3. Regression & Exponential Smoothing

3.1 Forecasting a Single Time Series

Two main approaches are traditionally used to model a single time series
K15 Ry« veyin

1. Models the observation z; as a function of time as

2z = f(t,8) + &

where f(t,3) is a function of time ¢ and unknown coefficients 3, and ¢; are
uncorrelated errors.



x Examples:

— The constant mean model: z; = 0+ &
— The linear trend model: z; = By + Bit + &
— Trigonometric models for seasonal time series

.21 2T
2t = PBo+ B Sml_2t + B9 cosﬁt + &4

2. A time Series modeling approach, the observation at time ¢ is modeled as
a linear combination of previous observations

x Examples:

— The autoregressive model: 2y = ) .~ mjz1—j + &
— The autoregressive and moving average model:

p q
Zt = Z Tjet—j + Z (92'875_@' + &¢



Discounted least squares/general exponential smoothing

Z wilze — f(t, B)]?

e Ordinary least squares: w; = 1.

o w; = w" !, discount factor w determines how fast information from previous
observations is discounted.

e Single, double and triple exponential smoothing procedures

— The constant mean model
— The Linear trend model
— The quadratic model



3.2 Constant Mean Model

2t =0+ &

e (3. a constant mean level

e ¢, a sequence of uncorrelated errors with constant variance o2.

If 3,0 are known, the minimum mean square error forecast of a future
observation at time n + 1, z,,.; = B + £, IS given by

zn(l) = 0

e Elzii — 2,(1)] =0, E[zps1 — 2,(1)]? = Ele?] = o2
e 100(1 — X\) percent prediction intervals for a future realization are given
by 1B — pixn/205 8 + pix/20]

where 1y /9 is the 100(1 — A/2) percentage point of standard normal
distribution.



If 3,0 are unknown, we use the least square estimate B to replace (3

The [-step-ahead forecast of z,,.; from time origin n by

n

. . 1 _
Zn(l) — Z,O’2 = o1 Z(Zt — 2)2
t=1

e Elz,11 — 2,(1)] = 0,E6% = 02, E[2,,41 — 2,(])]? = 0? (1 + %)
e 100(1 — \) percent prediction intervals for a future realization are given
by 1?2 1

where 2 /o(n — 1) is the 100(1 — \/2) percentage point of ¢ distribution with
n — 1 degree of freedom.

1
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e Updating Forecasts

73n—|—1 — (Zl + 22+ + 2+ Zn—l—l) — [Zn—i—l + nén(l)]

n-+1

n + 1Zn—|—1

(Zn+1 — 2n(1))

n-+1

e Checking the adequacy of the model
Calculate the sample autocorrelation 7. of the residuals z; — 2

If \/n|ri| > 2: something might have gone wrong.



Example 3.1 Annual U.S. Lumber Production

Consider the annual U.S. lumber production from 1947 through 1976. The data
were obtained from U.S. Department of Commerce Survey of Current Business.
The 30 observations are listed in Table

Table 3.1:  Annual Total U.S. Lumber Production (Millions of Broad Feet),
1947-1976 (Table reads from left to right)

35,404 36,762 32,901 38,902 37,515
37,462 36,742 36,356 37,858 38,629
32,901 33,385 32,926 32,926 32,019
33,178 34,171 35,697 35,697 35,710
34,449 36,124 34,548 34,548 36,693
38,044 38,658 32,087 32,087 37,153




Figure 3.1: Annual U.S. lumber production from 1947 to 1976(in millions of
board feet)
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e The plot of the data in Figure 3.1.

e The sample mean and the sample standard deviation are given by

1
z=35,625,6 = {5 S (2 — 2)%}2 = 2037

e The sample auto correlations of the observations are list below

Lag & 1 2 3 4 5 6
Sample autocorrelation .20 -.05 .13 .14 .04 -.17

Comparing the sample autocorrelations with their standard error 1/4/30 =
.18, we cannot find enough evidence to reject the assumption of uncorrelated
error terms.



e [ he forecast from the constant mean model are the same for all forecast lead
times and are given by

21976(0 =z = 35, 652

The standard error of these forecast is given by

gy/1+1/n=2071

A 95 percent prediction interval is given by

35,652 & (2.045)(2071)] or [31,417,39,887]

e |f new observation become available, the forecasts are easily updated. For
example if Lumber production in 1977 was 37,520 million board feet. Then
the revised forecasts are given by

1
n-+1

Zio77(l) = Z1976(1) + (21977 — Z1976(1)]

