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Nonparametric Transition-Based Tests
for Jump Diffusions
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We develop a specification test for the transition density of a discretely sampled continuous-time jump-diffusion process, based on a
comparison of a nonparametric estimate of the transition density or distribution function with their corresponding parametric counterparts
assumed by the null hypothesis. As a special case, our method applies to pure diffusions. We provide a direct comparison of the two densities
for an arbitrary specification of the null parametric model using three different discrepancy measures between the null and alternative
transition density and distribution functions. We establish the asymptotic null distributions of proposed test statistics and compute their
power functions. We investigate the finite-sample properties through simulations and compare them with those of other tests. This article
has supplementary material online.
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1. INTRODUCTION

Consider a given parameterization for a jump diffusion de-
fined on a probability space (�,�,P)

dXt = μ(Xt−, θ)dt + σ(Xt−, θ)dWt + Jt− dNt, (1.1)

where Wt is a Brownian motion, Nt is a Poisson process with
stochastic intensity λ(Xt−; θ) and jump size 1, and Jt−, the
jump size, is a random variable with density ν(·;Xt−, θ). These
dynamics are parameterized by a vector θ ∈ �, where � is a
compact subset of R

K . We are interested in testing the joint
parametric family

P ≡ {(
μ(·, θ), σ 2(·, θ), λ(·, θ), ν(·; ·, θ)

)|θ ∈ �
}
, (1.2)

where � is a compact subset of R
K .

The parametric family of models (1.1) provides explana-
tory power for understanding the underlying dynamics. A tra-
ditional parametric testing approach involves embedding the
model (1.1) into a larger family of parametric models and us-
ing this new family as the alternative model. The question is
then whether the larger family is wide enough to capture the
true underlying dynamics. This leads us naturally to consider a
nonparametric model as an alternative:

dXt = μ(Xt−)dt + σ(Xt−)dWt + Jt− dNt, (1.3)

where the intensity of N and density of J also are nonparamet-
ric, λ(Xt−) and ν(·;Xt−).

If we believe that the true process is a jump diffusion with
local characteristics (μ,σ 2, λ, ν), then a specification test asks
whether there are values of the parameters in � for which the
parametric model P is an acceptable representation of the true
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process—that is, do the functions (μ,σ 2, λ, ν) belong to the
parametric family P ? Direct estimation of the local character-
istics of the process with discrete data is problematic and can
sometimes lead to inconsistent estimates. In contrast, every pa-
rameterization P corresponds to a parameterization of the mar-
ginal π and transition densities p of the process X:
{
(π(·, θ),p(·|·, θ))|

(
μ(·, θ), σ 2(·, θ), λ(·, θ), ν(·; ·, θ)

) ∈ P , θ ∈ �
}
. (1.4)

Whereas estimation of the densities explicitly takes into ac-
count the discreteness of the data, the main problem with test-
ing the model (1.1) through (1.4) is that parametric expressions
for the transition densities under the null model generally are
unknown in closed form.

In this article we exploit recent developments in the field
to develop a specification test for the transition density of the
process, based on a direct comparison of a nonparametric esti-
mate of the transition function and a closed-form expansion of
the parametric transition density. The null and alternative hy-
potheses are then of the form

H0 : p(y|x) = p(y|x, θ) vs.
(1.5)

H1 : p(y|x) �= p(y|x, θ).

Here we directly compare the parametrically and nonparamet-
rically estimated transition densities and distributions. By fo-
cusing directly on the transition density p, we concentrate on
an object that plays a central role in financial statistics in appli-
cations as diverse as prediction, derivative pricing or pricing of
kernels (after possibly a change of measure), risk management
(through the magnitude of the tails of p), and portfolio choice
(through the definition of the investment opportunity set).

Testing the specification of continuous-time models has been
an active area of research in recent years, although the litera-
ture has focused on the purely diffusive case, thereby excluding
jumps, and on univariate models. Aït-Sahalia (1996) proposed
two tests for pure diffusions, one based on the marginal density
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π and the other based on the transition density p, and derived
their asymptotic distributions. The basic idea of these tests is
to use the mapping between the drift and diffusion on the one
hand, and the marginal and transitional densities on the other
hand, to test the model’s specification using densities at the
observed discrete frequency instead of the infinitesimal char-
acteristics of the process (μ,σ 2). Chen and Gao (2007) and
Thompson (2008) proposed tests based on the empirical likeli-
hood method. Chen, Gao, and Tang (2008) applied an integrated
empirical likelihood method, addressed the issue of bandwidth
selection, and derived the asymptotic null distribution. Fan and
Zhang (2003) restricted the alternative models to the class of
nonparametric univariate pure diffusion models (1.3) and tested
the drift and diffusion functions separately. Other contributions
in closely related topics include those of Andrews (1997), Wang
(2002), Altissimo and Mele (2009), and Li and Tkacz (2006).

Related to the present article is the approach proposed by
Hong and Li (2005) in the case of univariate diffusions. Those
authors made use of the fact that under the null hypothesis,
the random variables {P(Xi|Xi−	, θ)} are a sequence of i.i.d.
uniform random variables; they then detected departures from
the null hypothesis by comparing the kernel-estimated bivari-
ate density of {(Zi,Zi+	)} with that of the uniform distribution
on the unit square, where Zi = P(Xi|Xi−	, θ) and P(·|·) is the
cumulative transition distribution.

The article is organized as follows. In Sections 2 and 3 we de-
scribe the construction of the two estimators of p, nonparamet-
ric and parametric. In Section 4 we introduce the three test sta-
tistics that we use to compare these two estimators. In Section 5
we derive the asymptotic properties of these statistics, includ-
ing their distributions under the null hypothesis and their power
properties. In particular, we show that the asymptotic null distri-
butions of our test statistics are asymptotically distribution-free.
In Section 6 we examine the corresponding finite-sample prop-
erties of the statistics, including their respective power, under
various models, and compare the power of transition density–
based tests with that of other tests. In Section 7 we test various
models on two classical time series in finance. We conclude in
Section 8.

2. NONPARAMETRIC ESTIMATION OF THE
TRANSITION DENSITY

Suppose that the observed process {Xt} is sampled at the reg-
ular time points {i	, i = 1, . . . ,n + 1}. We make the depen-
dence on the transition function and related quantities on 	 im-
plicit by redefining

Xi = Xi	, i = 1, . . . ,n + 1,

which is assumed to be a stationary and β-mixing process. Let
p(y|x) be the transition density of the series {Xi, i = 1, . . . ,n +
1}; that is, it is the conditional density of Xi+1 given Xi = x
evaluated at Xi+1 = y. This conditional density can be estimated
by the local linear method of Fan, Yao, and Tong (1996). We
briefly summarize this method and discuss the issues related to
bandwidth selection.

Let h1 and h2 be two bandwidths and let K and W be two ker-
nel functions. The conditional density p(y|x) is approximately
the regression function of Kh2(Xi+1 − y) given Xi = x for small

h2, where Kh(z) = K(z/h)/h. Using the local linear fit, for each
given x, we minimize

n∑

i=1

{
Kh2(Xi+1 − y) − α − β(Xi − x)

}2
Wh1(Xi − x) (2.1)

with respect to the the local parameters α and β . The resulting
estimate of the conditional density is simply α̂. The estimator
can be expressed explicitly as

p̂(y|x) = 1

nh1h2

n∑

i=1

Wn

(
Xi − x

h1
; x

)
K

(
Xi+1 − y

h2

)
, (2.2)

where Wn is the effective kernel induced by the local linear fit.
Explicitly, this is given by

Wn(z; x) = W(z)
sn,2(x) − zsn,1(x)

sn,0(x)sn,2(x) − sn,1(x)2
,

where

sn,j(x) = 1

nh1

n∑

i=1

(
Xi − x

h1

)j

W

(
Xi − x

h1

)
.

Note that the effective kernel Wn depends on the sampling data
points and the location x. This is the key to the design adapta-
tion and location adaptation property of the local linear fit (Fan
1992).

A possible estimate of the transition distribution P(y|x) =
P(Xi+1 < y|Xi = x) is given by

P̂(y|x) = 1

nh1

n∑

i=1

Wn

(
Xi − x

h1
; x

)
I(Xi+1 < y), (2.3)

which is the local linear estimator of the regression function

P(y|x) = E{I(Xi+1 < y)|Xi = x}.
More complicated estimation schemes of the conditional distri-
bution based on a local logistic regression and an adjusted form
of the kernel regression that guarantee the estimated value in the
interval [0,1] have been given by Hall, Wolff, and Yao (1999).
Note that the estimator (2.3) is also the cumulative distribution
of the conditional density p̂(y|x) with h2 → 0.

As with most nonparametric estimation procedures, issues of
bandwidth selection arise in practice. Fan and Yim (2004) and
Hall, Racine, and Li (2004) suggested using CV to select band-
widths for estimating the conditional density. We did so in our
numerical studies. For estimation of the cumulative transition
distribution, the problem is equivalent to the nonparametric re-
gression method, and thus a wealth of bandwidth selectors are
available. In our numerical studies, we used the plug-in method
of Ruppert, Sheather, and Wand (1995).

3. THE PARAMETRIC TRANSITION DENSITY

We have defined a consistent nonparametric estimator of the
transition density p(y|x). Under the null hypothesis, however, it
also is possible to specify and estimate separately the paramet-
ric transition density corresponding to the assumed parametric
model. We need a parametric form for the transition density not
only to compare with the nonparametric estimator, but also to
deliver a root-n–consistent estimator of θ (in the form of the
maximum likelihood estimator [MLE]).

For this purpose, we rely on the new closed-form expansions
developed in Aït-Sahalia (2002) and Aït-Sahalia (2008) for pure
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diffusions and extended to jump diffusions by Yu (2007). By the
Bayes rule, we have

p(y|x; θ) =
+∞∑

n=0

p(y|x,N	 = n; θ)Pr(N	 = n|x; θ). (3.1)

With Pr(N	 = 0|x; θ) = O(1), Pr(N	 = 1|x; θ) = O(	), and
Pr(N	 > 1|x; θ) = o(	), and given the fact that when at least
one jump occurs the dominant effect is due to the jump (vs. the
increment due to the Brownian motion), an expansion at order
K in 	 of p obtained by extending the pure diffusive result to
jump diffusions is given by

p̃(K)(y|x; θ)

= exp

(
−1

2
ln(2π	σ 2(y; θ)) + c−1(y|x; θ)

	

)

×
K∑

k=0

ck(y|x; θ)
	k

k! +
K∑

k=1

dk(y|x; θ)
	k

k! . (3.2)

The unknowns are the coefficients ck and dk of the series. Rel-
ative to the pure diffusive case, the coefficients dk are the new
terms needed to capture the presence of the jumps in the transi-
tion function and will capture the different behavior of the tails
of the transition density when jumps are present.

The coefficients ck and dk can be computed analogously to
the pure diffusive case, resulting in a system of equations that
can be solved in closed form, starting with

c−1(y|x; θ) = 1

2

(∫ y

x

du

σ(u; θ)

)2

, (3.3)

c0(y|x; θ) = 1√
2πσ(y; θ)

exp

(∫ y

x

μ(u; θ)

σ 2(u; θ)
du

−
∫ y

x

∂σ (u; θ)/∂u

2σ(u; θ)
du

)
. (3.4)

Coefficients of higher order of the diffusive part of the ex-
pansion (i.e., ck, k ≥ 1) are no longer functions of the diffusive
characteristics of the process only; instead, they also involve the
characteristics of the jump part. In particular, for k = 1,

c1(y|x; θ) = −
(∫ yt

x

du

σ(u; θ)

)−1 ∫ y

x

{
du

σ(u; θ)

× exp

(∫ s

x

μ(u; θ)

σ 2(u; θ)
du −

∫ yt

x

∂σ (u; θ)/∂u

2σ(u; θ)
du

)

×
(∫ y

s

du

σ(u; θ)

)
(λ(s; θ) − A · c0(y|s; θ))

}

× ds

σ(s; θ)
, (3.5)

where the operator A is the generator of the diffusive part of the
process only, defined by its action,

A • f = μ
∂f

∂x
+ 1

2
σ 2 ∂2f

∂x2
, (3.6)

on functions in its domain.
The leading term in the jump part of the expansion (i.e., d1)

is given by

d1(y|x; θ) = λ(x; θ)ν(y − x; θ). (3.7)

As in the pure diffusive case, higher-order terms dk and k ≥ 2
are obtained recursively from the preceding ones (see Yu 2007).

