
4. Stochastic Time Series Model

• In Chapter 2 and 3 we consider forecast models of the form

zt = f(xt;β) + εt

• In these forecasting models it is usually assumed that the error εt are
uncorrelated, which in turn implies that the observations zt are uncorrelated.
However this assumption is rarely met in Practice

• Thus models that capture the correlation structure have to be considered.
Such as AR(P), MA(q), ARMA(p,q) and ARIMA(d,p,q) will be studied in
this chapter.
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4.1 Stochastic Processes

• An observed time series (z1, z2, . . . , zn) can be thought of as a particular
realization of a stochastic process.

• Stochastic processes in general can be described by an n-dimensional
probability distribution p(z1, z2, . . . , zn).

• Assuming joint normality, then there are only n observations but n+(n+1)n/2
unknown parameters. To infer such a general probability structure from just
one realizations of the stochastic process will be impossible.

• Hence Stationary Assumption is used to simplify the probability structure.
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Stationary Stochastic Process

• The joint distribution are stable with respect to time:

p(zt1, . . . , ztm) = p(zt1+k, . . . , ztm+k)

• Autocorrelation Functions (ACF)

– The autocovariances

γk = Cov(zt, zt−k) = E(zt − µ)(zt−k − µ)

– The autocorrelations

ρk =
Cov(zt, zt−k)

[Var(zt) ·Var(zt−k)]
1
2

=
γk

γ0
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• Sample Autocorrelation Function (SACF)

rk =

n∑
t=k+1

(zt − z̄)(zt−k − z̄)

n∑
t=1

(zt − z̄)2
, k = 0, 1, 2, . . .

For uncorrelated observations, the variance of rk is approximately given by

Var(rk) ≈
1
n
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4.2 Stochastic Difference Equation Models

• A time series in which successive values are autocorrelated can be represented
as a linear combination (linear filter) of a sequence of uncorrelated random
variables. The linear filter representation is given by

zt − µ = at + ψ1at−1 + ψ2at−2 + · · · =
∞∑

j=0

ψjat−j, ψ0 = 1.

The random variable {at; t = 0,±1,±2, . . .} are a sequence of uncorrelated
random variable from a fixed distribution with mean E(at) = 0,Var(at) =
E(a2

t ) = σ2, and Cov(at, at−k) = E(akat−k) = 0 for all k 6= 0.

• Ezt = µ, γ0 = E(zt − µ)2 = σ2
∞∑

j=0

ψ2
j ,

γk = E[(zt − µ)(zt−k − µ)] = σ2
∞∑

j=1

ψjψj+k,

ρk =

 ∞∑
j=0

ψjψj+k

 /
∞∑

j=0

ψ2
j . 8



Autoregressive Processes

• First-Order Autoregressive Process (AR(1))

(zt − µ)− φ(zt−1 − µ) = at ⇔ (1− φB)(zt − µ) = at

We have

zt−µ = (1−φB)−1at = (1+φB+φ2B2+ · · ·)at = at+φat−1+φ2at−2+ · · ·

Application of the general results for linear filter lead to

γ0 = σ2
∞∑

j=0

ψ2
j =

∞∑
j=0

φ2j =
σ2

1− φ2

γk = σ2
∞∑

j=0

ψjψj+k = σ2
∞∑

j=0

φjφj+k =
σ2φk

1− φ2
= φkγ0, k = 0, 1, 2, . . .

ρk = φk, k = 0, 1, 2, . . .
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Another approach to get the ACF for AR(1). This approach is more suitable
for high order situations. Without loss of generality, we assume µ = 0 and
zt = φzt−1 + at, then we have

γk = E(ztzt−k) = φE(zt−1zt−k) + E(atzt−k) = φγk−1 + E(atzt−k)

where

k = 0, E(atzt) = E[at(at + φat−1 + φ2at−2 + · · ·)] = σ2

k > 0, E(atzt−k) = 0.

Thus

γ0 = φγ−1 + σ2 = φγ1 + σ2

γk = φγk−1, (k > 1), (γ1 = φγ0)

γ0 = φ2γ0 + σ2 =
σ2

1− γ2
,

γk = φkγ0,

ρk = φk

10



• Second-Order Autoregression Process [AR(2)]

zt = φ1zt−1 + φ2zt−2 + at

(1− φ1B − φ2B
2)zt = at

and

zt =
1

1− φ1B − φ2B2
at = (1 + ψ1B + ψ2B

2 + · · ·)at

The coefficients (ψ1, ψ2, . . .) could be determined as follows:

1 = (1− φ1B − φ2B
2)(1 + ψ1B + ψ2B

2 + · · ·),
B : ψ1 − φ1 = 0 ⇒ ψ1 = φ1;

B2 : ψ2 − φ1ψ2 − φ2ψ1 = 0 ⇒ ψ2 = φ2
1 + ψ2;

B3 : ψ3 − φ1ψ2 − φ2ψ1 = 0 ⇒ ψ3 = φ3
1 + 2φ1φ2;

ψj = φ1ψj−1 + φ2ψj−2, j ≥ 2.
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• Stationarity

AR(p) : (1− φ1B − φ2B
2 − · · · − φpB

p) = (1−G1B) · · · (1−GpB).

The stationarity relates to the conditions: |G−1
i | > 1, i = 1, 2, . . . , p..

Particulary for AR(2), the stationarity corresponds to

φ1 + φ2 < 1, φ2 − φ1 < 1,−1 < φ2 < 1.

• ACF of AR(2)

E(ztzt−k) = φE(zt−1zt−k) + φE(zt−2zt−k) + E(zt−kat).

γ0 = φ1γ1 + φ2γ2 + σ2,

γk = φ1γk−1 + φ2γk−2, k ≥ 1.

ρk = φ1ρk−1 + φ2ρk−2.