1
= 35,652+ o-[37,520 — 35,652
— 35,712 10



3.3 Locally Constant Mean Model and Simple Exponential
Smoothing

e Reason: In many instances, the assumption of a time constant mean is
restrictive. |t is more reasonable to allow for a mean that moves slowly over

time

e Method: Give more weight to the most recent observation and less to the
observations in the distant past

n—1

Za(l) = c Z W 2n_y = clzn F Wzp_1 + -+ w" 2]
=0

w(|lw| < 1): discount coefficient, ¢ = (1 — w)/(1 — w™) is needed to
normalized sum of weights to 1.

o If n — 0o and w < 1, then w™ — 0, then

) =1 -w)Y wz,_;

§>0 11



e Smoothing constant: a = 1 — w. Smoothing statistics

S, = S =(1—w)zn+wzm1+wzm_o+-]

= afzgn+(1—a)zn1+(1—a)z,_g+--]

e Updating Forecasts: (As easy as the constant mean model)
Sp=1—-w)zp +wSp_1=5.-14+ (1 —w)[z, — Sn_1]

50(1) = (1 — w)zn + win_1(1) = Zn1(1) + (1 — w)[zn — Zn_1(1)]

12



Actual Implementation of Simple Exp. Smoothing

e Initial value for Sy

Sp=(1—w)|zn +wzp_1 4+ +w" 121] + w"Sy

1. Sp = z, (mean change slowly, a = 0);
2. So = 21, (local mean changes quickly a = 1);
3. Backforecast

Si=1—-w)z; +wS; 1, S;i1= 2n,

So=2z0=57=(1—w)z +wS;
e Choice of the Smoothing Constant: aa =1 — w

er—1(1) =2zt —241(1) = 2t — S¢_1, (one — step— ahead forecast error).

n

SSE(a Zet , ;

Then minimize



e The smoothing constant that is obtained by simulation depends on the value

of S()

e |deally, since the choice of a depend on Sy, one should choose a and Sy
jointly

e Examples

— If &« = 0, one should choose Sy = Z.
— If @« = 1, one should choose Sy = 21
— If 0 < o < 1, one could choose Sj as the “backforecast” value:

So=a[n+(1—-—a)za+ -+ (1 —a)" ?2,1]+ (1 —a)" 'z,

14



Example: Quarterly lowa Nonfarm Income
As an example, we consider the quarterly lowa nonfarm income for 1948-1979.

e The data exhibit exponential growth.

e Instead of analyzing and forecasting the original series, we first model the
quarterly growth rates of nonfarm income.

2t = It—|—1]_ It
t

I
100 =~ 100 log s
Iy

e The constant mean model would be clearly inappropriate. Compared with
the standard error 1/4/127 = .089, most autocorrelations are significantly
different from zero

Table 3.2: Sample Autocorrelations 7 of Growth Rates of lowa Nofarm Income (n=127)

Lag & 1 2 3 4 5 6
Sample autocorrelation ., .25 .32 .18 .35 .18 .22

15



lowa nonfarm income, first quarter 1948 to fourth quarter 1979
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Growth rates of lowa nonfarm income, second quarter 1948 to fourth quarter 1979
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Since the mean is slowly changing, simple exponential smoothing appears to
be an appropriate method.

a = 0.11 and Sg = z = 1.829.

SSE(.11) = f e7_1(1) = (—=1.329)% + (\967)% + - - - + (.458)* + (—.342)? =
t=1
118.19

As a diagnostic check, we calculate the sample autocorrelations of the
one-step-ahead forecast errors

n—1

> let(1) —eller—x(1) — €] =
T = t=k — , €= EZet(l)
> led(1) —ée]? t=0

t=0

To assess the significance of the mean of the forecast errors, we compare it
with standard error s/n'/%(1/4/127 = .089) , where

e
T

18



Table 3.3. Simple Exponential Smoothing — Growth Rates of Iowa Nonfarm Income

!

