2. Regression Review

2.1 The Regression Model

The general form of the regression model

Yt = f(Xtaﬁ) +€t

where

Xt = (xtla e 7:Etp)/76 — (617 <. 75?77,)/'

2

e ¢; is a random variable, Ee; = 0,Var(e;) = o*, and the error &; are

uncorrelated.

e Normal distribution assumption for error €; implies independence among error



Examples:

1. y: = By + €+ (constant mean model)

2. yy = Bo + B1xy + €4 (simple linear regression model)

3. yr = Bpexp(Pixs) + ¢ (exponential growth model)

4. y; = By + Brxs + Pox? + &4 (quadratic model)

5. yr = Bo + G121 + Paxeo + € (linear model with two independent variables)

6. yr = Po+ Prxsn + Bowsa + Br1x7) + Paokiy + Prax11%e2 + €4 (quadratic model
with two independent variables)

Linear Models: see Example 1, 2, 4, 5, 6
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Figure 2.1. Graphical representation of the regression models [-6. The dots in model 2

represent possible realizations.



2.2 Prediction from regression models with known
coefficients

prediction y,‘;red for yr. = f(xk, B) + €k
forecast error e, = vy, — Yk

The expected value of the squared forecast error

E(ei) = E(yy™ —yi)® = 0 + E[f (xx, 8) — y5~]°

Minimum mean square error(MMSE)

i = f(xw B)

100(1 — «v) percent prediction interval for the future value y;

L (XK, B) = tay20; f(Xk, B) + tay20]

where f1, /2 is the 100(1 — o/2) percentage point of the (0, 1) distribution.



2.3 Least squares estimates of unknown coefficients

The parameter estimates that minimize the sum of the squared deviations

S(B) = [y — f (x4 8))

t=1

are called the least squares estimates and are denoted by B

Examples

1. Simple linear regression model through the origin

yr = Bxt + €t

2. Simple linear regression model

yr = Bo + Brxt + €4



Example: Running Performance

For illustration, consider the data list in Table. In this example we are
interested in predicting the racing performance of trained female distance
runners. The measured variables include the running performance in 10-km
road race; body composition such as height, weight, skinfold sum, and relative
body fat; and maximal aerobic power. The subjects for study were 14 trained
and competition-experienced female runners who had placed among the top
20 women in a 10-km road race with more than 300 female entrants. The
laboratory data were collected during the week following the competitive run.
For the moment we are interested only in the relationship between the racing
performance(running time) and maximal aerobic power(volume of maximal
oxygen uptake; Vop,.)



Table 2.1. Physical and Performance Characteristics of 14 Female Runners*

X, X, X, X, X, 1
163 53.6 76.4 17.9 61.32 39.37
167 56.4 62.1 15.2 55.29 39.80
166 58.1 65.0 17.0 52.83 40.03
157 43.] 44.9 12.6 57.94 41.32
150 448 59.7 13.9 53.31 42.03
151 39.5 59.3 19.2 51.32 42.37
162 52.1 98.7 19.6 52.18 43.93
168 58.8 73.1 19.6 52.37 44.90
152 44.3 59.2 17.4 57.91 44.90
161 47.4 51.5 14.4 53.93 45.12
161 478 61.4 7.9 47.88 45.60
165 49.1 62.5 10.5 47.41 46.03
157 50.4 603 126 47.17 47.83
154 46.4 76.7 19.6 51.05 48.55

“X|, height; X, weight; X;, skinfold sum; X,, relative body fat; X5, ¥, ; ¥, running
time.

Source:  Conley et al. (1981).
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Figure 2.2, Scatter plot of running time against maximal aerobic capacity.



Estimation in the General Linear Regression Model

Linear Regression models can be written as

Yyt = Bo + B1xe1 + Baxea + - - - + Bpxep + €4

or
yr = X0 + &

where x; = (1,241,...,24) and B = (Bo,01,...,0p)" To simplify the
calculation of the least squares estimates for the general linear regression
model, we introduce matrix notation,

y=X@+e

where E(e) = 0, Var((g)) = o2I. Then

E(y) =X8, Var(y) =E[y — E(y)]ly — E(y)) =01



In matrix notation the least squares criterion can be expressed as minimizing

S(B) =) (m—xi8)> = (y — XB)'(y — XB)

t=1

Then the solution is then given by

B=(XX)"'Xy

Two special cases,

1. Simple linear regression through the origin:

yr = Bry + 4, for 1<t <n.

2. Simple linear regression model

Yy = Bo + Bixe +&¢, for 1<t <n.

10



2.4 Properties of Least Squares Estimation

E(B) =B, Var(8)=oc*X'X)"".
2. If it is assumed that errors in linear model are normally distribution, then

B ~ Np-|-1[167 UQ(X/X)_l]

3. The difference between the observed and fitted values are called residuals
and are given by

e=y-y=y - XXX)"'Xy=[I-XXX)"'Xy.

Then we have
X'e = X'[I - X(X'X) ' X'ly = 0.