(1− ρ1B − ρ2B
2)ρk = 0. k = 1, 2, . . .

•
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Actually the general solution of the difference equation:

(1− φ1B − φ2B
2)ρk = 0

is

ρk =


A1G

k
1 +A2G

k
2 (G1 6= G2),

(A1 +A2k)Gk, (G1 = G2 = G),
{A1 sin(θk) +A2 cos(θk)}(p2 + q2)−k/2, p± qi = G−1

1,2,

θ = arcsin(p2/
√
p2 + q2)

So, when stationary, the correlogram shows damped exponentials/sinusoidal
waves.
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• The general AR(p) model

γ0 = φ1γ1 + · · ·+ φpγp + σ2 =
σ2

1− φ1ρ1 − · · · − φpρp
=

σ2

φ(B)ρ0

γk = φ1γk−1 + · · ·+ φpγk−p, k > 0

ρk = φ1ρk−1 + · · ·+ φpρk−p.

– Letting k = 1, 2, . . . , p, we have the Yule-walker equations:

ρ = Pφ,

P =


1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2
... . . . . . . ... ...

ρp−1 ρp−2 ρp−3 · · · 1


– Moments Methods:

φ = P−1ρ̂
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Partial Autocorrelations

When considering two random variables’ correlation coefficient, it would be fair
if we could get ride of the influence of other random variables related to them.
In the AR(p) model: assuming the stability

zt = φk1zk−1 + φk2zt−2 + · · ·+ φkkzt−k + at ⇒ φzt = at

implies φ(B) has all the roots outside the unit circle. Therefore |φkk| < 1.

This is defined as the partial autocorrelation between zt and zt−k.

• AR(1): zt = φ11zt−1 + at ⇒ φ11 = ρ1.

• AR(2): ρ1 = φ21 + ρ1φ22, ρ2 = ρ1φ21 + φ22 ⇒ φ22 = ρ2−ρ2
1

1−ρ2
1
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• AR(p): Using Yule-walker Equations
ρ1

ρ2
...
ρk

 =


1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2
... ... . . . ...

ρk−1 ρk−2 · · · 1



φk1

φk2
...
φkk



φkk =

∣∣∣∣∣∣∣∣
1 ρ1 · · · ρk−2 ρ1

ρ1 1 · · · ρk−3 ρ2
... ... . . . ... ...

ρk−1 ρk−2 · · · ρ1 ρk

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2
... ... . . . ...

ρk−1 ρk−2 · · · 1

∣∣∣∣∣∣∣∣
−1

• The basic features of AR(p):

– ACF: Combinations of damped exponentials/sinusodal waves;
– PACF: zero for lags larger than p.
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• Sample Partial Autocorrelation Functions (SPAF)

1. Use the sample correlation coefficient rj in place of ρj and solve the
Yule-Walker equation for ρ̂kk. This scheme is impractical if lag k is large.

2. Recursive forms:

φ̂kk =
rk −

k−1∑
j=1

φ̂k−1,jrk−j

1−
k−1∑
j=1

φ̂k−1,jrj

,

φ̂k,j = φ̂k−1,j − φ̂kkφ̂k−1,k−j, j = 1, 2, . . . , k − 1.

3. Standard Errors of φ̂kk

If the data follow an AR(p) process, then for lags greater than p the
variance of φ̂kk can be approximated by

Var(φ̂) ≈ n−1 for k > p.

Approximate standard error for φ̂kk are given by n−1/2.
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Moving Average MA(q) Model

zt − µ = (1− θ1B − θ2B
2 − · · · − θqB

q)at = θ(B)at

• Autocovariances and Autocorrelations

γ0 = (1 + θ21 + · · ·+ θ2q)σ
2

γk = (−θk + θ1θk+1 + · · ·+ θq−kθq)σ2, k = 1, 2, . . . , q

γk = 0, k > q

ρk =
−θk + θ1θk+1 + · · ·+ θq−kθq

1 + θ21 + · · ·+ θ2q
, k = 1, 2, . . . , q

ρk = 0, k > q

• Partial Autocorrelation Function for MA Process

The ACF of a moving average process of order q cuts off after lag q
(ρk = 0, k > q). However, its PACF is infinite in extent (it tails off).

In General, the PACF is dominated by combinations of damped exponentials
and/or damped sine waves.
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• Example: MA(1) Model: zt − µ = at − θat−1

γ0 = (1 + θ2)σ2

γ1 = −θσ2

ρ1 =
−θ

1 + θ2
; (|θ| < 1

2
), ρk = 0, k > 1

Invertibility condition: since both (θ, 1/θ) are roots of the equation

θ2ρ1 + θ + ρ1 = 0,

so we restrict ourselves to the situation with |θ| < 1 so that the model could
invert to the AR from

zt − µ = π1(zt−1 − µ) + π2(zt−2 − µ) + · · ·+ at

where
∑∞

j=1 |πj| < +∞.
For MA(1) Model

πj = −θj, (|θ| < 1), φkk =
−θk(1− θ2)
1− θ2(k+1)

, k > 0.
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Autoregressive Moving Average (ARMA(p,q)) Processes

(1− φ1B − · · ·φpB
p)(zt − µ) = (1− θ1B − · · · − θqB

q)at

or

zt − µ = φ1(zt−1 − µ) + · · ·+ φp(zt−p − µ)

+ at − θ1at−1 − · · · − θqat−q

• k > q − p, ACF dominated by AR part

• k > p− q, PACF dominated by MA part

Summary
The ACF and PACF of a mixed ARMA(p,q) process are both infinite in extent
and tail off (die down) as the lag k increases. Eventually (for k > q − p), the
ACF is determined from the autoregressive part of the model. The PACF is
eventually (for k > p− q) determined from moving average part of model.
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• ARMA(1,1) Process

(1− φB)(zt − µ) = (1− θB)at

– ACF:

γ0 =
1 + θ2 − 2φθ

1− φ2
σ2,

γ1 =
(1− φθ)(φ− θ)

1− φ2
σ2,

ρ1 =
(1− φθ)(φ− θ)
1 + θ2 − 2φθ

ρk = φρk−1, k > 1.