Z

o =11

Smoothed One-Step-Ahead Smoothed  One-Step-Ahead
Time Observation Statistic Forecast Error

Sr € _ l(l) =z, Sr-~l

Sf~l

N RN — O

123
124
125
126
127

0.50
2.65
0.97
2.40
0.16
0.47

3.38
1.55
2.93
3.10
2.35

1.829

1.683 —1.329
1.789 0.967
1.699 —0.819
1.776 0.701
1.598 —1.616
1.474 —1.128
2.736 0.723
2.606 - 1.186
2.642 0.324
2.692 0.458
2.654 —(.342

SSE(.11) = 118.19

= .40
Statistic Forecast Error

Sf €,~1(1)=Z(~
1.829
1.297 —-1.329
1.838 1.353
1.491] —().868
1.855 (0.909
1.177 —1.695
(0.894 —0.707
3.032 0.579
2.439 — 1.482
2.636 0.491
2.821] 0.464
2.633 —(.471

SSE(.40) = 132.56

19



Table 3.4. Sums of Squared One-Step-Ahead Forecast Errors for Different Values
of «; Simple Exponential Smoothing— Growth Rates of lowa Nonfarm Income

@ SSE( &) o SSE(a) o SSE(a)
01 140.78 11 118.19 21 120.95
02 134.42 12 118.24 22 121.39
03 128.84 A3 118.38 23 121.86
M 124.86 14 118.57 24 122.35
05 122.22 15 118.81 25 122.86
06 120.51 16 119.09 26 123.38
07 119.44 17 119.41 27 123.93
08 118.78 18 119.75 28 124.49
09 118.41 19 120.13 29 125.07
10 118.23 20 120.53 .30 125.67

20
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Figure 3.4. Plot of SSE(«), for simple exponential smoothing—growth rates of Iowa nonfar
income.
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Table 3.5. Means, Standard Errors, and Sample Autocorrelations of the
One-Step-Ahead Forecast Errors from Exponential Smoothing
(witha = .11 and a = .40)— Growth Rates of lowa Nonfarm Income

Sample Autocorrelations of
One-Step-Ahead Forecast Errors

Lag
k a = .11 a = .40
] —.02 — .22
2 08 — .02
3 — .06 — .19
4 14 13
5 — 07 — .11
6 00 .00
Mean of historical forecast errors 056 016

Standard error of mean 086 091
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3.4 Regression Models with Time as Independent Variable

o £f(j+ 1) =Lf(j),L = (lij)mxm full rank. (Difference equations).

e Equivalent model:

tni = 3 Bifi(n+§) + eney = £+ 1B + gy
=1

f(n+j) = L"(j) = 8 = L"B".

e Examples: Constant Mean Model, Linear Trend Model, Quadratic Trend
Model, k" order Polynomial Trend Model, 12-point Sinusoidal Model

23



e Estimation: Bn minimizes Z?Zl[zj —f'(j — n)6]2

n—1 n—1
X'X =) f(=j)f(=j)=F,, X'y=)> f(—j)za_;j=h
J=0 5=0
B =F_'nh,

e Prediction

(1) = £'(1)B,,, Var(e, (1)) = o[1 + £ ()F, ()],

100(1 — \)% CI - zn(Z)itA/Q(n— m)&[1 + £/ (DF £ (1)]2.

24



Updating Estimates and Forecasts:

- e —1
Bn+1_'Fzﬁlhn+L

F,.1=F,+f(—n)f'(—n);

h, 1 = Z f(_j)zn—H—j = £(0)zn+1 + Z f(—j—

J=0 5=0
n—1
= £(0)zns1+ Y L7'(—=j)zn—; = £(0)
j=0

25



3.5 Discounted Least Square and General Exponential
Smoothing

In discounted least squares or general exponential smoothing, the parameter
estimates are determined by minimizing

The constant w(|w| < 1) is a discount factor the discount past observation
exponentially.

Define
W =diag(w" ' w"* - w 1);
n—1
F,=X'WX =) " w/f(—j)f' (j)
§=0
n—1

h,=X'Wy = > " w/f(—j)z,—;

7=0 26



e Estimation and Forecasts

B, =F th,, 2.,0)=f()83,.
e Updating Parameter Estimates and Forecasts

A

Br1 = F;—Il—lhn—i-l? Foi1=F,+f(—n)f'(—n)w";

n

hy,p = ijf(_j)szrl—j = £(0)zp41 + wL™'h,
j=0
If n — oo, then w"f(—n)f’'(—n) — 0, and
F,1=F,+f(-n)f'(—n)w” - F asn — co.

Hence

A

Boy1 = F 0z + [/ = F'£(0)f'(0)L]B,
— L'B, 4+ F(0)[zn41 — 2n(1)].
Znt1(l) = f/(l)/érﬁ—l'

27



3.5 Locally Constant Linear Trend and Double Exp.
Smoothing

e Locally Constant Linear Trend Model

45 — 60 + 61] + En+j

n—1
e Discount least squares that minimizing > w’[z,_; — f'(—7)8]?, thus
j=1

. B 1—w? (1—w)? J o
/6n:F 1h'n_[ (1—w)3 ][_szj j.]