The approximation error created by replacing the exact (but
unknown) p(y|x; θ) with p̃(K)(y|x; θ) is of order O(	K). Our
asymptotic scheme assumptions are such that this error is al-
ways smaller than the sampling error introduced by estimation
of p. As a practical matter, Jensen and Poulsen (2002), Stramer
and Yan (2007), and Hurn, Jeisman, and Lindsay (2007) con-
ducted extensive comparisons of different techniques for ap-
proximating the transition function p and demonstrated that
the method described here is both the most accurate and the
most rapidly implemented for the types of problems and sam-
pling frequencies typically encountered in finance (monthly,
weekly, daily, or higher). The relative approximation error is
often <0.001, a level that in practice is negligible compared
with the n-dependent sampling error in the parametric estima-
tion, and even more so the nonparametric estimation, of p.

4. TESTING AGAINST A JUMP–DIFFUSION MODEL

We now consider testing against the parametric family cor-
responding to model (1.1). Let p(y|x; θ) be the transition den-
sity of the sequence {Xi, i = 1, . . . ,n + 1} induced by the model
(1.1). When the sampling interval 	 is a constant, the maximum
likelihood estimator θ̂ obtained by maximizing the parametric
log-likelihood given in Section 3 converges at rate O(n−1/2) in
the stationary case under mild conditions (see Aït-Sahalia 2008
and Yu 2007). (The rate can be different if the data-generating
process is nonstationary.) This yields a parametric estimate of
the transition density p(y|x; θ̂ ), computed using the techniques
described in Section 3. The effect of the random and discrete
sampling when estimating continuous-time diffusions has been
studied by Aït-Sahalia and Mykland (2003) and Aït-Sahalia and
Mykland (2004).

Our approach to testing against the null hypothesis (1.1) is to
compare the differences between parametric and nonparamet-
ric estimates of p as spelled out by (1.5). The log-likelihood
function of the observed data {X1, . . . ,Xn+1} is

(p) =
n∑

i=1

log p(Xi+1|Xi),

after ignoring the stationary density π(X1). A natural test sta-
tistic or metric is a comparison of the likelihood ratio under the
null hypothesis and the alternative hypothesis. This leads to the
test statistic

n∑

i=1

log p̂(Xi+1|Xi)/p(Xi+1|Xi, θ̂ ).

Note that this is not the maximum likelihood ratio test, because
the nonparametric estimate p̂ is not derived from the maximum
likelihood estimate (Fan, Zhang, and Zhang 2001). This type
of test may be called a generalized likelihood ratio test. It is
well known that the nonparametric regression function cannot
be well estimated when Xi is in the boundary region. Thus we
introduce a weight function, w, to reduce the influences of the
unreliable estimates, leading to the test statistic

T0 =
n∑

i=1

log{p̂(Xi+1|Xi)/p(Xi+1|Xi, θ̂ )}w(Xi,Xi+1). (4.1)
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We start by explaining some intuition to justify our construc-
tion of the test statistics. Under the null hypothesis of (1.5), the
parametric and nonparametric estimators are approximately the
same. Heuristically, the null distribution of T0 is obtained by a
Taylor expansion,

T0 ≈
n∑

i=1

p̂(Xi+1|Xi) − p(Xi+1|Xi, θ̂ )

p(Xi+1|Xi, θ̂ )
w(Xi,Xi+1)

− 1

2

n∑

i=1

{
p̂(Xi+1|Xi) − p(Xi+1|Xi, θ̂ )

p(Xi+1|Xi, θ̂ )

}2

w(Xi,Xi+1).

Because the nonparametric locally linear estimator p̂ is not an
MLE, whether or not the first term is asymptotically negligible
is not obvious. To avoid unnecessary technicalities, we consider
the following χ2-test statistic:

T1 =
n∑

i=1

{
p̂(Xi+1|Xi) − p(Xi+1|Xi, θ̂ )

p(Xi+1|Xi, θ̂ )

}2

w(Xi,Xi+1). (4.2)

A natural alternative method to T1 is

T2 =
n∑

i=1

{p̂(Xi+1|Xi) − p(Xi+1|Xi, θ̂ )}2w(Xi,Xi+1). (4.3)

The transition density–based test statistics depend on two
smoothing parameters h1 and h2 and thus are somewhat more
cumbersome to implement. Like the Cramer–von Mises test, a
viable alternative method is to compare the discrepancies be-
tween transition distributions. This leads to the test statistic

T3 =
n∑

i=1

{P̂(Xi+1|Xi) − P(Xi+1|Xi, θ̂ )}2w(Xi,Xi+1). (4.4)

The biases in the asymptotic null distribution can be reduced by
incorporating a bias-reduction technique (Fan and Zhang 2004).

For nonparametric testing problems, there generally is no
uniformly most powerful test. Each test can be powerful for
detecting certain classes of alternatives. The density-based tests
T1 and T2 are more powerful in detecting fine features, such as
sharp and short aberrants, that deviate from the density under
the null hypothesis, whereas T3 is more powerful for detecting
global departures from the null hypothesis (e.g., when the den-
sity has been shifted or rescaled).

5. ASYMPTOTIC PROPERTIES OF THE
TEST STATISTICS

5.1 Asymptotic Null Distributions

Throughout this article, we let ‖f ‖2 = ∫
f 2(x)dx, ‖f ‖2

w =∫
f 2(x)w(x)dx, and “∗” denote the convolution operation. Thus

‖1‖w = ∫
w(x, y)dx dy. Furthermore, the notation rTn

a∼ χ2
an

means that

(2an)
−1/2{rTn − an(1 + o(1))

} D−→ N(0,1).

Theorem 1. Under Conditions 1–8 in Appendix A, if the
transition density of the observed data follows from p(y|x; θ),
then we have

1

σ1
{T1 − μ1} D−→ N (0,1),

where μ1 = ‖1‖w‖W‖2‖K‖2/(h1h2) − �x‖W‖2/h1, σ 2
1 =

2‖w‖2‖W ∗ W‖2‖K ∗ K‖2/(h1h2), and �x = ∫
E{w(X,Y)|X =

x}dx. In other words, r1T1
a∼ χ2

an
, where an = r1μ1 and r1 =

‖1‖w‖W‖2‖K‖2/(‖w‖2‖W ∗ W‖2‖K ∗ K‖2).

Note that the effective number of parameters under the al-
ternative is of O(1/(h1h2)), corresponding to partitioning of
a rectangle using subrectangles of length h1 and width h2,
whereas the number of parameters under the null hypothesis
is finite. Thus the order of the degrees of freedom is given by
O(1/(h1h2)), the same order as an.

The test statistic T2 can be considered a special case of T1
with w(x, y) as p(y|x; θ)w(x, y) in Theorem 1. Thus an appli-
cation of Theorem 1 readily yields the asymptotic null distri-
bution of T2. Unlike the distribution of T1, the distribution of
T2 depends on nuisance parameters under H0; that is, the Wilks
phenomenon does not hold in this case.

Next, we consider the asymptotic null distribution of T3. Be-
cause P̂(y|x) is a nonparametric estimate of the conditional dis-
tribution function, we need only weigh down the contribution
from the sparse regions in the x-coordinate. For this reason, we
consider only the weight function w(x, y) = w(x) for T3. This
allows us to evaluate the asymptotic mean and variance more
explicitly.

Theorem 2. When the observed data are realizations from a
stationary Markovian process with transition density p(y|x; θ),

1

σ3
{T3 − μ3} D−→ N (0,1)

provided that Conditions 1–7 and 9 in the Appendix A hold.
Here

μ3 = ‖W‖2
∫

w(t)dt/(6h1) and

σ 2
3 = ‖W ∗ W‖2‖w‖2/(45h1).

Namely, r3T3
a∼ χ2

bn
, where bn = r3μ3 and r3 = 15‖W‖2‖1‖2

w/

(‖W ∗ W‖2‖w‖2).

The statistic T3 is similar to the Cramér–von Mises test
TCVM. It is well known that

E(TCVM) = 1

6
, Var(TCVM) = 4n − 3

180n
≈ 1

45
.

These results are compatible with the asymptotic mean and
variance of T3 (comparing in particular the numerical coeffi-
cients 1/6 and 1/45). Anderson and Darling (1952) derived the
limit distribution of TCVM, which is not normally distributed.
This differs from Theorem 2, because the aggregation of many
local TCVM results in an asymptotic normal distribution.

Comparing Theorems 1 and 2 shows that the asymptotic vari-
ance of T1 is an order of magnitude larger than that of T3. Be-
cause the transition density–based tests need to localize in two
directions, much fewer local data points are available for esti-
mating the transition density than for estimating the transition
distribution. Thus the null distribution of T3 should be more
stably approximated compared with the null distributions of T1
and T2. On the other hand, because T1 and T2 have greater de-
grees of freedom, the transition density–based tests are more
omnibus, designed to detect a wider range of alternative mod-
els.
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5.2 Bootstrap

The asymptotic null distributions depend on many smaller-
order terms and are negligible when nh1h2 is large. For exam-
ple, any constant can be added to the degree of freedom an or
any other numbers of order o(1/h1), but in practical applica-
tions, the convergence is slow, because the local sample size
nh1h2 cannot be large enough. This kind of problem arises in
virtually all nonparametric tests in which function estimation is
used; thus using the asymptotic distribution directly is naive. On
the other hand, the asymptotic normality in Theorems 1 and 2
justifies using the bootstrap.

Let θ0 be the parameter that the data-generating process
projects on the family of models under the null hypothesis. If
θ0 is given, then the null distribution is known and can be sim-
ulated. The bootstrap estimate of the null distribution mimics
this process, except that θ0 is replaced by its estimate θ̂n from
the sample. Thanks to Theorems 1 and 2, the asymptotic null
distribution does not depend on θ0. This implies that the null
distributions under θ0 and θ̂n should be very close. The boot-
strap distribution should give a better approximation than the
asymptotic null distribution, because it uses the null structure.
Our asymptotic theory gives the justification of this process. As
we show in Section 6.2, the bootstrapped distributions are much
closer than the asymptotic ones.

5.3 Power Under Contiguous Alternatives

To compute the power function, we consider the contiguous
alternatives H1n

pn(y|x) = p(y|x; θ) + gn(x, y)

for the test statistic T1 and

Pn(y|x) = P(y|x; θ) + Gn(x, y)

for the test statistic T3. To ease the technical arguments and
presentation, we assume that gn(x, y) = δng(x, y) + o(δn) and
Gn(x, y) = δnG(x, y) + o(δn), where δ−1

n gn(x, y) and δ−1
n Gn(x,

y) have bounded continuous second-order derivatives. These as-
sumptions can be relaxed to allow a more general form of the
alternatives.

Theorem 3. Under Conditions 1–6 in Appendix A, if nh1 ×
h2δ

2
n = O(1), then, under the alternative hypothesis H1n, we

have

(T1 − μ1 − d1n)/σ
∗
1

L−→ N (0,1),

where

d1n = nE
g2

n(X,Y)w(X,Y)

p2(Y|X; θ)
+ O(nh2

1δn + nh2
2δn + δnh−1

1 h−1
2 )

and σ ∗
1 =

√
σ 2

1 + 4σ 2
1A with

σ 2
1A = nE

g2
n(X,Y)w2(X,Y)

p2(Y|X)
− nE

{
E

(
gn(X,Y)w(X,Y)

p(Y|X)

∣∣∣X
)}2

.

The condition nh1h2δ
2
n = O(1) is imposed so that the test

T1 has a nontrivial power. If nh1h2δ
2
n = o(1), then it is easy to

see that the asymptotic mean and variance of T1 are dominated
by μ1 and σ 2

1 , respectively, and the test statistic behaves the
same under the null alternative hypothesis. Thus the test has no

power to detect the alternative hypothesis. On the other hand,
if nh1h2δ

2
n → ∞, then the asymptotic mean and variance of T1

are dominated by dn1 and σ 2
1A, respectively. It is then easy to

see that the asymptotic power is 1.
Because T2 is a specific example of T1, we do not discuss

its asymptotic distribution under the alternative hypothesis. We
now consider the rate at which the alternative can be detected by
the test statistic T1. This amounts to determining that rate δn so
that T1 is stochastically larger under the alternative hypothesis
than under the null hypothesis.