– PACF: φ11 = ρ1, then similar to MA(1)
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4.3 Nonstationary processes

• Nonstationary, Differencing, and Transformations

M1: zt = β0 + β1t+ at

M2: (1−B)zt = β1 + at or zt = Zt−1 + β1 + at.
M3: (1−B)2zt = at or zt = 2zt−1 − zt−2 + at.

• Nonstationary Variance

• Examples: 1. Growth rates. 2. Demand for repair parts.
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An Alternative Argument for Differencing

Let us assume that data zt are described by a nonstationary level

µt = E(zt) = β0 + β1t

and that we wish to entertain an ARMA model for a function of zt that has a
level independent of time.

• Consider the model φp+1(B)zt = θ0 + θ(B)at

• θ0 represent the level of φp+1(B). To achieve a θ0 that is constant,
independent of time,

φp+1(B) = (1−B)φ(B)

and

θ0 = φp+1(B)(β0 + β1t) = φ(B)(1−B)(β0 + β1) = φ(B)β1

33



• If µt = β0 + β1t+ · · ·+ βdt
d, we have to choose the autoregressive operator

in φp+d(B)zt = θ0 + θ(B)at such that

φp+d(B) = (1−B)dφ(B)

and then

θ0 = φp+d(B)(β0 + β1t+ · · ·+ βdt
d)

= φ(B)(1−B)d(β0 + β1t+ · · ·+ βdt
d)

= φ(B)βdd!.
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Autoregressive Integrated Moving Average (ARIMA) Models

• Transform a nonstationary series zt into a stationary one by considering
relevant differences

wt = ∇dzt = (1−B)dzt.

• Then use the ARMA models to describe wt. The corresponding model can
be written as

φ(B)wt = θ0 + θ(B)at

or
φ(B)(1−B)dzt = θ0 + θ(B)at

• ARIMA(p,d,q) The order p, d, q are usually small. The model is called
“integrated”, since zt can be thought of as the summation (integration) of
the stationary series wt. For example, if d = 1

zt = (1−B)−1wt =
t∑

k=−∞

wk
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Choice of the proper degree of differencing

• Plot of the series

• Examination of the SACF
A stationary AR(p) process requires that all Gi in

(1− φ1B − · · · − φpB
p) = (1−G1B) · · · (1−GpB)

are such that |Gi| < 1 (i = 1, 2, . . . , p), Now assume one of them, say G1,
approaches 1, that is G1 = 1− δ, where δ is a small positive number. Then
the autocorrelations

ρk = A1G
k
1 + · · ·+ApG

k
p
∼= A1G

k
1.

So the exponential decay will be show and almost linear [i.e. A1G
k
1 =

A1(1− δ)k ∼= A1(1− δk)]
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• Consider the ARMA(1,1) model

(1− φB)zt = (1− θB)at

The ACF of this process is given by

ρ1 =
(1− φθ)(φ− θ)
1 + θ2 − 2φθ

ρk = φkρ1

• If we let φ→ 1, then ρk → 1 for any finite k > 0. Again the autocorrelation
decay very slowly when φ is near 1.

• It should be pointed out that the slow decay in the SACF can start at values
of r1 considerably smaller that 1.

37



Dangers of Overdifferencing:

Although further differences of a stationary series will again be stationary,
overdifferencing can lead to serious difficulties.

• Effect of overdifferencing on the autocorrelation structure.

– Consider the stationary MA(1) process zt = (1− θB)at.
The autocorrelation function of this process is given by

ρk =
{ −θ

1+θ2, k = 1
0, k > 1

– The first difference of the process is

(1−B)zt = (1− (1 + θ)B + θB2)at

– and the autocorrelation of this difference is given by

ρk =


−(1+θ)2

2(1+θ+θ2)
, k = 1

−θ2

2(1+θ+θ2)
, k = 2

0, k > 2 38



• Effect of overdifferencing on variance.

– Consider the same MA(1) process. Its variance is given by

γ0(z) = (1 + θ)2σ2

– The variance of the overdifferenced series wt = (1 − B)zt, which follows
an MA(2) process, is given by

γ0(w) = 2(1 + θ + θ2)σ2

– Hence
γ0(w)− γ0(z) = (1 + θ2)σ2 > 0
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• Considered the stationary process AR(1) process (1 − φB)zt = at with
variance

γ0 =
σ2

1− φ2

• The first difference wt follows the ARMA(1,1) process (1 − φB)wt = (1 −
B)at. The variance of this process is given by

γ0(w) =
2(1− φ)σ2

1− φ2

• and

γ0(w)− γ0(z) =
(1− 2φ)σ2

1− φ2

Hence when φ < 1
2, overdifferencing will increasing the variance.

40



Regression and ARIMA Models

• ARIMA(0,1,1) model (1−B)zt = (1− θB)at

– Since ψ(B) = (1− θB)/(1−B) = 1+(1− θ)B+(1− θ)B2 + · · ·, we can
related the variable zt+l at time t+ l to a fixed origin t and express it as

zt+l = β
(t)
0 + et(l)

– where et(l) = at+l+(1−θ)[at+l−1+· · ·+at+1] is a function of the random

shocks that enter the system after time t, and β
(t)
0 = (1 − θ)

∑t
j=−∞ aj

depends on all the shock (observations) up to and including time t.