28



Thus
Bom = (1—w?) ijzn_j — (1 —w)? ijjzn_j

~ . 1 —w)? o
Pin = (1_w)2zw32n—j_( » ) Z]w]Zn—j

Snl] — (1 — )Zn + wsq[zl_l — (1 - w) ijzn—ja

SP = (-ws+wsy = (1 -w)?Y (i + Dwlan,
k

St = (- w)siE T ws,

(S99 = (no smoothing) = z,)

Then

o ~ 1 —
50() = Bom+Bin-l=2+——0SH - (1+—"1)s02



e Updating:

BO,n—I—l — BO,n + Bl,n + (]- — wz)[zn—l—l — 277,(]-)]7
Bl,n+1 — Bl,n + (1 — w)Q[szrl — Zn(1)];

Or in another combination form:

BO,n—I—l = (1 — w2)Zn+1 + UJZ(BO,n + Bl,n)a
R 1 —w - A 20~
Biny1r = H—w(ﬂo,wrl — Bo.n) + 1+ wﬁl,w
R 1 A A .
Znt1 — 2n(1) = 5(Bo,n+1 — Bo,n — Bin)-

1 —w

30



e Implementation

— Initial Values for Sc[)l] and S([)2]

Sy! = foo— 7

w

51,07

2W

SF] — ﬁAo,o— 51,0;

1 —w

where the (B0,0»BLO) are usually obtained by considering a subset of the
data fitted by the standard model

2t = Bo + Bit + &t

— Choice of the Smoothing Constant & = 1 — w The smoothing constant «
is chosen to minimize the SSE:

SSE(O&) = E (Zt — ét_1)2
2
(8% (8%

31



Example: Weekly Thermostat Sales

As an example for double exponential smoothing, we analyze a sequence of
52 weekly sales observations. The data are listed in Table and plotted in
Figure. The data indicates an upward trend in the thermostat sales. This trend,
however, does not appear to be constant but seems to change over time. A
constant linear trend model would therefore not be appropriate.

Case Study Il: University of lowa Student Enrollments

As another example, we consider the annual student enrollment (fall and spring
semester combined) at the University of lowa. Observations for last 29 years
(1951/1952 through 1979/1980) are summarized in Table. A plot of the

observations is given in Figure.

32



Table 3.6. Weekly Thermostat Sales, 52 Observations®

206 189 172 255
245 244 210 303
185 209 205 282
169 207 244 291
162 211 218 280
177 210 182 255
207 173 206 312
216 194 211 296
193 234 273 307
230 156 248 281
212 206 262 308
192 188 258 280
162 162 233 345

“Read downwards, left to nght,

Source: Reprinted by permission of Prentice-Hall, Inc. from
R. G. Brown (1962), Smoothing, Forecasting and Prediction of
Discrete Time Series, p. 431.
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Table 3.7. Sample Autocorrelations of the Residuals from the Constant Linear
Trend Model— Thermostat Sales

Lag k ] 2 3 4 5 6
Autocorrelation r, 41 26 18 19 27 40

Table 3.8. Double Exponential Smoothing with Smoothing Constant
a = 14— Thermostat Sales

e, (1)

! Z, S S 2,(1) £,2) (=2, - 2.
0 152.12 137.84 168.72 171.05
] 206 159.66 140.89 181.48 184.54 37.28
2 245 171.61 145.19 202.32 200.62 63.52
3 185 173.48 149.15 201.77 205.73 — 1732
4 169 172.86 152.47 196.55 199.88 - 327
5 162 171.34 155.11 —34.56
48 307 274.58 247.64 305.90 310.29 142
49 281 275.48 251.54 303.31 307.21 - 249
50 308 280.03 255.53 308.52 312.51 4.69
51 280 280.03 258.96 304.53 307.96 —2852
52 345 289.12 263.18 319.29 32351 4048

SSE(.14) = 41,469
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Table 3.9. Sums of Squared One-Step-Ahead Forecast Errors for Different