11



4. The variation of the observations y; around their mean y, total sum of
squares (SSTO)

SSTO=> (e — )’ =) v —ny>=y'y —nj’.

The variation of fitted value ¢; around the mean y, sum of squares due to
regression (SSR)

SSR = Z Zyt —ny? = B/X’y — ng.

sum of squares due to error (or residual) (SSE)

SSE = Z(’yt — gt)Q = e/e.

Then SSTO = SSR + SSE

and define the coefficient of determination R? as the ratio of the sum of
squares due to regression and the total sum of squares:

SSR  SSE

2
e N 1 S —
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5. The variance o2 is usually unknown. However it can be estimated by the

mean square error
5 SSE
§° = :
n—p-—1

Hence the estimated covariance matrix of the least squares estimator B 5
Var(8) = s*(X'X) ™!

The estimated standard error of BZ is given by S5 = S+/Cii, where /c;; is the

)

corresponding diagonal element in (X'X)~1.

6. The least square estimate B and s? are independent.

13



2.5 Confidence Intervals and Hypothesis Testing

Consider the quantity A
Bi — B

S+\/Ci;

1=0,1,...,p

where @ iIs the least square estimate of 3;, and Sp, = S/Cii is its standard error.
This quantity has a t-distribution with n — p — 1 degrees of freedom.

Confidence intervals

A 100(1 — «) confidence interval for the unknown parameter 3; is given by

B — tasa(n —p —1)sy/ci, Bi + tasa(n —p—1)sy/cy

where t, /o(n —p — 1) is the 100(1 — «/2) percentage point of a t distribution
with n — p — 1 degree of freedom

14



Hypothesis Tests for individual Coefficients
Ho: ;= 0Bio vs Hi:[3; # Bio

The test statistic is given by

A

57; _ 6@'0

=" 0

S/ Cii
o If [t| > 14 /2(n—p—1), We reject Hy in favor of H; at significance level a.
o If |t| < ta/2(n—p—1), there is not enough evidence for rejecting the null
hypothesis Hy in favor of Hy{. Thus loosely speaking, we “accept” Hj at

significance level a.

e Special case when 3,0 = 0.

15



2.6 Prediction from Regression Models with Estimated
Coefficients

The MMSE prediction of a future y; from regression model y; = Gy + 1141 +
-+ + BpTip + € Is given by

y/'ired = Bo + Sz + - - + Bpip = X3, 8
Replace 3 by their least estimate 3 = (X'X) 1 X"y

@Zred = Bo + 1z + - - + Bpxrp = XZB

16



These predictions have the following properties

1. Unbiased
By — §7) = 0

2. g™ is the minimum mean square error forecast among all linear unbias
forecast

3. The variance of the forecast error y;, — 97 is given by

Var(ye — ) = Var{ex + x4(8 — B)} = 02[1 + x4,(X'X) "'y
4. The estimated variance of the forecast error is
Var(y, — §5) = s°[1 + %, (X'X) 'y

A 100(1 — «) percent prediction interval for the future y; is then given by its
upper and lower limits

D=

gt + tos2(n —p—1)s[1+ x) (X' X) " xy]

17



Example: Running Performance

e The simple linear regression model

yr = Bo + Bz + €4

where y; is the time to run the 10-km race, and x; is the maximal aerobic
capacity Vo,.

e The least square estimate of Bo = 68.494 and 5; = —0.468.

e The fitting values 7; = BO + [3’1:1375, the residuals e; = y; — ¥+, and the entries
in ANOVA table are easily calculated.

Source SS df MS F
Regression 48.845 1 48.845 9.249
Error 63.374 12 5.281
Total 112.219 13

18



e The coefficient of determination is given by R? = 48.845/112.219 = .435.

1 72 —z

T eI T
> (x¢—7)? > (x¢—7)?
B [66.8511 —1.2544]
—1.2544  0.0237

Var(3) = $2(X'X)7!=s?

e The standard error 54 and t statistics tﬁﬁ = Bz/sﬁ are given in the following
table

B sy 1ty
Constant 68.494 8.176 8.38
Vo, -0.468 0.154 -3.04

19



e Hy: (31 =0against H; : 31 <0
The critical value for this one-sided test with significance level o = 0.05 is
—t(12) = —1.78.
Since the t statistic is smaller than this critical value, we reject the null
hypothesis. In the other words, there is evidence for a significance inverse
relationship between running time and aerobic capacity.

e Prediction intervals
For example, let us predict the running time for a female athlete with maximal
aerobic capacity i = 55. Then

gPred = By + Bray, = 42.75

and its standard error by

s (1 + % + g‘;t__i;) " a0

Thus a 95 percent prediction interval for the running time is given by

42.75 £ t9.025(12)2.40 = 42.75 £5.23 or (37.52,47.98)

20



To investigate whether other variable (height X5, weight X3, skinfold sum
X4, relative body fat X5 help explain the variation in the data, fit the model