– The level β
(t)
0 can be updated according to

β
(t+1)
0 = β

(t)
0 + (1− θ)at+1

– In the special case when θ = 1, et(l) = at+l and β
(l+1)
0 = β

(t)
0 = β0. In this

case, the model is equivalent to the constant mean model zt+l = β0+at+l.
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• ARIMA(0,2,2) model (1−B)2zt+l = (1− θ1B − θ2B
2)at+l

– Using an argument similar to that followed for ARIMA(0,1,1) model, the
ARIMA(0,2,2) can be written as

zt+l = β
(t)
0 + β

(t)
1 l + et(l)

where et(l) are correlated and given by

et(l) = at+l + ψ1at+l−1 + · · ·+ ψl−1at+1

– where the ψ weights may be obtained from

(1 + ψ1B + ψ2B
2 + · · ·)(1−B)2 = 1− θ1B − θ2B

2

These ψ weights can be given as ψj = (1 + θ2) + j(1− θ1 − θ2), j ≥ 1.
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– Furthermore, the trend parameter β
(t)
0 and β

(t)
1 adapt with time according

to

β
(t+1)
0 = β

(t)
0 + β

(t)
1 + (1 + θ2)at+1

β
(t+1)
1 = β

(t)
1 + (1− θ1 − θ2)at+1

– Again the model above can be thought of as a generalization of the
deterministic trend regression model

zt+l = β0 + β1l + at+l

– In the special case when θ1 → 2 and θ2 → −1, the two models above are
equivalent
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4.4 Forecasting

• ARIMA model φ(B)(1−B)dzt = θ(B)at

• Autoregressive representation

zt = π1zt−1 + π2zt−2 + · · ·+ at

where the π weights are given by

1− πB − πB2 − · · · = φ(B)(1−B)d

θ(B)

• l-step forecast
zl = η0zn + η1zn−1 + η2zn−2 + · · ·

or
zl = ξ0an + ξ1an−1 + ξ2an−2 + · · ·
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Minimum mean square error (MMSE) forecasts: The mean square error
E[zn+l − zn(l)]2 is minimized.

• Using the ψ weights in ψ(B) = θ(B)φ−1(B)(1 − B)−d to write the model
in its linear filter representation

zn+l = an+l + ψ1an+l−1 + · · ·+ ψl−1an+1 + ψlan + ψl+1an−1 + · · ·

• Then the mean square error is expressed as

E[zn+l − zn(l)] = E[an+l + an+l−1 + · · ·+ ψl−1an+1 + (ψl − ξ0)an

+(ψl+1 − ξ1)an−1 + · · ·]2

= (1 + ψ2
1 + · · ·+ ψ2

l−1)σ
2 +

∞∑
j=0

(ψl+j − ξj)2σ2.
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• The minimum mean square error (MMSE) forecast

zn(l) = ψlan + ψl+1an−1 + · · ·

• The forecast error is given by

en(l) = zn+l − zn(l) = an+l + ψ1an+l−1 + · · ·+ ψl−1an+1

and its variance by

Var[en(l)] = σ2(1 + ψ2
1 + ψ2

2 + · · ·+ ψ2
l−1)

•
E(an+j|zn, zn−1, . . .) =

{
an+j j ≤ 0
0 j > 0

Hence

E(zn+l|zn, zn−1, . . .) = E[(an+l + ψ1an+l−1 + · · ·+ ψl−1an+1

+ψlan + ψl+1an−1 + · · ·)|zn, zn−1, . . .]

= ψlan + ψl+1an−1 + · · · 48



Examples:

• AR(1) process: zt − µ = φ(zt−1 − µ) + at

• AR(2) process: zt = φ1zt−1 + φ2zt−2 + at

• ARIMA(0,1,1) process: zt = zt−1 + at − θat−1

• ARIMA(1,1,1) process: (1− φB)(1−B)zt = θ0 + (1− θB)at or

zt = θ0 + (1 + φ)zt−1 − φzt−2 + at − θat−1

• ARIMA(0,2,2) process: (1−B)2zt = (1− θ1B − θ2B
2)at or

zt = 2zt−1 − zt−2 + at − θ1at−1 − θ2at−2
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Prediction Limits

• It is usually not sufficient to calculate point forecast alone. The uncertainty
associated with a forecast should be expressed, and the prediction limits
should always be computed.

• It is possible, but not very easy, to calculate a simultaneous “prediction
region” for a set of future observations. Therefore, we give probability limits
only for individual forecasts.

• Assuming that at’s (and hence the z’s) are normally distributed, we can
calculate 100(1− λ) percent prediction limits form

zn(l)± uλ/2{V (en(l))}1/2

where uλ/2 is the 100(1 − λ/2) percentage point of standard normal
distribution.
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• Because zn(l) and V (en(l)) are unknown exactly, and need estimate. Hence
the estimated prediction limits are given by

ẑn(l)± uλ/2{V̂ (en(l))}1/2

• Consider AR(1) process for Yield data, we found ẑ156(1) = 0.56, ẑ156(2) =
0.62, ẑ156(3) = 0.68, V̂ [e156(1)] = 0.024, V̂ [e156(2)] = 0.041, V̂ [e156(1)] =
0.054. Thus the 95 percent prediction limits for z156+l, l = 1, 2, 3 are given
by

z157 : ẑ156(1)± 1.96{V̂ [e156(1)]}1/2 = .56± 1.96(.15) = .56± .29

z158 : ẑ156(2)± 1.96{V̂ [e156(2)]}1/2 = .62± 1.96(.20) = .62± .39

z159 : ẑ156(3)± 1.96{V̂ [e156(3)]}1/2 = .68± 1.96(.23) = .68± .45
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Forecast Updating

• Suppose we are at time n and we are predicting l + 1 steps ahead. The
forecast is given by

zn(l + 1) = ψl+1an + ψl+2an−1 + · · ·

• After zn+1 has become available, we need to update our prediction of zn+l+1.
On the other hand zn+1(l) can be written as

zn+l = ψlan+1 + ψl+1an + ψl+2an−1 + · · ·

• we find that

zn+1(l) = zn(l + 1) + ψlan+1 = zn(l + 1) + ψl(zn+1 − zn(l))

• The updated forecast is a linear combination of the previous forecast of
zn+l+1 made at time n and the most recent one-step-ahead forecast error
en(l) = zn+1 − zn(l) = an+1.
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Use Yield data example as shown as before. We already obtained the forecast
for z157, z158, z159 from time origin n = 156. Suppose now that z157 = 0.74 is
observed and we need to update the forecasts for z158 and z159.