Values of o; Double Exponential Smoothing— Thermostat Sales

[r SSE( ) a SSE(a) a SSE(a)
0.02 49,305 0.11 42,018 0.21 43,132
0.03 48,935 0.12 41,707 0.22 43,558
0.04 48,149 0.13 41,530 0.23 44,014
0.05 47,108 0.14 41,469 0.24 44 496
0.06 45,979 0.15 41,507 0.25 45,001
0.07 44,888 0.16 41,630 0.26 45,526
0.08 43,920 0.17 41,824 0.27 46,070
0.09 43,114 0.18 42,079 0.28 46,629
0.10 42,482 0.19 42,387 0.29 47,203

0.20 42,740 0.30 47,790

36
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Table 3.10. Mean, Standard Error, and Sample Autocorrelations
of the One-Step-Ahead Forecast Errors from Double Exponential
Smoothing (a = .14)— Thermostat Sales

Sample Autocorrelations
of One-Step-Ahead

Lag Forecast Errors

k r,

1 13

2 — .09

3 —.16

4 —.13

5 .05
Mean of historical forecast errors 1.86

Standard error of mean 3.95
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3.6 Regression and Exponential Smoothing Methods to
Forecast Seasonal Time Series

Seasonal Series: Series that contain seasonal components are quite
common, especially in economics, business, and the nature sciences.

Much of seasonality can be explained on the basis of physical reasons. The
earth’'s rotation around the sun, for example, introduces a yearly seasonal
pattern into may of the meteorological variables.

The seasonal pattern in certain variables, such as the one in meteorological
variables, is usually quite stable and deterministic and repeats itself year
after year. The seasonal pattern in business and economic series, however, is
frequently stochastic and changes with time.

Apart from a seasonal component, we observe in many series an additional
trend component.

39
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January 1971 to December 1978.
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The traditional approach to modeling seasonal data is to decompose the
series into three components: a trend 7}, a seasonal component S; and an
irregular (or error) component &;

e The additive decomposition approach

2zt =Ty + St + €4

e The multiplicative decomposition approach
Zt = Tt X St X E¢

or
log zy =17 + S} + €5

e The other multiplicative model

Zt:TtXSt—i—gt

43



3.6.1 Globally Constant Seasonal Models

Consider the additive decomposition model z; = T} + S; + ¢

e T[raditionally the trend component 7} is modeled by low-order polynomials
of time t: k i
T, =Po+) B
i=1

e The seasonal component S; can be described by seasonal indicators

St — i dblNDm
1=1

where IND;; = 1 if ¢ corresponds to the seasonal period 7, and 0 otherwise,
or by trigonometric functions

ZA sin @t + ;).

where A; and ¢; are amplltude and the phase shift of the sine function with
frequency f; = 2mi/s.
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Modeling the Additive Seasonality with Seasonal Indicators

k . S
t’L
zt = o + E @54‘ E 0;INDy; + &4.
i=1 ‘ i=1

Since it uses s + 1 parameters ( By and s seasonal indicators) to model s
seasonal intercepts, restrictions have to be imposed before the parameters can
be estimated. Several equivalent parameterizations are possible

e Omit the intercept: [y = 0.
e Restrict Y _,d;, =0.
e Set one of the §'s equal to zero; for example 6, = 0.

Mathematically these modified models are equivalent, but for convenience we
usually choose (3).
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Now we have the standard regression model:
k i

s—1
t
2e = Bo + E @'5 + g 0;INDy; + 4.
) 1=1

1=1 =

/6, — (507617 s 75/{7 517 sevy 58—1);

Hence )
0 = (XX’)_lX’y, y' = (21,22, .., 2n);

X is an n X (k 4 s)matrix with tth row given by

, t2 th
f(t) — 17t7§7"'7gaINDt17”'7INDt,S—1

The minimum mean square error forecast of z,.; can be calculated from
2.(0) = (n+ 1)
100(1 — )% prediction interval
Zn(l) £tyj2(n —k —s)a[1+ 1 (n+ D(XX)"H(n 4 1))z,

N —

where 1 i .
A2 / 2
o _n—k—sg:l(zt_f(t)ﬂ)' .