Then we have

Y = Bo + B1xer + -+ - + Bsxes + &1

and the ANOVA table

b S5, g,

Constant 80.921 32556 2.49
Vo, -0.479 0.203 -2.36
Height -0.064 0.262 -0.24
Weight -0.085 0.285 -0.30
Skinfold sum 0.027 0.079 0.35
Relative body fat 0.047 0.292 0.16

Source SS df MS F
Regression 57.989 5 11598 1.71

Error 54.230 3 6.779

Total 112.219 13 21




Case Study I: Gas Mileage Data Consider predicting the gas mileage of an
automobile as a function of its size and other engine characteristics. In table
2.2. we have list data on 38 automobile (1978-1979 models). These data, which
were originally taken from Consumer Reports. The variables include gas mileage
in miles per gallon (MPG), number of cylinders, cubic engine displacement,
horse power, weight, acceleration, and engine type [straight(1), V(0)].

The gas consumption (in gallons) should be proportional to the effort(=force
x distance) it takes to move the car. Furthermore, since force is proportional
to weight, we except that gas consumption per unit distance is proportional to
force and thus proportional to weight . Thus a model of the form

Yt = Bo + 1wt + &
where y = MPG™' = GPM and z =weight.

To check whether a quadratic term (weight)? is need, then fit the model

yt = Bo + B1xt + Poxi + &
and make a hypothesis test

Hy:0(85=0 againsit H;p:[3:#0

22
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2.7 Model Selection Techniques

(I) Adjusted coefficient of fitness

> SSE/(n—p—1) s°
fa=1- SSTO/(n—1) b SSTO/(n — 1)

Compared with R?, we have extra penalty here for introducing more
independent variables. Intention: maximize R2? (equivalently minimizing

s2).
(I1) Consider
SSE
Cp= 25" — (n—2p).
Since E(SSE,) ~ (n — p)o?, (large n), C, ~ p. So choose smallest p such
that C, ~ p.

(I11) Backward Elimination, Forward Selection, and Stepwise Regression.

25



Example 2 (Case study | continued)

Results from Fitting All possible Regression

P Variables Included R?

1 X4 .8540
2 Xo X4 .8866
3 X3 X3 Xeg .9071
4 X, X, X: Xg .9231
5 X7 X9 Xj X4 Xeg .9235
6 Xi Xo X3 X4 X5 Xg .92067

Correlations Among the Predictor Variables

X, Xo Xz X4 X5 Xg
X; 1.00
X, .94 1.00
X; 86 .87 1.00
X, 92 95 92 1.00
Xs -13 -14 -25 -03 1.00
Xs 83 77 72 67 -31 1.00

26



t Statistics from Forward Selection and Backward Elimination Procedures

Step Constant X1 X9 X3 X4 X5 Xe R?L
(a) Forward Selection
1 -.02 14.75 .8540
2 -2.78 -3.377 8.39 .8866
3 -3.37 1.88 -3.95 8.08 .8943
(b) Backward Elimination
1 -3.92 362 -182 3.50 1.74 1.56 -3.60 .9267
2 -4.29 3.8 -254 311 2.97 -3.46  .9235

Selected Models

GPM; = By + B1(weight,) + (2(displacement,) + &;

or the even simpler model

GPMt = ﬁo + 61(W€ightt) + &4

27



2.8 Multi-colinearity in Predictor Variables

This is referring to the situation when the columns of X are almost linearly
dependent. This sort of situation is common for observational data rather than
artificially designed matrix. We say, in this case, that X’X is ill conditioned.
This could cause large variance of BZ So techniques like Ridge Regression will
be applied, i.e. with restriction 3’3 < r2.

Example
Yt = Bo + 1241 + Boxeo + ¢, t=1,2,...,n.

The least square estimate of 3 = j—; it = 1,2, where s;v/m—1 = D> (x4 —
7:)?], syv/n —1=>_(y: — 4)?], has such property

1
1 =17y

Var(7) = Var(8;) = o>

and

Corr (87, B3) = —T12
where 712 = [3 (41 — T1) (T2 — 22)]/ 2o (701 — 1) Do (w02 — T2)°]2. ”

No|—



2.9 General Principles for Modelling

e Principle of Parsimony (As Simples as Possible)

y = X8 = X(X'X)" X'y = Var(y) = ¢>X(X'X) X,

and 2 2

1 n
" Zvar(Yt) = J—Trace[X(X’X)—le] _po
" 1=1 n n

Hence the average forecast error has variance

2 p
o“(1+ —).
( n)

So extra independent variables would increase p and the forecast error.

e Plot Residuals
|deally, the residuals would be in the form of white noise, otherwise
some modifications might be necessary, such as extra linear/quadratic
terms. Particularly for the funnel Shape (like a trumpet), the logarithm
transformation might be proper. 29
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Figure 2.6. Various satisfactory and unsatisfactory residual plots. (a) Satisfactory residual
plot. (#) Incorrect model form (a constant or a linear term should have been included). (¢)
Incorrect model form (a quadratic term should have been included). (d ) Nonconstant variance.

30