Theorem 4. Under Conditions 1–8 in Appendix A, T1 can
detect alternatives with rate δn = O(n−2/5) when h1 = c∗

1n−1/5

and h2 = c∗
2n−1/5. More precisely, if δn = dn−2/5 for some con-

stant d, then we have the following properties for the power
function:

lim sup
d→0

lim sup
n→∞

P{(T1 − μ1)/σ1 > cα|H1n} ≤ α

and

lim inf
d→∞ lim inf

n→∞ P{(T1 − μ1)/σ1 > cα|H1n} = 1.

We next consider the asymptotic alternative distribution of
T3 and the rate at which it can be detected by the test statistic
T3.

Theorem 5. Under Conditions 1–6 and 9 in Appendix A, if
nh1δ

2
n = O(1), then, under H1n for the test problem, we have

(T3 − μ3 − d3n)/σ
∗
3

L→ N (0,1),

where d3n = nEG2
n(X,Y)w(X) + O{nh2

1δn + δnh−1
1 }, σ ∗

3 =√
σ 2

3 + 4σ 2
3A, and

σ 2
3A = nE

{∫
Gn(Xi,Yj)w(Xi)I(Yi < Yj)dP(Yj|Xi)

}2

− nE

{∫
Gn(Xi,Yj)w(Xi)P(Yj|Xi)dP(Yj|Xi)

}2

.

Using exactly the same argument as that of Theorem 4, we
can obtain the following theorem. We omit the details of the
proof.

Theorem 6. Under Conditions 1–6 in Appendix A, the test
statistic T3 can detect alternatives with rate δn = O(n−4/9) when
h1 = c∗n−2/9.

From Theorem 4, T1 and T2 can detect the alternative with
the rate δn = O(n−2/5), and they depend on both h1 and h2. For
the transition distribution–based test, the rate that can be de-
tected by T3 is O(n−4/9), which is optimal according to Ingster
(1993) and Lepski and Spokoiny (1999). This is due to the fact
that the alternative under consideration is global; namely, the
density under the alternative is basically globally shifted away
from the null hypothesis. In contrast, the conditional density–
based tests are more powerful for detecting local features than
those based on the conditional distribution. To see this, as-
sume that the deviation in the conditional density is gn(x, y) =
δng1(x)g2(|y|/an) + o(δnan) for a sequence of an → 0, where
g2 is a symmetric density function. The deviation gn(x, y) is
rather local in the y-axis. Then the deviation on the conditional
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distribution is given by Gn(x, y) = δnang1(x) ind(y), an order
smaller than that in gn, where ind(y) = 0, 1/2, or 1 depending
on whether y < 0, y = 0, or y > 0. The main term d1n induced
by the local alternative is of order nδ2

nan, whereas the main term
d3n is of order nδ2

na2
n, an order of magnitude smaller. Thus T1

and T2 are more powerful in detecting local features in the al-
ternative hypothesis.

The test statistic T3 is one step closer to the spirit of the con-
ditional Kolmogorov (or Cramer–von Mises) test, which uses
the cumulative conditional distribution and has parametric rates
of convergence. But our method is more nonparametric in the
sense that we localize in the x-direction and thus is more pow-
erful in detecting local features in that direction.

6. MONTE CARLO SIMULATIONS

6.1 Specification of the Tests

We focus on the finite-sample performance of the transition
density–based test T1 and the transition distribution–based test
T3. We use the bootstrap method to determine the null distrib-
ution of the test statistic. To compare the power of various test
statistics, we use the empirical quantiles under the null mod-
els to determine the critical values. This highlights the relative
powers of the five test statistics under consideration.

By Theorem 4, the optimal rate of h1 and h2 is O(n−1/5).
This differs from the optimal rate O(n−1/6) used to estimate
the nonparametric conditional density by a factor of obly n1/30.
Thus the bandwidth selected by the cross-validation method
or other methods for density estimation provides a reasonable
proxy for the testing problems. This also allows us to examine
whether the optimally estimated density is significantly differ-
ent from the null hypothesis. In our numerical work, we use the
cross-validation method of Fan and Yim (2004) to select h1 and
h2. We use the plug-in method of Ruppert, Sheather, and Wand
(1995) to select h1 for the test statistic T3.

For the test statistic T3, we take w(x) = I{|x − μ| < 1.5σ },
where μ is sample mean and σ is the sample standard devia-
tion for the data simulated under the null hypothesis. The in-
terval in this indicator function covers approximately 80% of
the data. For the test T1, we set w(x, y) = I{(|x − μ| < 1.5σ) ∩
|y − μ(y|x)| < 1.5σ ∗}, where μ(y|x) is the conditional mean
and σ ∗ is the standard deviation of the differences {Xi+1 − Xi},
computed for the data under the null hypothesis.

6.2 Accuracies of the Null Distributions

We simulate 1,000 sample paths of weekly observations
(	 = 1/52) from the Vasicek model

dXt = κ(μ − Xt)dt + σ dWt. (6.1)

The parameter values κ = 0.12,μ = 0.06, σ = 0.013 are taken
from the weighted least squares estimates using the 3-month
Treasury Bill data, comprising 2,400 weekly observations be-
tween January 8, 1954 and December 31, 1999.

With given parameters and sample sizes, the test statistics T1
and T3 are simulated 1,000 times. The distributions of these re-
alized test statistics T1 and T3 can be obtained using the kernel
density estimate and are considered the true distribution (except
the Monte Carlo errors). To limit computation and facilitate
the presentation, for each of the realized 1,000 sample paths,

we obtain 5 bootstrap samples and compute their resulting test
statistics T∗

1 and T∗
3 . Aggregating them together across 1,000

samples yields 5,000 bootstrap statistics. Their sampling distri-
butions, computed via the kernel density estimate, is depicted
as the distribution of the bootstrap method. We also present
the normal distribution with mean and variance estimated from
these 5,000 bootstrap statistics. This can be viewed as using the
asymptotic null distributions with the first two moments cali-
brated using the bootstrap method.

Figure 1 summarizes the simulation results with n = 600,
1,200, and 2,400. It clearly shows that the bootstrapped dis-
tributions are much closer to the true ones than the asymptotic
ones. In addition, the accuracies are generally acceptable for
practical applications. On the other hand, as discussed in Sec-
tion 5.2, the asymptotic distributions are quite far from the true
ones. This is due to the ignorance of lower-order terms, which
are not negligible at finite sample. The bootstrap methods can
be viewed as an effort to account for these smaller-order terms,
as evidenced by the two bootstrap methods in Figure 1. We also
could empirically add the lower order terms to calibrate the as-
ymptotic null distributions; for example, replacing μ1 and σ 2

1
by

μ′
1 = μ1 + 20, σ ′

1
2 = σ 2

1 + 40

and

μ′
3 = μ3 + 1.5, σ ′

3
2 = σ 2

3 + 0.18,

the asymptotic distribution becomes much closer to the true
one. These are shown as solid curves in Figure 1.

6.3 Power of the Tests

We compare the performance of our tests using the test of
Hong and Li (2005) and its two variants. The test proposed by
Hong and Li (2005) is based on the idea that Zt = P(Xt|Xt−1, θ̂ )

is approximately a sequence of independent random samples
from the uniform distribution. To test this, Hong and Li (2005)
proposed the test statistic M̂(j), which compares a kernel esti-
mator for the joint density of Zt,Zt−j with the density of the
uniform distribution on the unit square, namely

M̂(j) =
∫ 1

0

∫ 1

0
[ĝj(z1, z2) − 1]2 dz1 dz2,

where

ĝj(z1, z2) = (n − j)−1
n∑

t=j+1

Kh(z1,Zt)Kh(z2,Zt−j),

where Kh(z1, z2) is a boundary-modified kernel. The centered
and scaled test statistic,

T4 = [(n − j)hM̂(j) − A0
h]/V1/2

0

and follows asymptotically a standard normal distribution for
constants Ah and V0. We take j = 1 in the implementation and
follow the prescriptions of Hong and Li (2005) to select the
bandwidths.

Useful alternative methods are the distribution-based tests for
uniformity. We consider in particular the following two versions
of the tests:

T5 =
∫ 1

0
(F̂Z(x) − x)2 dx,
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Figure 1. Null distributions of test statistics T1 (top panel) and T3 (bottom panel) for n = 600 (left), n = 1,200 (middle), and n = 2,400
(right). Solid line—asymptotic distributions without calibration (right) and with calibration (left); dash–dot (green) line—empirical distribution
of the test statistic (true); dash (red) line—distribution by bootstrap; doted (magenta) line—normal distribution with the mean and variance
obtained by bootstrap.

in which F̂Z is the empirical cumulative distribution of {Zt}, and

T6 =
∫ 1

0

∫ 1

0

(
F̂Zt−1,Zt − x1x2

)2
dx1 dx2,

in which F̂Zt−1,Zt is the empirical cumulative distribution based
on the data {(Zt−1,Zt)}. These extensions of the Cramer–von
Mises test have several advantages; they do not need to select
bandwidth or deal with boundary effect. The asymptotic null
distributions of these test statistics have been studied and are
easily computed.

The test statistics T0,T1,T2, and T3 also can be applied to the
transformed data {Zt}. For example, an application of T1 yields

T7 =
n∑

i=1

{p̂(Zi+1|Zi) − 1}2w(Zi+1,Zi)

where p̂(Zi+1|Zi) the nonparametric estimate of the conditional
density based on {Zt}.

Here we use a sample size of 2,400 (the same as the Trea-
sury Bill data used to obtain the parameters) and 1,000 simula-
tionhs. Alternatives include all stationary Markovian processes.
This reduces the likelihood of model misspecification. To facil-
itate computation, we take the Vasicek model (6.1) as the null
hypothesis. We evaluate the power functions of five competing
test statistics under the three families of alternative models, pro-
gressively deviating away from the null. Each family of models
is indexed by τ , with τ = 0 corresponding to the null model
(6.1).

In the first family of alternative models, the volatility func-
tions are deviated from the Vasicek model. In the second ex-
ample, the drift function is deviated from the Vasicek model. In

the third example, the jump-diffusion processes are included.
We now describe the alternative family of models.

Example 1. In this example we evaluate the power of the five
tests at a sequence of alternative models,

dXt = κ(μ − Xt)dt + {(1 − τ)σ + τσ (Xt)}dWt (6.2)

for τ = 0,0.1, . . . ,1, where σ(Xt) = σ ∗Xγ
t with σ ∗ = 0.07 and

γ = 0.7 from the parametric fit of the model of Chan et al.
(1992) to the aforementioned Treasury Bill data. Note that we
take the same instantaneous return function under the null hy-
pothesis and the alternative hypothesis; this increases the degree
of the difficulty of the tests.

Figure 2 shows the differences of the volatility functions be-
tween the null hypothesis and the alternative hypothesis. The
power functions under three different significant levels, α =
0.01,0.05,0.1, were computed. To save the space, only the re-
sults for α = 0.05 are depicted in the figure. It is clear that T1
and T3 have much higher power than the other three tests. For
this particular example, the transition density–based test T1 is
somewhat more powerful than the transition distribution–based
test T3.

Example 2. Here we consider the deviations in the drift. The
null model is still the model of Vasicek (6.1). In the alternative
model, the volatility function remains the same, but nonlinear
mean revision is considered as a deviation from the null hypoth-
esis. Specifically, we evaluate the power of the five competing
tests in the following sequence of alternative models:

dXt = {(1 − τ)κ(μ − Xt) + τC(μ − Xt)
3/Xt}dt + σ dWt, (6.3)
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Figure 2. Example 1: Left panel: Volatility function (6.2) with τ = 0 (solid), τ = 0.2 (dash), τ = 0.5 (dotted), τ = 0.8 (dash-dotted), τ = 1
(dotted-solid). Right panel: Power functions for the five competing test statistics evaluated at the sequence of alternative models (6.2). Solid line
for T1; dash line for T3, dotted-solid line for T4; dotted line for T5, and dotted-dash line for T6.

where the constants κ , μ, and σ are the same as those in the
null model (6.1), and C = 10κ/s0 = 0.0294, where s0 = 0.0263
is the standard deviation of Xt under the null model (6.1).