Change of Time Origin in the Seasonal Indicator Model
As we mentioned in previous sections, it might be easier to update the estimates/
prediction if we use the last observational time n as the time origin. In this case

k . s—1
J
Zntj = Bo + Zﬁiﬁ + Z 0;INDj; + €n ;.
i=1 ) i=1

j2 ]k
f/(]) — (17j7 57 T Ha INDjh e 7INDj,8—1>
B, =F,'h,
n—1 n—1
F, = f(—7)f'(=j), ,hn= f(—J)zn—;
7=0 7=0

Hence the prediction:
100(1 — )% prediction interval

En(l) £ taja(n — k= )6 (1 + £/()F, ()],
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It can be shown that the forecast or fitting functions follow the difference
equation f(j) = Lf(j — 1), where L is a (k 4+ s) x (k + s) transition matrix

Li; O
I, —
[ Loy Loo ]

As an illustration, let us consider a model with quadratic trend and seasonal
period s =4

9 3
2 + Z 0;INDj; 4 €nyj

An+j = 60 + 51 + 625
=1

Then the transition matrix L and the initial vector £(0) are given by

1 0 0 1 0 0 [ -1 —1 —1 ]
Ly = 1 1 0 Loy=10 0 O Loo = 1 0 0
| 1/2 1 1 | 0 0 0 0 1 0 |

Successive application of the difference equation f(j) = Lf(j — 1) leads to
f(j) = (1,4,7°/2,IND;;, IND 5, IND;3)".
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Modeling the Seasonality with Trigonometric Functions

k - m
t* . [ 2m
zt =Ty + St + e = Bo + ;@a‘F;AiSIH (?t‘F%) T €t
where the number of harmonics m should not goes beyond s/2, i.e. half the

seasonality. Monthly, quarterly data; s/2 harmonics are usually not necessary

This is illustrated in Figure, where we plot

Z A; sin (27m qbz)

for Al = 1, gbl = O, A2 = —0.70, gbg = .6944r.
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Figure 4.8. Plot of E(z,) = Z A,sin( B + ¢>i), for Ay =1, ¢, =0, 4, = —0.70, :=
(0.6944)7r (or 125°). i=
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Change of Time Origin in the Seasonal Trigonometric Model

Examples:

e 12-point sinusoidal model (k =0,s =12,m = 1)

277 277
Zntj = Po + P11 8in T2 + (21 cos T2 + Entj
In this case:
1 0 0 1]
L=|0 v3/2 1/2 |, f0)=]0
0 —1/2 V3/2 1]

e Linear trend model with two superimposed harmonics (k = 1,s = 12, m = 2):

279 279 . 4y 4719

Zn_|_j 50"‘61] ‘|‘611 sin E—'_ﬁQl COS E"‘ﬁlg S111 E+522 COS E+€n+j
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3.6.2 Locally Constant Seasonal Models

Znti = £ (5)B + envj

e Target: Minimizing

e updating:

Bri1 = LB, + FH(0) 2011 — 2.(1)],  (F=) wf'(=))f(—)))

720

e A collection of infinite sums needed to cacluate F for seasonal models is
given in the following Table.
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Table 4.5.

Infinite Sums Needed in General Exponential Smoothing

Yol = l Zwij=__w wa]'2= w(l +w)
L=e (1-w) (- w)
E w(l + 4o + %) S ol w(1+ 1o + 1w + )
w/j? = 7 = -
ijSin fj = M ijcosﬁ = _L:_u)_c_os_'f
b g
Lwljsin fj = o(l =« )sinf Twljcos fj = w(l 4 w?)cosf— 2w’

g1

Lw’/sin f,jsin f, )] =

Lw'sin f,jcos f, ]

Yw’/cos fjcos fy ]

where
81
82

b

2

b | —

1 (1~ wcos(fi — /o) _
2..

B2 | —

g

I —wcos(f, + f,)
&3

87

[ wsin(f, — f,) . wsin( /) + /5)
g 83

I —wcos(f, + f5)
&3

1 - wcos( fy — f3) n
| 82

|

| — 2wcos f + w?
I —2weos( f, — f,) + *

1 —2wcos( f; + f5) + &? 53




e |t is usually suggested that the least squares estimate of 3 in the regression
model z; = f'(¢)3 + ; be taken as initial vector 3.

e To update the estimates, a smoothing constant must be determined.

— As Brown (1962) suggest that the value of w should lie between (.70)'/9
and (.95)1/9

— If sufficient historical data are available, one can estimate w = 1 — « by
simulation and choose the smoothing constant that minimizes the sum of
the squared one-step-ahead forecast errors

n

SSE(«a) = Z[Zt — ﬁt—l(l)P

t=1

e After estimating the smoothing constant «, one should always check the
adequacy of the model. The sample autocorrelation function of the one-
step-ahead forecast errors should be calculated . Significant autocorrelations
indicate that the particular forecast model is not appropriate.
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Locally Constant Seasonal Models Using Seasonal Indicators
3
Znyj = Bo+ B+ Y 0INDji + enyjy = £(5)
i=1

where f(]) = [1 j INDjl IND]'Q INng]/,f(O) = [1 000 O]’ Then

10 0 0 0
11 0 0 0
L=|10 -1 -1 -1
00 1 0 0
00 0 1 0

Hence the updating weights in

A

Bni1=L'B, + F'(0)[z041 — 2(1)]

can be calculated from f(0) and the symmetric matrix
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1—w