• Since the model under consideration is AR(1) with the parameter estimate
φ̂ = 0.85, the estimated ψ weights are given by ψ̂j = φ̂j = 0.85j.

• Then the updated forecasts are given by

z158 : ẑ156(2) + ψ̂1[z157 − ẑ156(1)] = 0.62 + 0.85(0.74− 0.56) = 0.77

z159 : ẑ156(3) + ψ̂2[z157 − ẑ156(1)] = 0.62 + 0.852(0.74− 0.56) = 0.81

• The updated 95 percent prediction limits for z158 and z159 become

z158 : ẑ157(1)± 1.96{V̂ [e157(1)]}1/2 = .77± .29

z159 : ẑ157(2)± 1.96{V̂ [e157(2)]}1/2 = .81± .39
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4.5 Model Specification

Step 1. Variance-stabilizing transformations. If the variance of the series changes
with the level, then a logarithmic transformation will often stabilize the
variance. If the logarithmic transformation still not stabilize the variance, a
more general approach and employ the class of power transformations can
be adopted.

Step 2. Degree of differencing. If the series or its appropriate transformation is not
mean stationary, then the proper degree of differencing has to determined.
For the series and its differences, we can examine

1. Plots of the time series
2. Plot of the SACF
3. Sample variances of the successive differences
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Step 3. Specification of p and q. Once we obtain a stationary difference we
must specify the orders of the autoregressive (p) and moving average (q)
polynomials. The orders can be specified by matching the patterns in
the sample autocorrelations and partial autocorrelations with the theoretical
patterns of known models (See Table 5.3).

Step 4. Inclusion of a trend parameter. If the series requires differencing, we
should check whether it is necessary to include a deterministic trend θ0 in
the model. This can be done by comparing the sample mean w̄ of the
stationary difference with its standard error s(w̄). This standard error can be
approximated by

s(w̄) ∼=
[c0
n

(1 + 2r1 + 2r2 + · · ·+ 2rk)
]1/2

where c0 is the sample variance and r1, · · · , rk are the first K significant
sample autocorrelations of the stationary differences. This approximation is
appropriate only if s(w̄) > 0.
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4.6∗ Model Estiamtion

After specifying the form of the model, it is necessary to estimate its parameters.
Let (z1, z2, . . . , zN) represent the vector of the original observations and w =
(w1, . . . , wn)′ the vector of the n = N − d stationary differences.

Maximum Likelihood Estimates

• The ARIMA model can be written as

at = θ1at−1 + · · ·+ θqat−q + wt − φ1wt−1 − · · · − φpwt−p

• The joint probability density function of a = (a1, a2, . . . , an)′ is given by

p(a|φ, θ, σ2) = (2πσ2)−n/2 exp

[
− 1

2σ2

n∑
t=1

a2
t

]
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• The joint probability density function of w can be written down, at least in
principle. It is of the form

L(φ, θ, σ2|w) = g1(φ, θ, σ2) exp
[
− 1

2σ2
S(φ, θ)

]

where g1 is a function of the parameter (φ, θ, σ2) and

S(φ, θ) =
n∑

t=1−p−q

E2(ut|w)

E(ut|w) = E(ut|w, φ, θ, σ2) is the conditional expectation of ut given w, φ, θ
and σ2, and

ut =
{
at, t = 1, 2, . . . , n
g2(a∗,w∗), t ≤ 0

where g2 is a linear function of the initial unobservable values a∗ =
(a1−q, . . . , a−1, a0)′ and w∗ = (w1−p, . . . , w−1, w0)′.
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Exact likelihood function for three important models

1. AR(1): at = wt − φwt−1

L(φ, σ2|w) = (2πσ2)−n/2(1− φ2)1/2

× exp

{
− 1

2σ2

[
(1− φ2)w2

1 +
n∑

t=2

(wt − φwt−1)2
]}

2. MA(1): at = θat−1 + wt

L(θ, σ2|w) = (2πσ2)−n/2

[
1− θ2

1− θ2(n+1)

]1/2

exp

[
− 1

2σ2

n∑
t=0

E2(at|w)

]

3. ARMA(1,1): at = θat−1 + wt − φwt−1

L(φ, θ, σ2|w) = (2φσ2)−n/2|Z′Z|−1/2 exp
[
− 1

2σ2
S(φ, θ)

]
where |Z′Z| = (1− θ2)(1− φ2) + (1− θ2n)(θ − φ)2

(1− θ2)(1− φ2)
and

S(φ, θ) = E2(a0|w) +
1− φ2

(θ − φ)2
[E(w0|w)− E(a0|w)]2 +

n∑
t=1

E2(at|w) 59



Maximum likelihood Estimate (MLE) of parameters (φ, θ, σ2) for the
ARIMA model can be obtained by maximizing the likelihood function. In
general, closed-form solutions cannot be found. However, various algorithms
are available to compute the MLE’s or close approximations.

1. AR(1): Difficult to get closed-form solution, and iterative methods have to
be employed.

2. MA(1): Need to calculate E(at|w), t = 1, 2, . . . , n. These can be calculated
using the recurrence relation

E(at|w) = θE(at−1|w) + wt, t = 1, 2, . . . , n

provide E(a0|w). The difficulties of obtaining the MLE are thus twofold: (1)
Calculate E(a0|w) and (2) the likelihood function is a complicated function
of θ.