When τ is small, the null and alterative models are nearly
impossible to differentiate in terms of the drift functions (see
Figure 3). Even when τ is large, the differences of the drift
functions between the null and alternative models are mainly
at high- and low-interest–rate regimes, which are not often vis-
ited by the process Xt. This the testing problem is intrinsically
challenging.

Figure 3 also depicts the power function of the five test
statistics for the alternative model (6.3) with significant level
α = 0.05. It is clear from this figure that our proposed test statis-
tics T1 and T3 outperform the other three transformation-based
tests, which have nearly no power in detecting the alternative

models. Yet our proposed tests T1 and T3 are reasonably pow-
erful, with the transition distribution–based test T3 having the
most power among the five tests.

Example 3. We now consider the power of nonparametric
specification tests for (6.1) against a sequence of jump-diffusion
models,

dXt = κ(μ − Xt−)dt + σ(Xt−)dWt + Jt− dNt (6.4)

where Nt is a Poisson process with stochastic intensity λ(Xt)

and jump size 1. Jt is the jump size that is independent of Ft and
has normal density. In the implementation, we take σ(Xt) = ξ ,
λ(Xt) = λ, and Jt ∼ N(0, η2).

Under these specifications, the transition density for the jump
diffusion model is approximately a mixture of normal distribu-

Figure 3. Example 2: Left panel: Drift function (6.3) with τ = 0 (solid), τ = 0.2 (dash), τ = 0.5 (dotted), τ = 0.8 (dash-dotted), τ = 1
(dotted-solid). Right panel: Power functions for the five competing test statistics evaluated at the sequence of alternative models (6.3). Solid line
for T1; dash line for T3, dotted-solid line for T4; dotted line for T5, and dotted-dash line for T6.
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tions,

p	(y|x) = (1 − λ	)N(μ	(y|x), σ 2
	)

+ λ	N(μ	(y|x), σ 2
	 + η2), (6.5)

where μ	(y|x) = μ + (x − μ) exp(−κ	) and σ 2
	 = ξ2{1 −

exp(−2κ	)}/(2κ) are the conditional mean and variance from
the Vasicek model.

The variance from the jump component is λη2	, and that
from the diffusion component is ξ2	. To make the testing prob-
lem more challenging and interesting, we set ξ2 + λη2 = σ 2,
the diffusion parameter of the Vasicek model under the null hy-
pothesis. The ratio of the jump component to the total variance
is given by τ ∗ = λη2/(ξ2 +λη2). We compute the power at dif-
ferent ratios ranging from 0 to 0.9 or, more precisely, τ = 1.1τ ∗
with τ = 0,0.1, . . . ,1.0, ranging from no jump component (in
which case the alternative hypothesis becomes the null hypoth-
esis) to the case in which the variance of the jump component
accounts for nearly 50% of the total variance.

Although there are three parameters in (6.4), we have only
two equations so far:

ξ2 + λη2 = σ 2; λη2

ξ2 + λη2
= τ

1.1
,

for τ = 0,0.1, . . . ,1. We compute the power under the follow-
ing two specifications: (I) η2/ξ2 = 2 and (II) λ = 2 with differ-
ent value of τ . The power is computed as a function of τ , of
the test statistics for α = 0.01,0.05, and 0.10 under both model
specifications (I) and (II), based on 2,400 weekly data and 1,000
simulations. Figure 4 presents only the results for α = 0.05.

The likelihood ratio test T0 is most powerful when τ is small,
whereas the test T7, a version of the generalized likelihood ratio
test under the Rosenblatt transformation, is most powerful when
τ is large. In contrast, the conditional distribution–based test T3

has little power. To provide insight into the powerful proper-
ties, Figure 4(a) depicts the transition densities under both the
null and alternative model with the conditional mean setting
at 0 for model specification (I). The plot for specification (II)
is similar and thus is omitted. Clearly, the deviations from the
null hypothesis are locally around the conditional mean. Thus,
as mentioned at the end of Sections 4 and 5.3, the conditional
distribution–based tests are generally less powerful than their
transition density–based counterparts. These results are consis-
tent with those shown in Figure 4. Note that the transition den-
sity for τ = 1 appears to be closer to that under the null hy-
pothesis than than that for τ = 0.8; this explains why the power
decreases at τ = 1.

To better demonstrate the properties of the Rosenblatt
transformation–based tests T4, T5, and T6, Figure 4(d) shows
the density of Zt, the Rosenblatt-transformed variable, for dif-
ferent values of τ . When τ = 0, the null density should be uni-
formly distributed on [0,1]. As τ deviates from 0, the devia-
tions are away from uniform; however, the density appears to
be closer to the uniform distribution when τ = 1 than when
τ = 0.8. This again explains the power decreases at τ = 1.
These figures clearly show that the Rosenblatt-transformed
methods intend to use the deviations at both the middle and
the tails to enhance the power.

7. EMPIRICAL RESULTS

In this section we apply our tests to two classical data sets.
The first data set comprises implied volatility data based on the
Chicago Board Options Exchange’s Volatility Index (VIX). The
VIX data were computed using the methodology introduced by
the Chicago Board Options Exchange on September 22, 2003,
involving an implied volatility index based on the European
S&P 500 options, the VIX is an estimate of the implied volatil-
ity of a basket of S&P 500 Index Options (SPX) constructed
from different traded options in such a way that at any given
time it represents the implied volatility of a hypothetical at-the-
money option with 30 calendar days to expiration (or 21 trading
days). The VIX options are European, simplifying the analy-
sis. (For further details on the VIX, see Whaley 2000.) We use
weekly data from June 5, 1990 to December 31, 2004, com-
prising 780 weekly observations. The second data set includes
the yields of the 3-month Treasury Bill rate between January 8,
1982 and May 27, 2005. The data comprise 1,221 weekly obser-
vations based on the averages of the bid rates quoted on a bank
discount basis by a sample of primary dealers who report to the
Federal Reserve Bank of New York. Figure 5 shows these two
weekly data sets. For both data sets, we are interested in testing
the Constant Elasticity of Volatility (CEV) model,

dXt = κ(μ − Xt) + σXρ
t dWt. (7.1)

For the VIX data, the parameters in the CEV model (7.1)
are estimated using the closed-form likelihood expansion of
Aït-Sahalia (2002). This results in the estimates κ̂ = 2.5370,
μ̂ = 0.1992, σ̂ = 1.4823, and ρ̂ = 1.3899. From here, the tran-
sition density and distribution under the parametric model can
be evaluated. To check the degree of the departure from the
null hypothesis, we estimate nonparametrically the conditional
density and cumulative distribution functions. The bandwidths
used here are based on the cross-validation method of Fan and
Yim (2004) for estimating the conditional density and the plug-
in method of Ruppert, Sheather, and Wand (1995) for estimat-
ing the conditional distribution. We use the resulting estimates
to construct the test statistics T1 and T3. These estimates are
undersmoothed (not presented here), which reduces the biases
in the test statistics. This is reasonable for constructing the
test statistics, because they average over these estimates. This
feature is also shared by the test statistic T4 of Hong and Li
(2005) [see Figure 6(a), in which the null distribution is sup-
posed to be uniform]. Based on 1,000 bootstrap samples, the
estimated p-values are 0.443 and 0.058. They provide little ev-
idence against the null hypothesis.

We also apply the test statistics T4, T5, and T6 to this testing
problem. The estimated joint density of Zt−1 and Zt follows the
recipes of Hong and Li (2005). To help visualize the bivariate
density, Figure 6 shows several conditional distributions. Based
on 1,000 bootstrap samples, the p-values are estimated and the
critical values are reported. The results are summarized in Ta-
ble 1. Except for the Hong–Li test T4, all tests show little evi-
dence against the null hypothesis. This is due to the roughness
of the estimated bivariate densities caused by the bandwidth se-
lection method of Hong and Li (2005).

We now apply the same techniques to the 3-month Treasury
Bill data. To save space, we summarize our findings here. The
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Figure 4. Example 3: (a) & (b) Power functions for the six competing test statistics evaluated at the sequence of alternative models index by
τ with specification (I) (left panel) and specification (II) (right panel). Solid (blue) line for T1; dash (green) line for T3; dotted-solid (red) line
for T4; dotted (green) line for T5 and dotted-dash (red) line for T6; and dash (blue) line for T7. (c) Transition density function for Example 3
with specification (I). (d) Density function of the Rosenblatt transformation of the observed process for Example 3 with specification (I). Solid
blue line for τ = 0; dash cyan line for τ = 0.2; dash green line for τ = 0.5; dotted red line for τ = 0.8; dotted-dash red line for τ = 1.00.

maximum likelihood estimates of the parameters under the null
hypothesis are κ̂ = 0.2434, μ̂ = 0.05478, σ̂ = 0.1971, and ρ̂ =
1.0148. The nonparametric estimate of the transition density
and cumulative transition distributions are obtained with the
bandwidths selected by the aforementioned data-driven meth-
ods. With estimated transition densities and cumulative transi-
tion distributions under both the null and alternative hypothe-
ses, the test statistics T1 and T3 can be constructed. Table 2
presents the results of the test.

We also apply the transformation-based methods to 3-month
Treasury Bill yields. Figure 6(c) shows the estimated bivariate
density based on the Rosenblatt transformation, demonstrating
a quite severe deviation from the uniform. Table 2 summarizes
the test statistics, along with their critical values and p-values.

The critical values and p-values are estimated based on 1,000
bootstrap samples. All test statistics exhibit small p-values, pro-
viding stark evidence against the null hypothesis.

The Rosenblatt transformation is sensitive to the Markov-
ian assumption. For real data sets, this assumption cannot be
completely satisfied; thus the transition density–based method
is more reliable.

8. CONCLUSIONS

We have proposed three model specification tests based on
direct comparisons of the transition density/distribution esti-
mated by a parametric method and that estimated directly by a
nonparametric method. Our method is omnibus, relying only on
the Markovian assumption. This significantly reduces the like-
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Figure 5. Left panel: The implied volatility data based on a basket of S&P 500 Index Options (SPX) of a hypothetical at-the-money option
with 30 calendar days to expiration (or 22 trading days); weekly data from June 5, 1990 to December 31, 2004. Right panel: The yield of a
3-month Treasury Bill from January 8, 1982 to May 27, 2005.

lihood of model misspecification in hypothesis testing and sig-
nificantly increases the applicability of our methods to a wide
array of specification test problems.

We have derived the power of both transition density–based
tests and transition distribution–based tests. When the devia-
tion tends to be more global from the null hypothesis, the tran-
sition distribution–based test tends to be more powerful. Con-
versely, when the deviation tends to be more local, the transition
density–based test tends to be more powerful. In general, the
density-based tests provide sharper technical tools; however,
which test is the most powerful for a particular problem re-
mains unclear. For our simulated models, the tests do not seem
to differ much; compare the powers between T1 and T3 and also
between T4 and T6.

Related to our direct approaches are the Rosenblatt trans-
formation–based tests. Although determing which methods
are more powerful is difficult, the transition density– and
distribution-based tests are more intuitive. They directly mea-
sure the deviations in terms of the transition density/distribu-
tions from which the data are generated. Our simulation re-
sults indicate that our proposed direct approach has some ad-
vantages. Furthermore, the direct approach has a wider scope
of applicability, including testing whether a process contains
jumps. In future research, we intend to develop related ideas
for the problem of testing the Markov hypothesis.

APPENDIX A: TECHNICAL CONDITIONS

The first condition states that the parametric model under the null
hypothesis is well specified for our purposes. Primitive conditions in
terms of (μ,σ 2, λ, ν) that lead to smoothness of p(y|x; θ) have been
given by Yu (2007). We assume that

Condition 1. The specification of (μ,σ 2, λ, ν) is such that the
model (1.1) admits a unique solution and satisfies the smoothness and
boundary behavior required for construction of an expansion in 	 of
its parametric transition function p(y|x; θ) that Kth-order derivatives
with respect to 	 is Lipschitz with respect to θ on �.