(1:25)2
w(1+w)
(I—w)?

symmetric

Implications of o — 1
In this situation F' —singular as w — 0. But we have that

lim F~Iif
w—0

A

IBn—i—l
£n(1)
£n(0)

w

Zn + Zn+1—s

1—w? 1—w? 1—w?
—w3(B+w?)  —w?(2+2w?)  —w(1+3w?)
(1—w?)? (1—w?)? (1—w?)?

3
w
— 02 0
w
1—w 0
w
1—w?

— Zp—s = Zntl-s T (Zn - Zn—s)

50l = 1)+ 20— 8) — 2l — 5 — 1)
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Example: Car Sales
Consider the monthly car sales in Quebec from January 1960 through December

1967 (n = 96 observations). The remaining 12 observations (1968) are used as
a holdcut period to evaluate the forecast performance. An initial inspection of
the series in Figure shows the data may be described by an additive model with
a linear trend (k = 1) and a yearly seasonal pattern; the trend and the seasonal
components appear fairly constant.

11

ze = Bo + Pt + Z 0;INDy; 4 &4
i=1
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Car sales (1000s)
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Figure: Monthly car sales in Quebec, Canada; January 1960 to December 1968
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Table 43. Analysis of Variance Table—Car Sales (1960-1967; n = 96)

5 . :
.2 2ri
Z, = BO + Bt + }: (B“sm —I%I“I + B,,cOs “-1—2-1') + BZ()COS a7l + g,

(=1

Source SS df

Regression 1671.8 12
trend 517.8 [
Ist harmonic 659.0 2
2nd harmonic 451.4 2
3rd harmonic 17.1 2
4th harmonic 0.8 2
5th harmonic 25.7 2
6th harmonic 0.0 ]

Error 172.9 83

Total (corrected for mean) 18447 95
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Table 4.10. Sums of the Squared One-Step-Ahead
Forecast Errors from the Model

2
vy T Bo + ByJ+ Z (By;sin f.j + Bycos f /) + Enty

i=1
for Various Values of the Smoothing Constant—
Car Sales (n = 96)

o SSE(a)
03 2334
04 233.8
05 234 .4
06 2359
07 238.7
08 242.7
09 247.9
10 2543
15 301.4

20 3747
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| fire 4.10.  Plot of the sum of the squared one-step-ahead forecast errors from the model

2
Zn-fj = 180 + ﬁi] + Z (B[.*'Sinfij + BE:’COS.fJ'j) + ErHj

i=1
| sales,
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Table 4.11. General Exponential Smoothing (a = .03) for the Car Sales Model
2
Zn+‘;’ = IBO + B]] + Z (IBUSinfij + IBZ:‘COSf.*’j) + En+j'
=1
. ) . 3 ) ) é’,___](l)
Time  z, Bo B, By B B B (D) [=z, =, \(l)
0 9.877 088 2.575 —2.665 —2.956 832 6.800
I 6.550 9.950 .088 3.561 —1.034 —2.200 —2.158 7.939 —.250
2 8728 10.082 .088 3.606 929 75 —2.940 11.978 189
3 12.026 10.174 088 2.658 2.610 2934 —.797 15.994 048
95 16.119 17939 081 .764 —3.554 902 3.194 16.140 — 1.753
9¢ 13.713 17.884 079 2.425 —2.831 —3.235 681 14.263 —2427
97 13.210 17904 078 3510 —1.297 —2.216 —2.519 15.435 —1.053
107 17.180 18767 .080 352 —3.551 —1.099 3.143 16568  —14I7
108 14.577 18.735 078 2.070 —3.010 —3.287 S10 14.650 — 1.991
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Example: New Plant and Equipment Expenditures

Consider quarterly new plant and equipment expenditures for the first quarter
of 1964 through the fourth quarter of 1974 (n = 44). The time series plot in
Figure indicate s that the size of the seasonal swings increases with the level
of the series; hence a logarithmic transformation must considered. The next
Figure shows that this transformation has stabilized the variance.

