
2. Regression Review

2.1 The Regression Model

The general form of the regression model

yt = f(xt, β) + εt

where
xt = (xt1, · · · , xtp)′, β = (β1, . . . , βm)′.

• εt is a random variable, Eεt = 0,Var(εt) = σ2, and the error εt are
uncorrelated.

• Normal distribution assumption for error εt implies independence among error
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Examples:

1. yt = β0 + εt (constant mean model)

2. yt = β0 + β1xt + εt (simple linear regression model)

3. yt = β0 exp(β1xt) + εt (exponential growth model)

4. yt = β0 + β1xt + β2x
2
t + εt (quadratic model)

5. yt = β0 + β1xt1 + β2xt2 + εt (linear model with two independent variables)

6. yt = β0 +β1xt1 +β2xt2 +β11x
2
t1 +β22x

2
t2 +β12xt1xt2 + εt (quadratic model

with two independent variables)

Linear Models: see Example 1, 2, 4, 5, 6
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2.2 Prediction from regression models with known
coefficients

• prediction ypred

k for yk = f(xk, β) + εk

• forecast error ek = ypred

k − yk

• The expected value of the squared forecast error

E(e2
k) = E(ypred

k − yk)2 = σ2 + E[f(xk, β)− ypred

k ]2

• Minimum mean square error(MMSE)

ypred

k = f(xk, β)

• 100(1− α) percent prediction interval for the future value yk

[f(xk, β)− µα/2σ; f(xk, β) + µα/2σ]

where µα/2 is the 100(1−α/2) percentage point of the N (0, 1) distribution.
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2.3 Least squares estimates of unknown coefficients

The parameter estimates that minimize the sum of the squared deviations

S(β) =
n∑

t=1

[yt − f(xt;β)]2

are called the least squares estimates and are denoted by β̂.

Examples

1. Simple linear regression model through the origin

yt = βxt + εt.

2. Simple linear regression model

yt = β0 + β1xt + εt
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Example: Running Performance

For illustration, consider the data list in Table. In this example we are
interested in predicting the racing performance of trained female distance
runners. The measured variables include the running performance in 10-km
road race; body composition such as height, weight, skinfold sum, and relative
body fat; and maximal aerobic power. The subjects for study were 14 trained
and competition-experienced female runners who had placed among the top
20 women in a 10-km road race with more than 300 female entrants. The
laboratory data were collected during the week following the competitive run.
For the moment we are interested only in the relationship between the racing
performance(running time) and maximal aerobic power(volume of maximal
oxygen uptake; VO2.)
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Estimation in the General Linear Regression Model

Linear Regression models can be written as

yt = β0 + β1xt1 + β2xt2 + · · ·+ βpxtp + εt

or
yt = x′tβ + εt

where xt = (1, xt1, . . . , xtp)′ and β = (β0, β1, . . . , βp)′ To simplify the
calculation of the least squares estimates for the general linear regression
model, we introduce matrix notation,

y = Xβ + ε

where E(ε) = 0,Var((ε)) = σ2I. Then

E(y) = Xβ, Var(y) = E[y − E(y)][y − E(y)]′ = σ2I
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In matrix notation the least squares criterion can be expressed as minimizing

S(β) =
n∑

t=1

(yt − x′tβ)2 = (y −Xβ)′(y −Xβ)

Then the solution is then given by

β̂ = (X′X)−1X′y

Two special cases,

1. Simple linear regression through the origin:

yt = βxt + εt, for 1 ≤ t ≤ n.

2. Simple linear regression model

yt = β0 + β1xt + εt, for 1 ≤ t ≤ n.
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2.4 Properties of Least Squares Estimation

1.
E(β̂) = β, Var(β̂) = σ2(X′X)−1.

2. If it is assumed that errors in linear model are normally distribution, then

β̂ ∼ Np+1[β, σ2(X′X)−1]

3. The difference between the observed and fitted values are called residuals
and are given by

e = y − ŷ = y −X(X′X)−1X′y = [I−X(X′X)−1X′]y.

Then we have
X′e = X′[I−X(X′X)−1X′]y = 0.
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4. The variation of the observations yt around their mean ȳ, total sum of
squares (SSTO)

SSTO =
∑

(yt − ŷ)2 =
∑

y2
t − nȳ2 = y′y − nȳ2.

The variation of fitted value ŷt around the mean ȳ, sum of squares due to
regression (SSR)

SSR =
∑

(ŷt − ȳ)2 =
∑

ŷ2
t − nȳ2 = β̂

′
X′y − nȳ2.

sum of squares due to error (or residual) (SSE)

SSE =
∑

(yt − ŷt)2 = e′e.

Then SSTO = SSR + SSE

and define the coefficient of determination R2 as the ratio of the sum of
squares due to regression and the total sum of squares:

R2 =
SSR

SSTO
= 1− SSE

SSTO 12



5. The variance σ2 is usually unknown. However it can be estimated by the
mean square error

s2 =
SSE

n− p− 1
.