Condition 2. The kernel functions W and K are symmetric and
bounded with a bounded support, and are Lipschitz.

Condition 3. The weight function w(x, y) has continuous second-
order derivatives with a compact support �∗.

Condition 4. The observed time series {Xi, i = 1, . . . ,n} is sta-
tionary and Markovian, with transition density p(y|x). The station-
ary Markov process {Xi} is β-mixing with exponential decay rate
β(n) = O(e−λn) for some λ > 0.

Condition 5. The transition function p(y|x) has continuous fourth-
order partial derivatives with respect to x and y on the set �∗. The in-
variant density π(x) has a continuous second derivative. Furthermore,
π(x) > 0 and p(y|x) > 0 for all (x, y) ∈ �∗.

Condition 6. The joint density of distinct elements of (X1,X),  >

1 is bounded by a constant independent of . Let

g(x1, x) = f (x1, x) − f (x1)f (x),

which is Lipschitz; for all (x′, y′) and (x, y) in �∗,

|g(x′, y′) − g(x, y)| ≤ C(‖x′ − x‖2 + ‖y′ − y‖2)1/2.

Condition 7. The sampling interval 	 is such that 	K = o(n−1/2)

as n → ∞.

Condition 8. The bandwidths h1 and h2 converge to 0 such that
n(h3

1 + h3
2)/ log n → ∞, n(h5

1 + h5
2) → 0, and h1 and h2 are of the

same order.

Condition 9. The bandwidth h1 converges to 0 such that nh9/2
1 → 0

and nh3/2
1 → ∞.

For a diffusion process, Condition 4 can easily be satisfied (see,
e.g., lemma 4 of Aït-Sahalia and Mykland 2004). Conditions 2, 3, 5,
and 6 are not the weakest possible, but they are imposed to facilitate the
technical proofs. In particular, Condition 5 is set not because higher-
order kernels are used, but rather to facilitate the derivation of some
bounds.

APPENDIX B: PROOFS OF THE THEOREMS

The details of the proofs are necessarily tedious and complex. To
highlight the key ideas of the proofs, we relegate some technical lem-
mas to a supplement of this article. We furnish some details for the
proof of Theorem 1 and note only the differences for other similar
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Figure 6. Estimated joint density of Rosenblatt-transformed random variables for the VIX data and yields of 3-month Treasury Bills. (a) &
(c) Estimated joint density of (Zt−1,Zt) with Zt = P(Xt|Xt−1, θ̂ ). (b) & (d) Conditional distribution of Zt given Zt−1 = z for z = 0.25 (dash),
0.5 (dotted), 0.75 (dotted-dash) along with the marginal cdf of Zt (solid).

Table 1. Test statistics, critical values and p-values based on
the VIX data

T1 T3 T4 T5 T6

Critical value 83.6824 3.7359 3.4000 0.9139 0.9985
(α = 0.01)

Critical value 64.2587 3.0652 2.1787 0.4959 0.5871
(α = 0.05)

Critical value 56.6583 2.7749 1.6631 0.3708 0.4195
(α = 0.10)

Test-stat 40.4929 3.0116 6.7640 0.3021 0.2869
p-value 0.4426 0.0582 0.000 0.1503 0.1957

proofs, which are given in the supplement. To simplify the proof of
Theorem 1 without losing the essential ingredients, we replace the es-
timate θ̂ by its true value θ under the null model. This is because θ̂

is root-n–consistent according to Aït-Sahalia (2002) and p(y|x; θ) is
Lipschitz in θ for all (x, y) ∈ �∗; thus the difference between θ̂ and θ

has no impact.

Proof of Theorem 1

Let ρn = h2
1 + √

log n/(nh1) and ρ′
n = h1 + √

log n/(nh1). Denote

by m(x, y) = EKh2 {(X2 − y)|X1 = x} and m1(x, y) = ∂m(x,y)
∂x . To ease

the understanding of the proof, set Yi = Xi+1. By an elementary prop-
erty of the local linear fitting, we have that

p̂(Yi|Xi) − p(Yi|Xi) = Ai + Bi + Ci, (B.1)
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Table 2. Test statistics, critical values and p-values based on the the 3-month Treasury Bill data

T1 T3 T4 T5 T6

Critical value (α = 0.01) 151.1197 8.7614 3.9964 0.8945 0.9592
Critical value (α = 0.05) 101.1163 7.5036 2.7461 0.5541 0.6258
Critical value (α = 0.10) 86.9007 6.9694 2.1173 0.4162 0.4513
Test-stat 151.2424 7.3990 44.9091 4.0166 3.6301
p-value 0.0100 0.0568 0.0000 0.0000 0.0000

where, with p(y|x) = p(y|x; θ),

Ai = 1

nh1

n∑

j=1

Wn

(
Xj − Xi

h1
;Xi

){
Kh2 (Yj − Yi) − m(Xj,Yi)

}
,

Bi = 1

nh1

n∑

j=1

Wn

(
Xj − Xi

h1
;Xi

)

× {m(Xj,Yi) − m(Xi,Yi) − m1(Xi,Yi)(Xj − Xi)},
Ci = m(Xi,Yi) − p(Yi|Xi).

Thus the test statistic T1 can be written as

T1 =
n∑

i=1

w(Xi,Yi)

p2(Yi|Xi)
{A2

i + B2
i + C2

i + 2AiBi + 2AiCi + 2BiCi}

=̂ T∗
1 + T∗

2 + T∗
3 + T∗

4 + T∗
5 + T∗

6 .

Following Fan, Yao, and Tong (1996), it is easy to show that uni-
formly in i, we have

Bi = Op(h2
1) and Ci = Op(h2

2).

Thus, under Condition 8, we have
⎧
⎪⎪⎨

⎪⎪⎩

T∗
2 = Op(nh4

1) = op(1/
√

h1h2),

T∗
3 = Op(nh4

2) = op(1/
√

h1h2),

T∗
6 = Op(nh2

1h2
2) = op(1/

√
h1h2).

It can be shown, using the uniform convergence results similar to those
given by Mack and Sliverman (1982) and lemma B of Lee (1990), that
(see the full version of the article)

T∗
4 = op(1/

√
h1h2) and T∗

5 = op(1/
√

h1h2). (B.2)

Thus T∗
1 is the dominating term,

T1 = T∗
1 + op(1/

√
h1h2). (B.3)

To deal with T∗
1 , again using the uniform convergence results and

the Hoeffding decomposition, it can decomposed into three terms,
T11,T12, and T13,

T∗
1 = T11 + T12 + T13 + op(1/

√
h1h2). (B.4)

These terms take the following forms:

T11 =
n∑

i<j<k

ϕ(i, j, k) + ϕ(i, k, j) + ϕ(j, i, k)

+ ϕ(j, k, i) + ϕ(k, i, j) + ϕ(k, j, i),

T12 =
n∑

i�=j

ϕ(i, j, j) + ϕ(j, i, j) + ϕ(j, j, i), and

T13 =
n∑

i=1

ϕ(i, i, i),

where

ϕ(i, j, k) = w(Xi,Yi)

n2f 2(Xi,Yi)
Wh1 (Xj − Xi)

{
Kh2 (Yj − Yi) − m(Xj,Yi)

}

× Wh1 (Xk − Xi)
{
Kh2 (Yk − Yi) − m(Xk,Yi)

}
,

where f (x, y) = p(x)p(y|x) is the joint density of (Xi,Yi). The rest of
the proof involves the following steps, which we describe in detail
later:

(a) Let ϕ∗(i, j, k) = ϕ(i, j, k) + ϕ(i, k, j) + ϕ(j, i, k) + ϕ(j, k, l) +
ϕ(k, i, j) + ϕ(k, j, i) be a symmetrical kernel function. By Hoeffding’s
decomposition and simplification, we can show that

T11 = (n − 2)
∑

i<j

ϕ∗(i, j) + op

(
1√

h1h2

)
,

where ϕ∗(i, j) = ∫
ϕ∗(i, j, k)dF(xk, yk), and F is the distribution of

(Xk,Yk). In other words, ϕ∗(i, j) is the expectation of ϕ∗(i, j, k) with
respect to the variables Xk and Yk . By the Markovian property, it is
obvious that the expectation of ϕ∗(i, j) is 0; thus T11 is a U-statistic
with mean 0.

(b) Define ϕ̃(i, j) = ϕ(i, i, j) + ϕ(i, j, i) + ϕ(j, i, i) + ϕ(j, j, i) +
ϕ(j, i, j) + ϕ(i, j, j), and also ϕ̃(i) = ∫

ϕ̃(i, j)dF(xj, yj), and ϕ̃(0) =
E{ϕ̃(i)}. Then we can see that

T12 = n(n − 1)

2
ϕ̃(0) + op(1/

√
h1h2).

Clearly, T12 converges to a constant. In fact, this constant is the mean
of the limit distribution in our theorem.

(c) It can be shown that T13 = op(1/
√

h1h2) by the central limit
theorem for β-mixing series.

(d) Combining the results in the first three steps and using (B.3)
and (B.4), T1 can be written as

T1 = n(n − 1)

2
ϕ̃(0) + (n − 2)

∑

i<j

ϕ∗(i, j) + op(1/
√

h1h2). (B.5)

This is the sum of a constant and a U-statistic with mean 0. To prove
our theorem, we need only show that

n(n − 1)

2
ϕ̃(0) = ‖1‖w

h1h2
‖W‖2‖K‖2 − �x

h1
‖W‖2 + o(1/

√
h1h2),

and the asymptotic normality of the U-statistic,

1

σ∗
0

n∑

i<j

(n − 2)ϕ∗(i, j) → N (0,1),

where σ∗2
0 = 2‖w‖2‖W ∗ W‖2‖K ∗ K‖2/(h1h2). To establish the as-

ymptotic normality of the U-statistic, we need only check the condi-
tions of Lemma 6.

We now provide some details of the proofs.

Proof of Claim (a). Let �(i, j, k) = ϕ∗(i, j, k)−ϕ∗(i, j)−ϕ∗(i, k)−
ϕ∗(j, k). Then, by Hoeffding’s decomposition, we can write

T11 =
∑

i<j<k

�(i, j, k) + (n − 2)
∑

i<j

ϕ∗(i, j).
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Let us denote the first term as T∗
11. By Lemma 6(i) in the supplement

with δ = 1/3, we have

E{n2h2
1h2

2T∗
11}2 ≤ Cn3 max

{

(h2
1h2

2)3/4
n∑

k=1

k2β1/4(k),h2
1h2

2

}

≤ Cn3(h2
1h2

2)3/4,

for a generic constant C. Thus

E{T∗
11}2 ≤ C/

(
nh5/2

1 h5/2
2

)
,

which implies that

T∗
11 = Op

{(
nh5/2

1 h5/2
2

)−1/2} = op(1/
√

h1h2).

Proofs of Claims (b) and (c). First, note that ϕ̃(i, j) is the symmetric
kernel. Following Hoeffding’s decomposition, we can write T12 as
∑

i<j

ϕ̃(i, j) =
∑

i<j

{ϕ̃(i, j) − ϕ̃(i) − ϕ̃(j) + ϕ̃(0)}

+ (n − 1)

n∑

i=1

{ϕ̃(i) − ϕ̃(0)} + n(n − 1)

2
ϕ̃(0). (B.6)

Then, by Lemma 6(ii) in the supplement with δ = 1, we have

E

{
n2h2

1h2
2

∑

i<j

{ϕ̃(i, j) − ϕ̃(i) − ϕ̃(j) + ϕ̃(0)}
}2

≤ Cn2
√

h1h2.

This entails
∑

i<j

{ϕ̃(i, j) − ϕ̃(i) − ϕ̃(j) + ϕ̃(0)} = Op

(
1

nh7/4
1 h7/4

2

)

= op(1/
√

h1h2). (B.7)

For the second term in (B.6), note that E{n2h1h2[ϕ̃(i) − ϕ̃(0)]}2 =
O(1). By the central limit theorem of the β-mixing process, we have

(n − 1)

n∑

i=1

{ϕ̃(i) − ϕ̃(0)} = Op{√n/(nh1h2)} = op(1/
√

h1h2).