3
2 =Iny, = Bo+ B+ Z 0;INDy; + &¢
i—1
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New plant and equipment expenditures (billion $)
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Figure: Quarterly new plant and equipment expenditure in U.S. industries (in billions
of dollars), first quarter 1 to fourth quarter 1976
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Logarithm of quarterly new plant and equipment expenditures,
frist quarter 1964 to fourth quarter 1976
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Table 4.2. Least Squares Estimation Results— New Plant

and Equipment Expenditures (1964-1974; n = 44)
3

Iny, =B,+ B+ Y 8IND, + ¢

i=1

Standard
Coefficient Estimate Error t Ratio
Bo 2.580 020 128.82
B, 019 00057 33.20
5, — 216 021 —10.45
55 —.081 021 -3.93
d4 —.104 021 —~5.07
ANOVA Table
Source SS df MS
Regression 2.973 4 74
Error 091 39 0023
Total (corrected for mean) 3.063 43
Autocorrelations of the Residuals
Lag k r Lag & ry
1 .84 5 -.02
2 68 6 - .18
3 47 7 ~.33
4 24 8 — .42
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Figure 4.7. Time series plot of the residuals from the model
3
ny, =By + Byt + Y 8IND, + g
I=1

New plant and equipment expenditures.
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Table 4.6. Sums of the Squared One-Step-Ahead

Forecast Errors from the Model
3

Zn+j = In yn+_j - BO + BI] + Z 8:’ IND}':’ + €y +
i=]

for Various Values of the Smoothing Constant a. —

New Plant and Equipment Expenditures (n = 44)

o SSE( «)
10 1114
30 0904
50 0691
70 0540
90 0455
1.10 0421
1.20 0418
1.30 0422

1.50 0445
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Figure 4.9. Plot of the sum of the squared one-step-ahead forecast errors from the model
3

Zn+j = In .Vn+j - BO + Bl.j + Z SJIND}{ + 'En+j

i=1
New plant and equipment expenditures.
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Table 4,7. General Exponential smoothing (o« = 1.20) for the Model”

3
Zn + = In yn+j = B() + BIJ + Z 81’ IND;'J' + En+/
=1

New Plant and Equipment Expenditures

. . ) . ) C[_,_ I(I)
Time z, B B, o 8, d, () [=2z,— ()
0 2.580 019 —-.216 -—.081 —.104 2.384
1 2303 2303 —.005 143 144 272 2.440 — 081
2 2472 2472 004 —.002 A7 —.165 2474 032
3 2.460 2.460 000 A200 — 157 013 2.580 —.015
43 3.340 3.340 029 097  — 100 027 3.466 — 013
44 3.463 3.463 028 —.196  — 069 —.095 3.295 —.003
45 3.251  3.251 015 132 119 227 3.398 —.044
46 3347 3.347 000 —.008 Jd15 0 —.097  3.340 —.050
47 3.325 3.325 —.005 25 —.083 018 3.444 — 018
48 3426 3426 —.010 —206 —.099 —.111 3210 - 019
49 3.253 3.253 .003 102 077 175 3.358 043
50 3.391 3.391 013 —.029 060 —.125 3.375 033
51 3415 3415 025 084  — 113 001 3.524 040
52 3.542  3.541 030 —-.199 —.091 —.097 3.373 018

“Smoothing constant a and initial value B, are determined from the first 44 observations.




Table 4.8. Sample Autocorrelations of the One-Step-Ahead Forecast
Errors from the Model

3
zn-*rj = In .yn-+—j = BO + Bl/ + Z ai IHD}':’ + &
i=1
with Smoothing Constant « = 1.20.— New Plant and Equipment
Expenditures (n = 44)

M-t j'

Lag k r Lag k 7,
i —.02 5 - .18
2 07 6 —.08
3 22 7 —.17
4 —.27 8 —.39
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Table 4.9. Forecasts y(I) = exp[Z,({)} of Original Data y, , ,,—

New Plant and Equipment Expenditures

Time*

' J(D 7D AE) ¥, (4) ¥,

44 27.00 31.53 31.63 35.77 31.92
45 29.90 29.96 33.89 27.41 25.82
46 28.22 31.91 25.82 28.42 28.43
47 31.31 25.33 27.91 27.28 27.79
48 24.78 27.28 26.66 29.49 30.74
49 28.73 28.07 31.06 26.15 25.87
50 29.22 32.33 27.19 31.22 29.70
51 33.92 28.53 32.75 33.55 30.41
aJ 29.17 33.48 34.26 38.90 34.52

=44 corresponds to the fourth quarter of 1964.
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