3. ARMA(1,1) Similar as MA(1), to calculate the likelihood function, we need
E(a0|w) and E(w0|w). From these we can calculate

E(at|w) = θE(at−1|w) + wt − φE(wt−1|w)

Apart from the difficulties of obtaining these initial expectations, we face
complicated maximization problem.
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In summary, there are two major difficulties with maximum likelihood
estimation approach.

1. The present of the function g1(φ, θ, σ2) in likelihood function makes the
maximization difficult.

2. This approach requires the calculation of the conditional expectations
E(u∗|w), where u∗ = (u1−p−q, . . . , u−1, u0)′. This in turn requires the
calculation of

E(at|w), t = 1− q, . . . ,−1, 0 and E(wt|w), t = 1− p, . . . ,−1, 0
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Unconditional Least Squares Estimates

Many approximations have been considered in the literature to ease these
difficulties. A common approximation is to ignore the function g1(φ, θ, σ2)
and maximize exp[−(1/2σ2)S(φ, θ)], or equivalently, minimize S(φ, θ). The
resulting estimates are called least squares estimates (LSE).

• This approximation is satisfactory if the parameters are not close to the
invertibility boundaries. In this case it can be shown that the likelihood
function is dominated by the exponential part and the removal of g1 has only
negligible effect.

• Even in the minimization of S(φ, θ) there are two major difficulties.

1. the evaluation of initial expectations as shown before.
2. S(φ, θ) can be a complicated (not necessarily quadratic) function of the

parameters.
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Evaluation of the Initial Expectation
There are two methods available for the evaluation of E(ut|w)(t ≤ 0), the
method of least squares and backforecasting.

Method of least squares.

For the ARMA(1,1) model, it is true in general that E(u∗|w) = û∗ where û∗
is the least squares estimator of u∗ in

Lw = −Zu∗ + u

where L and Z are (n+ p+ q)×n and (n+ p+ q)× (p+ q) matrices involving
the parameters φ and θ (For detail See Appendix 5 in the textbook).

For given values of (φ, θ), we can calculate û∗, and hence S(φ, θ). Then we
can search for a minimum value of S(φ, θ) in the space of (φ, θ)
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Method of backforecasting.

• The MMSE forecast of zn+l made at time n is given by the conditional
expectation E(zn+l|zn, zn−1, . . .). This result may be used to compute
the unknown quantities E(at|w)(t = 1 − q, . . . ,−1, 0) and E(wt|w)(t =
1− p, . . . ,−1, 0).

• The MMSE forecast of at and wt(t ≤ 0) can be found by considering the
“backward” model

et = θ1et+1 + θ2et+2 + · · ·+ θqet+q + wt − φ1wt+1 − · · ·φpwt+p.

The ACF of this backward model is same as the original model. Furthermore,
et is a white-noise sequence with Var(et) = σ2.

• This method of evaluating E(at|w) and E(wt|w) is called backforecasting
(or backcasting).
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The method of backforecasting with a simple MA(1) process at =
θat−1 + wt

• This process can be expressed in the backward form as

et = θet+1 + wt

• When the process is going backwards, then e0, e−1, . . . are random shocks
that are “future” to the observations wn, wn−1, . . . , w1. Hence,

E(et|w) = 0, t ≤ 0

• Furthermore, since the MA(1) process has a memory of only one period, the
correlation between a−1 and w1, w2, . . . , wn is zero, and

E(at|w) = 0, t ≤ −1
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• It is easily seen that

E(wi|w) = wi, i = 1, 2, . . . , n

• However the computation of E(w0|w) is different.

E(e0|w) = θE(e1|w) + E(w0|w) ⇒ E(w0|w) = −θE(e1|w)

since E(e0|w) = 0.

• Start at the end of series and assume that E(en+1|w) = 0, under this
assumption

E(en|w) = θE(en+1|w) + wn

E(en−1|w) = θE(en|w) + wn−1

...

E(e1|w) = θE(e2|w) + w1
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• with the value of E(w0|w), same as before we can compute E(at|w)(t =
1, 2, . . . , n)

E(a0|w) = θE(a−1|w) + E(w0|w)

E(a1|w) = θE(a0|w) + w1

...

E(an|w) = θE(an−1|w) + wn

• The sum of squares S(θ) for any θ can be obtained by

S(θ) =
n∑

t=0

E2(at|w),

and its minimum can be found.
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Conditional Least Squares Estimates

Computationally simpler estimates can be obtained by minimizing the

conditional sum of squares Sc(φ, θ) =
n∑

t=p+1
a2

t , where the starting values

ap, ap−1, . . . , ap+1−q in the calculation of the appropriate at’s are set equal
to zero. The resulting estimates are called conditional least squares
estimates (CLSE).
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• In the AR(p) case, the CLSE is obtained by minimizing

Sc(φ) =
n∑

t=p+1

a2
t =

n∑
t=p+1

(wt − φ1wt−1 − · · · − · · · − φpwt−p)2

which leads to the least square estimate

φ̂c = (X ′X)−1X ′y

where
y = (wp+1, wp+2, . . . , wn)′

and

X =


wp wp−1 · · · w1

wp+1 wp · · · w2
... ... ...

wn−1 wn−2 · · · wn−p


• The special case of AR(1) process
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Nonlinear Estimation

If the model contains moving average terms, then the conditional and
unconditional sums of squares are not quadratic functions of the parameters
(φ, θ). This is because E(ut|w) in S(φ, θ) is nonlinear in the parameters. Hence
nonlinear least squares procedures must be used to minimize S(φ, θ) or Sc(φ, θ).