This, together with (B.6) and (B.7), imply claim (b).
For claim (c), it is not difficult to show that

T13 =
n∑

i=1

ϕ(i, i, i) = Op{n/n2h2
1h2

2} = Op(1/nh2
1h2

2) = op(1/
√

h1h2),

by applying the central limit theorem for the β-mixing process.

Proof of Claim (d)—Asymptotic Mean. The asymptotic mean
comes mainly from the first term in the right side of (B.5). We now
calculate its asymptotic value. By the definition of ϕ̃(0), it is not hard
to show that

ϕ̃(0) = 2
∫

w(xi, yi)

n2f 2(xi, yi)
W2

h1
(xj − xi)K

2
h2

(yj − yi)dF(xi, yi)dF(xj, yj)

− 4
∫

w(xi, yi)

n2f 2(xi, yi)
W2

h1
(xj − xi)Kh2(yj − yi)

× m(xj, yi)dF(xi, yi)dF(xj, yj)

+ 2
∫

w(xi, yi)

n2f 2(xi, yi)
W2

h1
(xj − xi)m

2(xj, yi)dF(xi, yi)dF(xj, yj).

Denote the first, second, and third terms by U1, U2, and U3. Now we
compute the asymptotic values of U1,U2, and U3. By a change of
variable and Taylor’s expansion, we have

U1 = 2‖1‖w

n2h1h2
{‖W‖2‖K‖2 + O(h2

1 + h2
2)}.

Taking the conditional expectation of Yj given Xj, we get

U2 = −4
∫

w(xi, yi)

n2f 2(xi, yi)
W2

h1
(xj − xi)m

2(xj, yi)dF(xj)dF(xi, yi),

where F(xi) is the cumulative distribution function of Xi. Now, by a
change of variable and Taylor’s expansion, we have

U2 = −4
�x + O(h2

1 + h2
2)

n2h1
‖W‖2.

Using a similar argument, we have that

U3 = 2
�x + O(h2

1 + h2
2)

h1
‖W‖2.

Combining the results for U1, U2, and U3, and ignoring terms of order
op(1/

√
h1h2), we have

n(n − 1)

2
ϕ̃(0) = ‖1‖w

h1h2
‖W‖2‖K‖2 − �x

h1
‖W‖2 + o(1/

√
h1h2).

Proof of Claim (d)—Asymptotic Normality. We now consider the
asymptotic normality of (n − 2)

∑n
i<j ϕ

∗(i, j) by using a result of
Hjellvik, Yao, and Tjostheim (1998), which is stated as Lemma 7 in
the supplement. Toward this end, define �i,j = nh1h2(n − 2)ϕ∗(i, j)

and σ 2
0 = ∫

�2
i,j dF(xi, yi)dF(xj, yj), and σ 2

n = n(n − 1)σ 2
0 /2.

First, we calculate σ 2
0 . Note that from the definition of ϕ∗(i, j) and

the mean 0 property of ϕ(i, j, k), It also is not hard to check, by Fubini’s
theorem and a change of variable, that

ϕ∗(i, j) = 2
∫

1

π(xk)
Wh1 (xi − xk)Wh1 (xj − xk)

×
∫

Kh2 (yi − yk)Kh2 (yj − yk)
w(xk, yk)

p(yk|xk)
dyk dxk

= 2
∫

1

π(xk)
Wh1 (xi − xk)Wh1 (xj − xk)

×
∫

1

h2
K

(
u + yi − yj

2h2

)
K

(
u + yj − yi

2h2

)

× w
(
xk,

(yi+yj)

2 + uh2
)

p
( yi+yj

2 + uh2|xk
) du dxk.

Letting K∗ = K∗K and W∗ = W ∗W , by Taylor’s expansion, we obtain

ϕ∗(i, j) = 2w
( xi+xj

2 ,
yi+yj

2

)

f
( xi+xj

2 ,
yi+yj

2

) W∗
h1

(xi − xj)K
∗
h2

(yi − yj)

+ Op(h1/h2 + h2/h1). (B.8)

From the definition of σ 2
0 , we have

σ 2
0 /(n2h2

1h2
2) =

∫
{(n − 2)ϕ∗(i, j)}2 dF(xi, yi)dF(xj, yj).

Using the same technique as before, we can easily see that

∫ {
w

( xi+xj
2 ,

yi+yj
2

)

f
( xi+xj

2 ,
yi+yj

2

) W∗
h1

(xi − xj)K
∗
h2

(yi − yj)

+ Op(h1/h2 + h2/h1)

}2

dF(xi, yi)dF(xj, yj)

= ‖w‖2

h1h2
‖W∗‖2‖K∗‖2 + o{1/(h1h2)}.
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Neglecting the terms of o{1/(n2h1h2)}, it is not difficult to show that,
from (B.8),

σ 2
n = n(n − 1)

2
σ 2

0

= 2n(n − 1)‖w‖2h1h2‖W∗‖2‖K∗‖2 + o{n2h1h2}. (B.9)

We still need to check the conditions of Lemma 7 in the supplement.
We omit the details of this here and refer the interested readers to the
supplement.

Proofs of Theorems 2–5

See the supplement for details.

SUPPLEMENTAL MATERIALS

This supplement furnishes some details on the technical
proofs of our theoretical results.

[Received April 2008. Revised July 2008.]
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Supplement

This supplement furnishes some details on the technical proofs of our theoretical

results.

Completion of Proof of Theorem 1

Now we check the conditions of Lemma 7 in Supplement. To this end, let

Mn1 = max
i<j

max

{
E|Φ1jΦij|1+δ,

∫
|Φ1jΦij|1+δdF (x1, y1)dF ((Xi, Yi), (Xj, Yj))

}
,

Mn2 = max
i<j

max
{

E|Φ1jΦij|2(1+δ),

∫
|Φ1jΦij|2(1+δ)dF (x1, y1)dF ((xi, yi), (xj, yj)),

∫
|Φ1jΦij|2(1+δ)dF ((x1, y1), (xi, yi))dF ((xj, yj)),

∫
|Φ1jΦij|2(1+δ)dF (x1, y1)dF (xi, yi)dF (xj, yj)

}
,

1



Mn3 = max
i<j

E|Φ1jΦij|2,

Mn4 = max
i,j,k different

{
max

F

∫
|Φ1jΦij|2(1+δ)dF

}
,

Mn5 = max
i<j

max

{
E

∣∣∣
∫

Φ1jΦ1jdF (x1, y1)
∣∣∣
2(1+δ)

,

∫ ∣∣∣
∫

Φ1jΦ1jdF ((x1, y1))
∣∣∣
2(1+δ)

dF (xi, yi)dF (xj, yj)

}
,

Mn6 = max
i<j

E
∣∣∣
∫

Φ1jΦ1jdF (x1, y1)
∣∣∣
2

.

Here, in the definition of Mn4, the maximization is taken over the four probability

measures given in Supplement. By the Markovian property, we have
∫

Φi,jdF (xi, yi) =

∫
Φi,jdF (xj, yj) = 0

and

E{Φi,j|(x1, y1), . . . , (xj−1, yj−1)} = 0, for any i < j.

We let δ < 1. It is easy to see that

Mni = O(h2
1h

2
2), i = 1, 2, 3, 4

and

Mn5 = O(h3+2δ
1 h3+2δ

2 ) and Mn6 = O(h3
1h

3
2).

Hence, we have

max
1

σ2
n

{
n2{M

1
1+δ

n1 + M
1

2(1+δ)

n5 + M
1
2
n6}, n

3
2{M

1
2(1+δ)

n2 + M
1
2
n3 + M

1
2(1+δ)

n4 }
}
→ 0

as n →∞. On other hand, since the decay rate of β-mixing coefficients is exponential,
∞∑

k=1

k2{β(k)} δ
1+δ < ∞. Hence all conditions of Lemma 6 are satisfied. By Lemma 6,

we have
nh1h2√

n(n− 1)/2σ0

n∑
i<j

(n− 2)ϕ∗(i, j) → N (0, 1).

or equivalently by (B.9)

1

σ∗0

n∑
i<j

(n− 2)ϕ∗(i, j) → N (0, 1),

where σ∗20 = 2‖w‖2
h1h2

‖W ∗‖2‖K∗‖2. This completes the proof of Theorem 1. ¤
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Proof of Theorem 2

The proof of this theorem is similar to that of Theorem 1. We note only the differences

between them.

First, in Theorem 2, the test statistic T3 is only related to h1, not h2. Thus, T3

behaves like a generalized likelihood test statistic considered in Fan et al. (2001) in

a nonparametric regression setting. It is a univariate smoothing problem. Secondly,

Kh2(Yj −Yi) in T1 is now replaced by I(Yj < Yi). This does not affect the key idea of

the proof, but alters the calculation of the mean and variance of the asymptotic null

distribution.

First of all, T3 can be written as

T3 =
n∑

i=1

{A2
i + B2

i + 2AiBi}w(Xi)=̂T31 + T32 + T33,

where P (Yi|Xi) = P (Yi|Xi, θ),

Ai =
1

nh1

n∑
j=1

Wn

(
Xj −Xi

h1

, Xi

)
{I(Yj < Yi)− P (Yi|Xj)},

and

Bi =
1

nh1

n∑
j=1

Wn

(
Xj −Xi

h1

, Xi

)
{P (Yi|Xj)− P (Yi|Xi)}.

Following the standard arguments in local linear fitting, it is easy to show that

Bi = P ′′
x (Yi|Xi)h

2
1 + op(h

2
1) = Op(h

2
1),

where P ′′
x (y|x) is the second derivative of P (y|x) with respect to x. Hence, by Con-

dition 9, we have T32 = Op(nh4
1) = op(1/

√
h1). Following the same proof as that used

to establish (B.2), we can show that T33 = Op(
√

nh2
1) = op(1/

√
h1). These entail that

T3 = T31 + op(1/
√

h1). (S.2)

Thus, we need only consider T31.

By similar arguments to those used in establishing (B.2), we have

T31 =
n∑

i=1

w(Xi)

n2π2(Xi)

{
n∑

j=1

Wh1(Xj −Xi){I(Yj < Yi)− P (Yi|Xj)}
}2

+ Op(nρn/(nh1)).
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The second term is of order op(h
1
2
1 ). Hence, by (S.2), we have

T3 =
∑

i,j,k

φ(i, j, k) + op(1/
√

h1), (S.3)

where

φ(i, j, k) =
w(Xi)

n2π2(Xi)
Wh1(Xj −Xi)

× {I(Yj < Yi)− P (Yi|Xj)}Wh1(Xk −Xi){I(Yk < Yi)− P (Yi|Xk)}.

The first term of (S.3) can be decomposed as the sum of T311, T312 and T313, where

T311 =
n∑

i<j<k

φ(i, j, k) + φ(i, k, j) + φ(j, i, k) + φ(j, k, i) + φ(k, i, j) + φ(k, j, i),

T312 =
n∑

i<j

φ(i, j, j) + φ(i, i, j) + φ(i, j, i) + φ(j, i, i) + φ(j, j, i) + φ(j, i, j),

and T313 =
n∑

i=1

φ(i, i, i). Denote the typical elements of T311 and T312 by φ∗(i, j, k) and

φ̃(i, j), respectively. We can follow the proof of Theorem 1 for T ∗
11, T

∗
12 and T ∗

13 to

show that

T311 = (n− 2)
∑
i<j

φ∗(i, j) + op(1/
√

h1),

T312 =
n(n− 1)

2
φ̃(0) + op(1/

√
h1),

and T313 = op(1/
√

h1), where φ∗(i, j) =
∫

φ∗(i, j, k)dF (xk, yk) and φ̃(0) = E
∫

φ̃(i, j)dF (xj, yj).

