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1.2 Objectives of Time Series Analysis

• Unveil the probability law that governs the observed time series.

• Understand the underlying dynamics

• Forecast future events

• Control future events via intervention.
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Time series analysis rests on proper statistical modeling.

• In selecting a model, interpretability, simplicity, and feasibility play important
roles.

• A selected model should reasonably reflect the physical law that governs the
data.

• Everything else being equal, a simple model is usually preferable.

• The family of probability models should be reasonably large to include the
underlying probability law that has generated the data but should not be so
large that defining parameters can no longer be estimated with reasonably
good accuracy.
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In choosing a probability model,

1. First extracts salient features from the observed data then chooses an
appropriate model that possesses such feature.

2. After estimating parameters or functions in the model, verifies whether
the model fits the data reasonably well and looks for further improvement
whenever possible.

3. Different purposes of the analysis may also dictate the use of different
models. For example, a model that provides a good fitting and admits nice
interpretation is not necessarily good for forecasting.
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1.3 Forecast

Importance of Good Forecast

The ability to form good forecasts has been highly valued throughout history.
Since future events involve uncertainly, the forecasts are usually not perfect.
The objective of forecasting is to reduce the forecast error: to produce forecast
that are seldom incorrect and that have small forecast errors. In business,
industry, and government, policymakers must anticipate their decisions depend
on forecast, and they expect these forecasts to be accurate.
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Classification of Forecast methods

• Qualitative technique
Qualitative or subjective forecast methods are intuitive, largely educated
guesses that may or may not depend on past data. Usually these forecasts
cannot be reproduced by someone else.

• Quantitative technique
Forecasts that are based on mathematical or statistical models are called
quantitative.
Deterministic model

Y = f(X1, . . . , Xp;β1, . . . , βm)

Probabilistic or stochastic models

Y = f(X1, . . . , Xp;β1, . . . , βm) + noise

Frequently the function form f and the coefficient are not known and have
to be determined from past data. Usually the data occur in time-ordered
sequences referred to as time series.
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Conceptual Framework of a Forecast System In general, a quantitative
forecast system consists of two major components, as illustrated in the following
figure
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• At the first stage, the model-building-stage, a forecast model is constructed
from pertinent data and available theory. The tentatively entertained model
usually contains unknown parameters ; an estimation approach, such as least
squares , can be used to determine these constants. Finally, the forecaster
must check the adequacy of the fitted model. If the model is unsatisfactory,
it has to be respecified, and the iterative cycle of model specification-
estimation-diagnostic checking must be repeated until a satisfactory model
is found.

• At second stage, the forecasting stage, the final model is used to obtain
the forecasts. Since these forecast depend on the specified model, one has
to make sure that the model and its parameters stay constant during the
forecast period. The stability of the forecast model can be assessed by
checking the forecasts against the new observations. Forecast error can be
calculated, and possible changes in model can be detected.
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Choice of A particular forecast model Among many other forecast criteria,
the choice of the forecast model or technique depends on

1. what degree of accuracy is required,

2. what the forecast horizon is,

3. how high a cost for producing the forecasts can be tolerated,

4. what degree of complexity is required,

5. what data are available.
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Forecast Criteria
The most important criterion for choosing a forecast method is its accuracy, or
how closely the forecast predicts the actual event.

• Actual observation at time t with zt, and its forecast, which uses the
information up to and including t− 1, with zt−1(1)

• Future forecast error zt − zt−1(1)

• Since zt has not been observed, its value is unknown; we can talk only about
its expected value, conditional on the observed history up to and including
time t− 1. Hence we could define

– The mean absolute error E|zt − zt−1(1)|
– The mean square error E[zt − zt−1(1)]2

– The forecast that minimize the mean square error are called minimum
mean square error (MMSE) forecast
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1.4 Linear Time Series Models

White Noise Processes

A stochastic process {Xt} is called white noise, denote {Xt} ∼ WN(0, σ2),
if

EXt = 0,Var(Xt) = 0, and Cov(Xi, Xj) = 0, for all i 6= j.

• White noise is defined by the properties of its first two moments only

• Gaussian Process When all of the finite dimensional distributions are
Gaussian (normal)
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AR Models

An autoregressive model of order p ≥ 1 is defined as

Xt = b1Xt−1 + · · ·+ bpXt−p + εt,

where {εt} ∼ WN(0, σ2). This model is denoted by {Xt} ∼ AR(p).
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The following Figure shows a realization of a time series of length 114 from
an AR(2)-model.

Xt = 1.07 + 1.35Xt−1 − 0.72Xt−2 + εt

with {εt} ∼i.i.d. N (0, 0.242).
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MA Models

A moving average process with order q ≥ 1 is defined as

Xt = εt + a1εt−1 + · · ·+ aqεt−q,

where {εt} ∼ WN(0, σ2). We write {Xt} ∼ MA(q).

• The implementation of an MA-model is more difficult than that of an
AR-model, since {εt} is unobservable.

• They provide parsimonious representations of time series exhibiting MA-like
correlation structure.

• MA models lies in their theoretical tractability
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ARMA Models

An autoregressive moving average ( ARMA ) model defined as

Xt = b1Xt−1 + · · ·+ bpXt−p + εt + a1εt−1 + · · ·+ aqεt−q,

where {εt} ∼ WN(0, σ2), p, q ≥ 0. We write {Xt} ∼ ARMA(p, q).

ARMA models are one of the most frequently used families of parametric
models in time series analysis. This is due to their flexibility in approximating
many stationary processes.
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ARIMA Models

A time series {Yt} is called an autoregressive integrated moving average
(ARIMA) process with order p, d and q, if its d-order difference

Xt = (1−B)dYt

is a stationary ARMA(p, q) process, where d > 1 is an integer, and B denotes
backshift operator, which is defined as BkXt = Xt−k, k = ±1,±2, · · · , namely,

b(B)(1−B)dYt = a(B)εt,

and
b(z) = 1− b1z − · · · − bpz

p, a(z) = 1 + a1z + · · ·+ aqz
q.
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As an illustration, we have simulated a time series of length 200 from the
ARIMA(1,1,1) model

(1− 0.5B)(1−B)Yt = (1 + 0.3B)εt, {εt} ∼i.i.d N (0, 1).
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