Hence the estimated covariance matrix of the least squares estimator β̂ is

V̂ar(β̂) = s2(X′X)−1

The estimated standard error of β̂i is given by sβ̂i
= s

√
cii, where

√
cii is the

corresponding diagonal element in (X′X)−1.

6. The least square estimate β̂ and s2 are independent.
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2.5 Confidence Intervals and Hypothesis Testing

Consider the quantity
β̂i − βi

s
√

cii
, i = 0, 1, . . . , p

where β̂i is the least square estimate of βi, and sβ̂i
= s

√
cii is its standard error.

This quantity has a t-distribution with n− p− 1 degrees of freedom.

Confidence intervals

A 100(1− α) confidence interval for the unknown parameter βi is given by

[β̂i − tα/2(n− p− 1)s
√

cii, β̂i + tα/2(n− p− 1)s
√

cii]

where tα/2(n− p− 1) is the 100(1− α/2) percentage point of a t distribution
with n− p− 1 degree of freedom
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Hypothesis Tests for individual Coefficients

H0 : βi = βi0 vs H1 : βi 6= βi0

The test statistic is given by

t =
β̂i − βi0

s
√

cii

• If |t| > tα/2(n−p−1), we reject H0 in favor of H1 at significance level α.

• If |t| ≤ tα/2(n−p−1), there is not enough evidence for rejecting the null
hypothesis H0 in favor of H1. Thus loosely speaking, we “accept” H0 at
significance level α.

• Special case when βi0 = 0.
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2.6 Prediction from Regression Models with Estimated
Coefficients

The MMSE prediction of a future yk from regression model yt = β0 + β1xt1 +
· · ·+ βpxtp + εt is given by

ypred

k = β0 + β1xk1 + · · ·+ βpxkp = x′kβ

Replace β by their least estimate β̂ = (X′X)−1X′y

ŷpred

k = β̂0 + β̂1xk1 + · · ·+ β̂pxkp = x′kβ̂
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These predictions have the following properties

1. Unbiased
E(yk − ŷpred) = 0

2. ŷpred is the minimum mean square error forecast among all linear unbias
forecast

3. The variance of the forecast error yk − ŷpred

k is given by

Var(yk − ŷpred

k ) = Var{εk + x′k(β − β̂)} = σ2[1 + x′k(X
′X)−1xk]

4. The estimated variance of the forecast error is

V̂ar(yk − ŷpred

k ) = s2[1 + x′k(X
′X)−1xk]

A 100(1−α) percent prediction interval for the future yk is then given by its
upper and lower limits

ŷpred

k ± tα/2(n− p− 1)s[1 + x′k(X
′X)−1xk]

1
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Example: Running Performance

• The simple linear regression model

yt = β0 + β1xt + εt

where yt is the time to run the 10-km race, and xt is the maximal aerobic
capacity VO2.

• The least square estimate of β̂0 = 68.494 and β1 = −0.468.

• The fitting values ŷt = β̂0 + β̂1xt, the residuals et = yt − ŷt, and the entries
in ANOVA table are easily calculated.

Source SS df MS F
Regression 48.845 1 48.845 9.249

Error 63.374 12 5.281
Total 112.219 13
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• The coefficient of determination is given by R2 = 48.845/112.219 = .435.

•

V̂ar(β̂) = s2(X′X)−1 = s2

[
1
n + x̄2P

(xt−x̄)2
−x̄P

(xt−x̄)2
−x̄P

(xt−x̄)2
1P

(xt−x̄)2

]

=
[

66.8511 −1.2544
−1.2544 0.0237

]

• The standard error sβ̂i
and t statistics tβ̂i

= β̂i/sβ̂i
are given in the following

table

β̂i sβ̂i
tβ̂i

Constant 68.494 8.176 8.38
VO2 -0.468 0.154 -3.04
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• H0 : β1 = 0 against H1 : β1 < 0
The critical value for this one-sided test with significance level α = 0.05 is
−t(12) = −1.78.
Since the t statistic is smaller than this critical value, we reject the null
hypothesis. In the other words, there is evidence for a significance inverse
relationship between running time and aerobic capacity.

• Prediction intervals
For example, let us predict the running time for a female athlete with maximal
aerobic capacity xk = 55. Then

ŷpred = β̂0 + β̂1xk = 42.75

and its standard error by

s

(
1 +

1
n

+
(xk − x̄)2∑
(xt − x̄)2

)1/2

= 2.40

Thus a 95 percent prediction interval for the running time is given by

42.75± t0.025(12)2.40 = 42.75± 5.23 or (37.52, 47.98)
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To investigate whether other variable (height X2, weight X3, skinfold sum
X4, relative body fat X5 help explain the variation in the data, fit the model

yt = β0 + β1xt1 + · · ·+ β5xt5 + εt

Then we have

β̂i sβ̂i
tβ̂i

Constant 80.921 32.556 2.49
VO2 -0.479 0.203 -2.36
Height -0.064 0.262 -0.24
Weight -0.085 0.285 -0.30
Skinfold sum 0.027 0.079 0.35
Relative body fat 0.047 0.292 0.16

and the ANOVA table

Source SS df MS F
Regression 57.989 5 11.598 1.71

Error 54.230 8 6.779
Total 112.219 13 21



Case Study I: Gas Mileage Data Consider predicting the gas mileage of an
automobile as a function of its size and other engine characteristics. In table
2.2. we have list data on 38 automobile (1978-1979 models). These data, which
were originally taken from Consumer Reports. The variables include gas mileage
in miles per gallon (MPG), number of cylinders, cubic engine displacement,
horse power, weight, acceleration, and engine type [straight(1), V(0)].