The nonlinear estimation procedure and drive the unconditional least
squares estimates of the parameters in the ARMA(1,1) model

at = θat−1 + wt − φwt−1
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Step 1. Computation at the starting point. For given w and a starting
point(φ, θ) = (φ0, θ0), using backforecasting or the method of least squares, we
can get

û−10 = E(a0|w, φ0, θ0)

and

û00 =
(1− φ0)1/2

θ0 − φ0
[E(w0|w, φ0, θ0)− E(a0|w, φ0, θ0)]

The remaining elements in û0 = (û−10, û00, û10, . . . , ûn0)′ can be obtained from
ût0 = E(at|w, φ0, θ0) for t = 1, 2, . . . , n.

Step 2. Linearization. Regard ût = E(at|w, φ, θ)(t = −1, 0, 1, · · · , n) a
s a function of β = (φ, θ)′ and linearize this function at the starting point
β0 = (φ0, θ0)′ in a first-order Taylor series expansion:

ût
∼= ût0 + (φ− φ0)

∂ût

∂φ

∣∣∣∣∣
β=β0

+ (θ − θ0)
∂ût

∂θ

∣∣∣∣∣
β=β0

= ût0 − x1,t(φ− φ0)− x2,t(θ − θ0)

where
x1,t = −∂ût

∂φ

∣∣∣∣∣
β=β0

and x2,t =
∂ût

∂θ

∣∣∣∣∣
β=β0
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So we have

ût0 = (x1,t, x2,t)
[
φ− φ0

θ − θ0

]
+ ût

Considering this equation for t = −1, 0, . . . , n, we obtain

û0 = X(β − β0) + û

where û = (û−1, û0, . . . , ûn)′ and

X =


x1,−1 x2,−1

x1,0 x2,0
... ...

x1,n x2,n



The least squares estimate of δ = β − β0 may be obtained from δ̂ =
(X ′X)−1X ′û0. Hence we obtain a modified estimator of β as

β̂1 = β0 + δ̂
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Step 3. Repeat step 1 and step 2 with β̂1 as the new point of expansion in the
Taylor series and continue the process until convergence occurs. Convergence
is usually determined by one of the following criteria:

1. The relative change in the sum of squares
∑n

t=−1 û
2
t from two consecutive

iteration is less than a prespecified small value.

2. The largest relative change in the parameter estimate of two consecutive
iterations is less than a prespecified small value.

When convergence occurs, we have an estimate β̂ based on local linear least
squares, and this will be taken as the unconditional least squares estimate of β̂.
The conditional least squares estimate can be obtained in a similar fashion by
replacing the vector û by a = (a2, a3, . . . , an) and setting a1 = 0.
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Standard Errors of the Estimates

Var(β̂) = σ̂2(X ′
β̂
X β̂)−1

where the estimate of σ2 is given by

σ̂2 =
S(φ̂, θ̂)
n

Possible Difficulties in Nonlinear Estimation

• In some cases the convergence to the final estimates can be rather slow. This
can be due to poorly chosen Starting values of β0 or to misspecified models
with too many parameters.

• In some rare case the likelihood function can have more than one maximum,
and the estimates can converge to a local maximum rather than a global
one.
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4.7 Model Checking

• Analysis of residuals ât

1. the mean of the residuals should be close to zero,
2. the variance of the residuals should be approximately constant,
3. the autocorrelation of the residuals should be negligible.

• The sample autocorrelation of the residual

râ(k) =

n∑
t=k+1

(ât − ¯̂a)(ât−k − ¯̂a)

n∑
t=1

(ât − ¯̂a)2

The standard error of râ(k) is usually approximated as

s[râ(k)] ∼= n−1/2
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• For small k, the true standard error can be much smaller. In general, the
true standard error depend on

1. the form of the fitted model,
2. the true parameter values,
3. the value of k
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Portmanteau Test

• Under null hypothesis of model adequacy, the large-sample distribution of râ

is multivariate normal and that

Q∗ = n
K∑

k=1

r2â(k)

has a large-sample chi-square distribution with K−p− q degrees of freedom.

• For small sample size, this test is quite conservative; that is, the chance of
incorrectly rejecting the null hypothesis of model adequacy is smaller than
the chosen significance level. The modified test statistics is

Q = n(n+ 2)
K∑

k=1

r2â(k)
n− k
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4.8 Examples

Yield data
This series consists of monthly differences between the yield on mortgages
and the yield on government loans in the Netherlands from January 1961 to
December 1973. The observations for January to March 1974 are also available,
but they are held back to illustrating the forecasting and updating.

• Figures: Time series plot and SACF

• AR(1) model
zt − µ = φ(zt−1 − µ) + at

The maximum likelihood estimates are

µ̂ = 0.97(0.08), φ̂ = 0.85(0.04), σ̂2 = 0.024
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• SACF of the residuals

• the Q statistics. Suppose take K = 24. Then

Q = 156×158
(

(.09)2

155
+

(−.10)2

154
+ · · ·+ (.06)2

132

)
= 22.4 < χ2

0.05(22) = 33.9
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Forecasting

• ẑ156(1) = µ̂+ φ̂(z156 − µ̂) = .97 + .85(.49− .97) = .56

Prediction limits

ẑ156(1)± 1.96σ̂ = 0.56± 1.96(.024)1/2 = 0.56± 0.29

• ẑ156(2) = µ̂+ φ̂2(z156 − µ̂) = .97 + .852(.49− .97) = .62

Prediction limits

ẑ156(2)± 1.96σ̂(1 + ψ̂2
1)