These results along with (S.3) entail that

T3 =
n(n− 1)

2
φ̃(0) + (n− 2)

n∑
i<j

φ∗(i, j) + op(1/
√

h1). (S.4)

As in the proof of Theorem 1, the first term in the right-hand side provides the asymp-

totic mean of the null distribution, and the second term is a U−statistic which con-

verges to a normal distribution with mean zero. Hence, after computing n(n−1)
2

φ̃(0),

similar to the proof for T ∗
11 in Theorem 1, we can apply Lemma 7 to establish the

asymptotic normality of (n− 2)
n∑

i<j

φ∗(i, j). Since the technical proofs are similar, we

4



only compute n(n−1)
2

φ̃(0) and the variance of (n− 2)
n∑

i<j

φ∗(i, j).

Computation of φ̃(0).

Note that φ̃(0) =
∫ {φ(i, j, j) + φ(j, i, i)}dF (xi, yi)F (xj, yj). Then

n2φ̃(0) = 2

∫
w(xi)

π2(xi)
W 2

h1
(xj − xi){I(yj < yi)− P (yi|xj)}2dF (xi, yi)dF (xj, yj)

= W1 + W2 + W3, (S.5)

where

W1 = 2

∫
w(xi)

π2(xi)
W 2

h1
(xj − xi)I(yj < yi)dF (xi, yi)dF (xj, yj),

W2 = −4

∫
w(xi)

π2(xi)
W 2

h1
(xj − xi)I(yj < yi)P (yi|xj)dF (xi, yi)dF (xj, yj),

and

W3 = 2

∫
w(xi)

π2(xi)
W 2

h1
(xj − xi)P

2(yi|xj)dF (xi, yi)dF (xj, yj).

Using the change of variables and Taylor’s expansion, it is easy to show that

W1 = 2

∫
w(xi)

π2(xi)
W 2

h1
(xj − xi)P (yi|xj)π(xj)dxjdF (xi, yi)

=
2‖W‖2

h1

∫
w(xi)P (yi|xi)dP (yi|xi)dxi + O(h1)

= h−1
1 ‖W‖2‖1‖2

w + O(h1). (S.6)

Similarly, using the same technique, we also have

W2 = − 4

3h1

· ‖1‖2
w‖W‖2 + O(h1), (S.7)

and

W3 =
2

3h1

‖1‖2
w‖W‖2 + O(h1). (S.8)

Hence, the combination of (S.5)—(S.8) lead to

n(n− 1)

2
φ̃(0) =

1

6h1

‖W‖2‖1‖2
w + O(h1).
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Computing the asymptotic variance of the U−statistics.

As in the proof of Theorem 1, we know that the asymptotic variance of
∑
i<j

φ∗(i, j)

is

σ∗2 =
n(n− 1)

2n2h2
1

σ2, (S.9)

where

σ2

n2h2
1

=

∫ {
(n− 2)

∫
{φ(k, i, j) + φ(k, j, i)}dF (xk, yk)

}2

dF (xi, yi)dF (xj, yj).

(S.10)

Let us first consider the term inside the square sign. It can be written as the sum of

four terms:

n2

∫
{φ(k, i, j) + φ(k, j, i)}dF (xk, yk)

= 2

∫
w(xk)

π2(xk)
Wh1(xj − xk)Wh1(xi − xk)

× {I(yi < yk)− P (yk|xi)}{I(yj < yk)− P (yk|xj)}dF (xk, yk)

=̂2(Z1 + Z2 + Z3 + Z4).

We now deal with each term separately. Note that

Z1 =

∫
w(xk)

π(xk)
Wh1(xj − xk)Wh1(xi − xk)I(yi ∨ yj < yk)dP (yk|xk)

=
w(

xi+xj

2
)

π(
xi+xj

2
)
W ∗

h1
(xi − xj){1− P (yi ∨ yj

∣∣∣xi + xj

2
)}+ O(h1),

where x∨y = max(x, y), and W ∗ = W ∗W . For terms Z2 and Z3, recalling that W has

a bounded support, the integrands below do not vanish only when |xi− xj| = O(h1).

Hence we have following expression for Z2 and Z3:

Z2 = − w(
xi+xj

2
)

2π(
xi+xj

2
)
W ∗

h1
(xi − xj){1− P 2(yi

∣∣∣xi + xj

2
)}+ O(h1),

and

Z3 = − w(
xi+xj

2
)

2π(
xi+xj

2
)
W ∗

h1
(xi − xj){1− P 2(yj

∣∣∣xi + xj

2
)}+ O(h1).
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Similarly, we can show that

Z4 =
w(

xi+xj

2
)

3π(
xi+xj

2
)
W ∗

h1
(xi − xj) + O(h1).

Substituting these into (S.10), we have

σ2

h2
1

= 4

∫
{Z1 + Z2 + Z3 + Z4}2dF (xi, yi)dF (xj, yj) + O(h1)

= 4

∫
w2(

xi+xj

2
)

π2(
xi+xj

2
)
W ∗2

h1
(xi − xj)

{1

3
+

1

2
P 2(yj

∣∣∣xi + xj

2
) +

1

2
P 2(yi

∣∣∣xi + xj

2
)

− P (yi ∨ yj

∣∣∣xi + xj

2
)
}2

dF (xi, yi)dF (xj, yj) + O(h1).

By a change of variable and Taylor’s expansion, we have

σ2

h2
1

=
4‖W ∗‖2

h1

×
∫

w2(xi)

{
1

3
+

1

2
P 2(yj|xi) +

1

2
P 2(yi|xi)− P (yi ∨ yj|xi)

}2

dP (yi|xi)dP (yj|xi) + O(h1).

By a change variable s = P (yi|xi) and t = P (yj|xi), and noting that P (yi ∨ yj|xi) =

s ∨ t, we have

σ2

h2
1

=
4‖W ∗‖2‖w‖2

h1

∫ 1

0

∫ 1

0

{1

3
+

1

2
(s2 + t2)− s ∨ t}2dsdt + O(h1). (S.11)

The integral in (S.11) is 1/90. Hence,

σ2

h2
1

=
2‖W ∗‖2‖w‖2

45h1

+ O(h1).

Following the same proof as that of the Theorem 1, after checking the conditions

of Lemma 7, we have

nh1√
n(n− 1)/2σ

n∑
i<j

(n− 2)φ∗(i, j) → N (0, 1).

Hence,
1

σ∗0

n∑
i<j

(n− 2)ϕ∗(i, j) → N (0, 1),

where σ∗20 = 1
45h1

‖W ∗W‖2‖w‖2. ¤
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Proof of Theorem 3

First of all, under Hn1, the true density is pn(Y |X) = p(Y |X) + gn(X,Y ). From the

definition of T1, we have

T1 =
n∑

i=1

{
p̂n(Yi|Xi)− pn(Yi|Xi)

pn(Yi|Xi)

}2

w(Xi, Yi) +
n∑

i=1

{
gn(Xi, Yi)

pn(Yi|Xi)

}2

w(Xi, Yi)

+ 2
n∑

i=1

gn(Xi, Yi){p̂n(Yi|Xi)− pn(Yi|Xi)}w(Xi, Yi)

p2
n(Yi|Xi)

+ op(
1√
h1h2

). (S.12)

The first term in the right side can be dealt with similarly to that in the proof

of Theorem 1. It is asymptotically normal with mean µ1 and variance σ2
1 given in

Theorem 1. For the second term, since δ2
n = O{(nh1h2)

−1}, it can be shown that
n∑

i=1

{
gn(Xi, Yi)

pn(Yi|Xi)

}2

w(Xi, Yi) = nE
g2

n(X,Y )w(X,Y )

p2
n(Y |X)

+ op(
1√
h1h2

). (S.13)

Hence, it remains to deal with the cross-product term. Recall the decomposition

(B.1). By the standard arguments in the local linear fit, we have

2
n∑

i=1

δn(Bi + Ci) = Op(nh2
1δn + nh2

2δn).

This together with (S.12) and (S.13) lead to

T1 =
n∑

i=1

{
p̂n(Yi|Xi)− pn(Yi|Xi)

pn(Yi|Xi)

}2

w(Xi, Yi) + nE
g2

n(X,Y )w(X,Y )

p2
n(Y |X)

+ 2
n∑

i=1

gn(Xi, Yi)Aniw(Xi, Yi)

p2
n(Yi|Xi)

+ op(
1√
h1h2

). (S.14)

We now deal with the third term in (S.14). Argued the same way as that used in

the proof of (B.2), we have
n∑

i=1

gn(Xi, Yi)Aniw(Xi, Yi)

p2
n(Yi|Xi)

=
n∑

i=1

n∑
j=1

gn(Xi, Yi)w(Xi, Yi)

np2
n(Yi|Xi)π(Xi)

Wh1(Xj −Xi){Kh2(Yj − Yi)−m(Xj, Yi)}+ op

(
1√
h1h2

)

=
n∑

i6=j

gn(Xi, Yi)w(Xi, Yi)

np2
n(Yi|Xi)π(Xi)

Wh1(Xj −Xi){Kh2(Yj − Yi)−m(Xj, Yi)}

+ O(δnh
−1
1 h−1

2 ) + op

(
1√
h1h2

)
.
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The first term is a U−statistic with a typical element denoted by ψ(i, j). Let

ψ∗(i, j) = ψ(i, j)+ψ(j, i) be a symmetric kernel. With the notation ψ̃(i) =
∫

ψ∗(i, j)dF (xj, yj)

and ψ̃(i, j) = ψ∗(i, j)− ψ̃(i)− ψ̃(j), we have the following Hoeffding decomposition:

n∑

i6=j

ψ(i, j) =
n∑

i<j

ψ̃(i, j) + (n− 1)
n∑

i=1

ψ̃(i). (S.15)

It is easy to verify that E{h1h2ψ̃(i, j)}2(1+δ) = O(δ
2(1+δ)
n n−2(1+δ)h1h2). Hence, by

Lemma 6 (ii) with δ = 1, we have that

E

{
n∑

i<j

ψ̃(i, j)

}2

= o(h−1
1 h−1

2 ). (S.16)

For (n− 1)
n∑

i=1

ψ̃(i), it is easy to show that Eψ̃(i) = 0. By employing the central limit

theorem for β-mixing process, it can be shown that

(n− 1)

2σ1A

n∑
i=1

ψ̃(i)
D−→ N (0, 1), (S.17)

where σ2
1A = nE(n − 1)2ψ̃2(i)/4. We now compute σ2

1A. From the definition of

m(Xi, Yi) and the Fubini theorem, we have

ψ̃(i) =
2

n

∫
gn(Xj, Yj)w(Xj, Yj)

p2
n(Yj|Xj)π(Xj)

Wh1(Xj −Xi){Kh2(Yj − Yi)−m(Xi, Yj)}dF (xj, yj)

=
2

n

gn(Xi, Yi)w(Xi, Yi)

pn(Yi|Xi)
− E

{
2δn

n

g(Xi, Yi)w(Xi, Yi)

pn(Yi|Xi)

∣∣∣Xi

}
+ O(δnh

2
1/n + δnh

2
2/n).

Hence

σ2
1A = nE

g2
n(Xi, Yi)w

2(Xi, Yi)

p2
n(Yi|Xi)

− nE

[
E

{
gn(Xi, Yi)w

2(Xi, Yi)

pn(Yi|Xi)

∣∣∣Xi

}]2

+ o(1/h1h2).

Using the results in the proof of Theorem 1, it can be shown that that term
∑

i ψ̃(i)

and
∑

i ϕ
∗(i) are asymptotically uncorrelated and asymptotically jointly normal. By

combining the results obtained above, we complete the proof. ¤

Proof of Theorem 4

With the rates specified in the theorem,

d1n/σ
∗
1 = d2b + dO(1)
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where b and O(1) are two constants, independent of d. For any given small η, when

d is small enough, |d1n/σ
∗
1| ≤ η and σ∗1 = σ1{1 + o(1)}. First of all, since we have

dropped the assumption n(h5
1 + h5

2) → 0, inspecting the proof of Theorem 1, we have

to add a term of order Op(n
1/5) to T1 to reflect the non-negligible terms such as T ∗

2

and T ∗
3 , which is of order Op{n(h4

1 + h4
2)} = OP (n1/5). In other words, under the null

hypothesis, with the selected bandwidths,

(T1 − µ1)/σ1 = OP (1).

Hence, the sequence of the critical value cα is bounded.