The gas consumption (in gallons) should be proportional to the effort(=force
× distance) it takes to move the car. Furthermore, since force is proportional
to weight, we except that gas consumption per unit distance is proportional to
force and thus proportional to weight . Thus a model of the form

yt = β0 + β1xt + εt

where y = MPG−1 = GPM and x =weight.

To check whether a quadratic term (weight)2 is need, then fit the model

yt = β0 + β1xt + β2x
2
t + εt

and make a hypothesis test

H0 : β2 = 0 againsit H1 : β2 6= 0
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2.7 Model Selection Techniques

(I) Adjusted coefficient of fitness

R2
a = 1− SSE/(n− p− 1)

SSTO/(n− 1)
= 1− s2

SSTO/(n− 1)
.

Compared with R2, we have extra penalty here for introducing more
independent variables. Intention: maximize R2

a (equivalently minimizing
s2).

(II) Consider

Cp =
SSEp

s2
− (n− 2p).

Since E(SSEp) ≈ (n − p)σ2, (large n), Cp ∼ p. So choose smallest p such
that Cp ∼ p.

(III) Backward Elimination, Forward Selection, and Stepwise Regression.
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Example 2 (Case study I continued)

Results from Fitting All possible Regression

p Variables Included R2
a

1 X4 .8540
2 X2 X4 .8866
3 X1 X3 X6 .9071
4 X1 X3 X5 X6 .9231
5 X1 X2 X3 X4 X6 .9235
6 X1 X2 X3 X4 X5 X6 .9267

Correlations Among the Predictor Variables

X1 X2 X3 X4 X5 X6

X1 1.00
X2 .94 1.00
X3 .86 .87 1.00
X4 .92 .95 .92 1.00
X5 -.13 -.14 -.25 -.03 1.00
X6 .83 .77 .72 .67 -.31 1.00
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t Statistics from Forward Selection and Backward Elimination Procedures

Step Constant X1 X2 X3 X4 X5 X6 R2
a

(a) Forward Selection
1 -.02 14.75 .8540
2 -2.78 -3.377 8.39 .8866
3 -3.37 1.88 -3.95 8.08 .8943

(b) Backward Elimination
1 -3.92 3.62 -1.82 3.50 1.74 1.56 -3.60 .9267
2 -4.29 3.58 -2.54 3.11 2.97 -3.46 .9235

Selected Models

GPMt = β0 + β1(weightt) + β2(displacementt) + εt

or the even simpler model

GPMt = β0 + β1(weightt) + εt
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2.8 Multi-colinearity in Predictor Variables

This is referring to the situation when the columns of X are almost linearly
dependent. This sort of situation is common for observational data rather than
artificially designed matrix. We say, in this case, that X′X is ill conditioned.
This could cause large variance of β̂i. So techniques like Ridge Regression will
be applied, i.e. with restriction β′β ≤ r2.

Example
yt = β0 + β1xt1 + β2xt2 + εt, t = 1, 2, . . . , n.

The least square estimate of β∗
i = si

sy
βi, i = 1, 2, where si

√
n− 1 = [

∑
(xit −

x̄i)2], sy

√
n− 1 = [

∑
(yt − ȳ)2], has such property

Var(β∗
1) = Var(β∗

2) = σ2
∗

1
1− r2

12

and
Corr(β∗

1 , β∗
2) = −r12

where r12 = [
∑

(xt1 − x̄1)(xt2 − x̄2)]/[
∑

(xt1 − x̄1)2
∑

(xt2 − x̄2)2]
1
2.
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2.9 General Principles for Modelling

• Principle of Parsimony (As Simples as Possible)

ˆ̂y = Xβ̂ = X(X′X)−1X′y =⇒ Var(ŷ) = σ2X(X′X)−1X′.

and 1
n

n∑
i=1

Var(ŷt) =
σ2

n
Trace[X(X′X)−1X′] =

pσ2

n
.

Hence the average forecast error has variance

σ2(1 +
p

n
).

So extra independent variables would increase p and the forecast error.

• Plot Residuals
Ideally, the residuals would be in the form of white noise, otherwise
some modifications might be necessary, such as extra linear/quadratic
terms. Particularly for the funnel Shape (like a trumpet), the logarithm
transformation might be proper. 29
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