1/2 = 0.62± 1.96(.024)1/2(1 + .852)1/2 = 0.62± 0.39

• ẑ156(3) = µ̂+ φ̂3(z156 − µ̂) = .97 + .853(.49− .97) = .68

Prediction limits

ẑ156(3)± 1.96σ̂(1 + ψ̂2
1 + ψ̂2

2)
1/2 = 0.68± 1.96(.024)1/2(1 + .852 + .854)1/2

= 0.68± 0.45
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Suppose z157 = 0.74 has now become available. Forecasts for z158 and z159
are updated according to

• z158 : ẑ157(1) = ẑ156(2) + ψ̂1[z157 − ẑ156(1)] = 0.62 + .85(.74− .56) = .77

• z159 : ẑ157(2) = ẑ156(3) + ψ̂2[z157 − ẑ156(1)] = 0.62 + .852(.74− .56) = .81

• The prediction interval for z158 interval for z158 is 0.77± 0.29, and that for
z159 is 0.81± 0.39.
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Growth Rates

• Quarterly growth of Iowa nonfarm income from the second quarter of 1948
to the fourth quarter of 1978 (N = 123) are shown in Figure 5.8a

• The plot of the series indicates that no variance-stabilizing transformation is
necessary.

• zt is nonstationary and the first difference ∇zt should be analyzed. The
second difference is also stationary but would lead to overdifferencing.
This is also indicated by the increase in the sample variance [s2(∇zt) =
1.58, s2(∇2zt) = 4.82].

• The SACF of ∇zt in Figure 5.11b indicates a cutoff after lag 1. The SPACF
in Figure 5.15 shows a rough exponential decay. These patterns lead us to
consider the model

∇zt = θ0 + (1− θB)at
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• The ML estimates and their standard errors are

θ̂0 = 0.012(.008), θ̂ = 0.92(.04), σ̂2 = 0.93

• Dropping the insignificant θ0 from the model and reestimating the parameters
leads to

θ̂ = 0.88(.04) σ̂2 = 0.95

• The estimated residual autocorrelations together with their probability limits
are present in Figure 5.16. Q statistic based on the first K = 24
autocorrelations (n = 123− 1 = 122)

Q = 122×124
(

(−.01)2

121
+

(.08)2

120
+ · · ·+ (−.09)2

98

)
= 20.5 < χ2

0.05(23) = 35.2

Hence we take
zt = zt−1 + at − 0.88at−1

as the forecasting model. 86
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Foreasting

• The predictions ẑ123(`) are described below

ẑ123(`) = ẑ123(1) = z123 − θâ123 = 3.38− .88(.718) = 2.75

Note that â123 = .718 is the last residual.

• The estimated variance of the `-step-ahead forecast error is

V̂ [e123(`)] = [1 + (`− 1)(1− θ̂)2]σ̂2 = [1 + (`− 1)(1− 0.88)2](.95)

• after a new observation z124 = 1.55 has become available, update the forecast

ẑ124(`) = ẑ123(`+1)+ψ̂`[z124− ẑ123] = 2.75+(1−0.88)(1.55−2.75) = 2.61

Furthermore, after z125 = 2.93 has become available,

ẑ125(`) = ẑ124(`+1)+ψ̂`[z125− ẑ124] = 2.61+(1−0.88)(2.93−2.61) = 2.65
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Demand for Pepair Parts This series consists of the monthly demand for
repair parts for a large Midwestern production company from January 1972 to
June 1979 (N = 90). The series is shown in Figure 5.9a.

• A logarithmic transformation need to stabilize the variance and that first
differences ∇lnZt are stationary. Further differencing is not necessary since
it results in an increase in the sample variance [s2(∇zt) = .034, s2(∇2lnzt) =
.099]

• The sample autocorrelation and partial autocorrelation are shown in Figure
5.12b and 5.17. They indicate a cutoff in the SACF after lag 1 and a rough
exponential decay in the SPACF. Thus we consider the ARIMA(0,1,1) model

(1−B)yt = (1− θB)at

where yt = ln zt. The ML estiamtes are

θ̂ = 0.57(.09), σ̂2 = 0.27
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• A constant θ0 was originally included in the model, but it was found to
be insignificant. The estimated residual autocorrelations , together with
their probability limits are shown in Figure 5.18. All autocorrelation except
râ(12) are small. The large autocorrelation râ(12) could be due to “seasonal
variation” in the data

• The Q statistic based on the first 24 autocorrelation is given by Q = 37 and
is slightly bigger than χ2

0.05(23) = 35.2. This is due mainly to one large
autocorrelation at lag 12.

• It may need to Consider a modification that takes account of the seasonal
component.
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Forecasting

• The forecasting model is given in terms of the transformed yt = ln zt. The
MMSE forecasts ŷ(`) and the associated prediction interval c1, c2 for yn+`

can be derive as usual.

• However, to derive the forecasts of original observation zn+` = exp(yn+`),
we have to back transform the forecasts and the prediction interval. They
are given by

ẑn(`) = exp[ŷn(`)] and [exp(c1), exp(c2)]

• The forecasts of the transformed series yn+` are MMSE forecasts. However if
the transformation is nonlinear, as in the case the logarithmic transformation,
the MMSE will not preserved for ẑn(`) = exp[ŷn(`)].

• Nevertheless, the forecast ẑn(`) will be the median of the predictive
distribution of zn+`.
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• For the present example, the prediction ŷ90(`) and the corresponding 95
percent prediction limits are given by

ŷ90(`) = ŷ90(1) = y90 − θ̂â90 = 7.864− .57(.234) = 7.731

and

ŷ90(`)±1.96[1+(`−1)(1−θ̂)2]1/2σ̂ = 7.731±1.96[1+(`−1)(1−.57)2]1/2(.027)1/2.

• Forecasts and 95 percent prediction interval s for y91, y92 and z91, z92 are
given in Table 5.6.

• The prediction intervals are quite large. This is due partially to the large
uncertainty (σ̂2) in the past data and partly to the unexplained correlation
at lag 12.
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