Similarly, since the assumption n(h5
1 +h5

2) → 0 has been dropped, Theorem 3 now

becomes

(T1 − µ1 − d1n)/σ∗1 = OP (1). (S.18)

Now the power at the alternative pn(y|x) is given by

P

{
T1 − µ1

σ1

> cα

∣∣∣H1n

}
= P

{
T1 − µ1 − d1n

σ∗1
>

cασ1

σ∗1
− d1n

σ∗1

∣∣∣H1n

}

≤ P

{
T1 − µ1 − d1n

σ∗1
>

cασ1

σ∗1
− η

∣∣∣H1n

}
.

By Slutsky’s theorem and Theorem 3, we have

lim sup
d→0

lim sup
n→∞

P

{
T1 − µ1

σ
> cα

∣∣∣H1n

}
≤ α,

For any given M , by taking the constant d sufficiently large, when n is large

enough,

d1n/σ
∗
1 ≥ M.

Thus, we have

P

{
T1 − µ1

σ1

> cα

∣∣∣H1n

}
≥ P

{
T1 − µ1 − d1n

σ∗1
> cα −M

∣∣∣H1n

}
.

By (S.18), the above random variables are tight. Hence, we have

lim inf
M→∞

lim inf
n→∞

P

{
T1 − µ1

σ
> cα −M

∣∣∣H1n

}
= 1.

This completes the proof of Theorem 4. ¤
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Proof of Theorem 5

First of all, decompose

T3 =
n∑

i=1

{P̂n(Yi|Xi)− P (Yi|Xi)}2w(Xi)

=
n∑

i=1

{P̂n(Yi|Xi)− Pn(Yi|Xi)}2w(Xi) +
n∑

i=1

G2
n(Xi, Yi)w(Xi)

+ 2
n∑

i=1

Gn(Xi, Yi){P̂n(Yi|Xi)− Pn(Yi|Xi)}. (S.19)

The first term, as shown in Theorem 2, follows asymptotically the normal distribu-

tion with mean µ3 and variance σ2
3. Since δ2

n ³ (nh1)
−1, the second term can be

approximated as

n∑
i=1

G2
n(Xi, Yi)w(Xi) = nEG2

n(X,Y )w(X) + op(1/
√

h1).

To deal with the third term, let us decompose, as in the proof of Theorem 2,

P̂n(Yi|Xi)− Pn(Yi|Xi) = Ani + Bni.

Then, using conventional arguments in the local linear regression, we have

2
n∑

i=1

Gn(Xi, Yi)Bni = Op(nh2
1δn) = oP (1/

√
h1).

For the term involving Ani, we have

n∑
i=1

Gn(Xi, Yi)Aniw(Xi)

=
n∑

i=1

n∑
j=1

Gn(Xi, Yi)w(Xi)

nf(Xi)
Wh1(Xj −Xi){I(Yj < Yi)− Pn(Yi|Xj)}+ op(1/

√
h)

=
n∑

i6=j

Gn(Xi, Yi)w(Xi)

nf(Xi)
Wh1(Xj −Xi)

{
I(Yj < Yi)− Pn(Yi|Xj)

}
+ O(δnh

−1
1 ) + o(1/

√
h1).

(S.20)
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Similar to the proof of Theorem 3, the first term is a U−statistic with zero mean,

which can be shown to be asymptotically normal with mean zero and variance 4σ2
3A.

Since the proof is nearly identical to that in the proof of Theorem 3, we only compute

σ2
3A here.

Let Ψ(i, j) be the typical element of (S.20). As the proof of Theorem 3, we also

define that Ψ∗(i, j) = Ψ(i, j) + Ψ(j, i) and Ψ∗(i) =
∫

Ψ∗(i, j)dF (xj, yj). Then.

σ2
3A = nE

{∫
Gn(Xi, Yj)w(Xi)I(Yi < Yj)dP (Yj|Xi)

}2

− n

{
E

∫
Gn(Xi, Yj)w(Xi)P (Yj|Xi)dP (Yj|Xi)

}2

.

Since EΨ∗(i) = 0, and this U−statistic in (S.20) is asymptotically independent

of the U−statistic in the first term of (S.19). Consequently, we obtain the resulting

normality as shown. ¤

Technical lemmas

The following two lemmas are extension of a uniform convergence result of Mack and

Sliverman (1982) to geometrically mixing processes. The proofs are similar to those

of Theorem 5.3 and Lemma 5.1 in Fan and Yao (2003).

Lemma 1. Let (X1, Y1), . . . , (Xn, Yn) be a stationary sequence satisfying the mixing

condition |β(l)| = O(e−λl) for some λ > 0 with an invariant density p(x, y). Then,

under Condition 2, we have

sup
(x,y)∈Ω

∣∣∣∣∣n
−1

n∑
t=1

{Wh1(Xt − x)Kh2(Yt − y)− E[Wh1(Xt − x)Kh2(Yt − y)]}
∣∣∣∣∣

= Op[{nh1h2/ log(n)}−1/2],

provided that h1 → 0 and h2 → 0 in such a way that nh1h2/ log n → ∞, where Ω is

a compact set over which p(x, y) is bounded and Lipschiz continuous.
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Lemma 2. Under the conditions of Lemma 1 and Condition 2, if the marginal

density π(x) of X and the function m(x, y) are Lipschitz in x for all (x, y) on a

compact set Ω, then we have

sup
(x,y)∈Ω

∣∣∣∣∣n
−1

n∑
t=1

{Wh(Xt − x)m(Xt, y)− E[Wh(Xt − x)m(Xt, y)]}
∣∣∣∣∣ = Op[{nh/ log(n)}−1/2],

provided that h → 0 and nh/ log n →∞.

The following lemma is the uniform convergence result for the local linear fit of

the conditional density. The proof is similar to those for Theorems 5.3 and 6.5 of Fan

and Yao (2003).

Lemma 3. For the local linear fit of the conditional density, under Conditions 2, 4

and 5, we have

sup
(x,y)∈Ω∗

|p̂(y|x)− p(y|x)− θn,0| = Op({nh1h2/ log(n)}−1/2),

provided that h1 and h2 converge to zero in such a way that nh1h2/ log n →∞, where

θ0(x, y) =
h2

1µ2

2

∂2f(y|x)

∂x2
+

h2
2µK

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2).

The following lemma is a part of Lemma 1.3 of Bosq (1998).

Lemma 4. If (X,Y ) has a absolutely continuous distribution with respect to the

Lebesgue measure on R2d and

g(X,Y )(x, y) = f(X,Y )(x, y)− fX(x)fY (y); x, y ∈ Rd

satisfies Lipschitz’s condition

|g(x′, y′)− g(x, y)| ≤ C(‖x′ − x‖2 + ‖y′ − y‖2)1/2

for some constant C, then there exists a constant γ(d, C) such that

‖g‖∞ ≤ γ(d, C)α1/(2d+1),

where α = α(σ(X), σ(Y )) = sup
B∈σ(X),C∈σ(Y )

|P (B ∩ C) − P (B)P (C)| and σ(X), σ(Y )

are the sigma fields generated by X and Y respectively.
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The following lemma, due to Lee (1990) (see Lemma B there), is often used for

U−statistics of weakly dependent stationary sequences.

Lemma 5. Let t1 < t2 < · · · < tk, {Xi} be a stationary sequence, and F,Gj and

Hj be the distribution function of (Xt1 , . . . , Xtk), (Xt1 , . . . , Xtj) and (Xtj+1
, . . . , Xtk)

respectively. Then for any measurable function h, we have
∣∣∣∣
∫

hdF −
∫ ∫

hdGjdHj

∣∣∣∣ ≤ 3M
1

1+δ β
δ

1+δ (tj+1 − tj).

provided that for some δ > 0

M = max

(∫
|h|1+δdF,

∫ ∫
|h|1+δdGjdHj

)
< ∞.

The following two lemmas are proved in Hjellvik et al. (1998). Gao and King

(2004) have extended those results to α-mixing sequences.

Lemma 6. (i) Let ϕ(·, ·, ·) be a symmetric Borel function defined on Rp ×Rp ×Rp.

Assume that for any constants x, y ∈ Rp, E{ϕ(ξ1, x, y)} = 0. Then, there exists a

constant c such that

E

{ ∑

1≤i<j<k≤n

ϕ(ξi, ξj, ξk)

}2

≤ cn3 max

{
M

1
1+δ

n∑

k=1

k2β
δ

1+δ (k), max
j>i>1

E[ϕ(ξ1, ξi, ξj)]
2

}
,

where δ > 0 is a constant for which

M = max
1≤i<j≤n

max
{

E|ϕ(ξ1, ξi, ξj)|2(1+δ),

∫
|ϕ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi, ξj),

∫
|ϕ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1, ξi)dP (ξj),

∫
|ϕ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi)dP (ξj)

}
.

(ii) Let ϕ(·, ·) be a symmetric Borel function defined in Rp×Rp. Assume that for

any constant x ∈ Rp, E{ϕ(ξ1, x)} = 0. Then, there exists a constant c such that

E

{ ∑
1≤i<j≤n

ϕ(ξi, ξj)

}2

≤ cn2 max

{
M

1
1+δ

n∑

k=1

kβ
δ

1+δ (k), max
i>1

E[ϕ(ξ1, ξi)]
2

}
,

where δ > 0 is a constant for which

M = max
1<i≤n

max
{

E|ϕ(ξ1, ξi)|2(1+δ),

∫
|ϕ(ξ1, ξi)|2(1+δ)dP (ξ1)dP (ξi)

}
.
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Suppose that ϕn(·, ·) is a symmetric Borel function defined on Rp × Rp, which

may depend on the sample size n. Assume further that there exists a sequence of

σ-algebras F1 ⊂ F2 ⊂ · · · for which ξj ∈ Fj, and

(i) E{ϕn(x, ξ1)} = 0 for any x ∈ Rp,

(ii) E{ϕn(ξi, ξj)|Fj−1} = 0, for any i < j.

Let ϕij = ϕn(ξi, ξj), σ
2
ij = Var(ϕij), and σ2

n =
∑

1≤i<j≤n

σ2
ij. For some constant δ > 0,

define

Mn1 = max
i<j

max

{
E|ϕ1jϕij|1+δ,

∫
|ϕ1jϕij|1+δdP (ξ1)dP (ξi, ξj)

}
,

Mn2 = max
i<j

max
{

E|ϕ1jϕij|2(1+δ),

∫
|ϕ1jϕij|2(1+δ)dP (ξ1)dP (ξi, ξj),

∫
|ϕ1jϕij|2(1+δ)dP (ξ1, ξi)dP (ξj),

∫
|ϕ1jϕij|2(1+δ)dP (ξ1)dP (ξi)dP (ξj)

}
,

Mn3 = max
i<j

E|ϕ1jϕij|2, Mn4 = max
i,j,k different

{
max

P

∫
|ϕ1jϕij|2(1+δ)dP

}
,

Mn5 = max
i<j

max

{
E

∣∣∣
∫

ϕ1jϕ1jdP ((x1, y1))
∣∣∣
2(1+δ)

,

∫ ∣∣∣
∫

ϕ1jϕ1jdP (ξ1)
∣∣∣
2(1+δ)

dP (ξi))dP (ξj)

}
,

Mn6 = max
i<j

E
∣∣∣
∫

ϕ1jϕ1jdP (ξ1)
∣∣∣
2

.

where the maximization on P in the equation for Mn4 is taken over the four proba-

bility measures

P (ξ1, ξi, ξj, ξk), P (ξ1)P (ξi, ξj, ξk), P (ξ1)P (ξi1)P (ξi2, ξi3), and P (ξ1)P (ξi)P (ξj)P (ξk), where

(i1, i2, i3) is the permutation of (i, j, k) in the ascending order.

Lemma 7. If for some δ > 0,
∑∞

k=1 k2{β(k)} δ
1+δ < ∞, and

max
1

σ2
n

{
n2{M

1
1+δ

n1 + M
1

2(1+δ)

n5 + M
1
2
n6}, n

3
2{M

1
2(1+δ)

n2 + M
1
2
n3 + M

1
2(1+δ)

n4 }
}
→ 0,

as n →∞, then σ−1
n

∑
1≤i<j≤n

ϕ(ξi, ξj) is asymptotically normal with mean value 0 and

variance 1.
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