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Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semipara-
metric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic
behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariates goes to infin-
ity as the sample size goes to infinity. Strong and weak convergence are obtained. We also suggest an estimation procedure of the Bayes
information criterion type to ascertain the dimension of the CDR space and derive the consistency. A simulation study is conducted.
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1. INTRODUCTION

Large-scale data analysis has recently received much atten-
tion. Reducing the dimensions of data without loss of informa-
tion is a natural manner in which to proceed with such analysis.
In this area, Li (1991) considered a semiparametric regression
model in which the response variable y depends on the covari-
ates x = (x1, . . . , xp)

T through K linear combinations of the
components, xi’s. His model can be generalized to a conditional
independence statement. Let β1, . . . ,βK be K orthogonal p × 1

vectors, the norms of which are ‖β i‖ =
√

β2
i1 + · · · + β2

ip = 1
for i = 1, . . . ,K, where βij, j = 1, . . . ,p, are the components
of β i. When (βT

1 x, . . . ,βT
Kx) is given, y is independent of x,

that is,

y⊥⊥ x|(βT
1 x, . . . ,βT

Kx), (1)

where “⊥⊥” represents independence.
A dimension-reduction subspace (Cook 1994, 1998) is de-

fined as the column space of any p × K (K ≤ p) matrix B =
(β1, . . . ,βK) such that (1) holds. For uniqueness, we are in-
terested in a subspace with minimal dimensions. Under mild
conditions, the minimal subspace is often uniquely defined in
practice and coincides with the intersection of all subspaces
that satisfy (1) (Cook 1994, 1996). This intersection is called
the central dimension-reduction (CDR) space and is written
as Sy|x. In this article we assume that Sy|x exists.

Sliced inverse regression (SIR) (Li 1991) can be used to es-
timate Sy|x. This method is popular in the literature. Li (1991)
derived the asymptotic results under the assumption that x is
normally distributed, Hsing and Carroll (1992) proved the as-
ymptotic normality of the slicing estimator when each slice
contains two points, Zhu and Ng (1995) obtained the asymp-
totic normality for general cases, and Zhu and Fang (1996)
studied the asymptotic behavior of a kernel estimator. Other
important estimation approaches have also been treated in the
literature, including sliced average variance estimates (SAVE)
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(Cook and Weisberg 1991; Cook 2000), parametric inverse re-
gression (PIR) (Bura and Cook 2001a,b), and the proposed hy-
brid methods of Zhu, Ohtaki, and Li (2006) that are convex
combinations of SIR and SAVE. Another relevant work is that
of Cook and Li (2002).

All of the existing studies of asymptotics for model (1) are
related to cases with a fixed dimension p and a sample size,
say n, that is comparably high. However, it is often the case
that the number of covariates is also large. Li (1991) first raised
this issue and suggested the importance of studying it fur-
ther. Recent research with covariates of a very high dimen-
sion also demonstrates this necessity. These kinds of datasets
include gene expression data, DNA microarray data, and con-
sumer financial history data. Golub et al. (1999) brought to
life a whole new branch of data analysis under the name
of microarray analysis. Data with high-dimensional covari-
ates also appear in other areas. Zhu, Zhu, and Li (2006) ana-
lyzed a dataset of agricultural meteorological disasters. They
explored the relationship between the yields of three crops
and meteorological conditions. The dimension p of the covari-
ate was also comparably high. Greenshtain and Ritov (2004)
studied the asymptotics of lasso methods when p goes to
infinity as n tends to infinity. Bickel and Levina (2004) investi-
gated the asymptotic properties for Fisher’s linear discriminant
analysis (for relevant data analysis see Levina 2002). Conven-
tional methods are limited for this kind of data analysis, and
dimension-reduction methods may be helpful. Among others,
Antoniadis, Lambert-Lacroix, and Leblanc (2003) applied a rel-
evant method, MAVE, proposed by Xia, Tong, Li, and Zhu
(2002), to analyze gene expression data for classification, and
Bura and Pfeiffer (2003) used SIR and SAVE for DNA microar-
ray data. Related work was done by Chiaromonte and Martinelli
(2002).

Furthermore, to apply SIR to estimate Sy|x, the linearity con-
dition as designed by Li (1991) must be checked. Note that the
linearity condition cannot be always met in cases in which the
dimensions are small or moderate. Hall and Li (1993) proved
that when p → ∞ as n → ∞, the linear combinations of the
covariates are approximately normally distributed. This ensures
that the linearity condition for SIR is asymptotically satisfied.
Therefore, for cases in which the dimensions are high, SIR can
work well. This stimulates us to study the asymptotic behavior
of SIR with high-dimensional covariates.
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The asymptotic research for the p → ∞ case is very chal-
lenging, however. The literature contains some relevant studies
on covariance matrices. It is impossible to uniformly formulate
the asymptotic results for different ratios λ = p/n when p di-
verges to infinity as n tends to infinity (see Bai and Saranadasa
1996; Bai 1999 for details). This demonstrates the significant
difference in convergence between the case with a fixed p and
that with a varying p.

The estimate for a matrix based on SIR has a much more
complicated structure than the sample covariance matrix. In this
article we explore the asymptotic structure of SIR matrix esti-
mate, then investigate the strong and weak convergence when
p → ∞ as n → ∞.

Another important issue is determinating the dimension
of Sy|x. For SIR, Li (1991) suggested a sequential chi-squared
test procedure to determine the dimensions. Schott (1994) ex-
tended this procedure to the situation in which the vector of
explanatory variables is sampled from an elliptically symmet-
ric distribution. Velilla (1998) also considered a sequential test.
Bura and Cook (2001a) suggested a general weighted chi-
squared sequential test that does not require the assumption that
covariates follow a normal distribution. It should be noted that
the significance level at each step in a sequential test procedure
does not determine the significance level of the entire proce-
dure, and that the retained dimension depends on the choice
of significance level. Taking this into account, Ferré (1998)
proposed an approach to determine the dimension of Sy|x. Al-
though his method is somewhat similar to that of Li (1991),
it does not need a sequential test, and it selects the dimension
automatically.

We suggest a new procedure of the Bayes information crite-
rion (BIC) (Schwarz 1978) type for determinating dimensions.
Consistency of the estimator of the dimensions is obtained.

To the best of our knowledge, this is the first article to ad-
dress the problem of high-dimensional covariates in the con-
text of SIR, and it also presents a useful new methodology for
dimension estimation. For example, the results can be used to
deal with the problem of agricultural meteorological disasters,
as studied by Zhu, Ohtaki, and Li (2006).

The article is organized as follows. In Section 2 we give
a brief description of SIR. We provide the consistency results
when p → ∞ as n → ∞ in Section 3. In Section 4 we present
our BIC-type procedure for determining the dimension of Sy|x
and the consistency result for this procedure. We report simula-
tions in Section 5 and give technical proofs of the theorems in
the Appendix.

2. A BRIEF DESCRIPTION OF SLICED
INVERSE REGRESSION

Denote by P(·) the projection operator in the standard inner
product (see Cook 1998). When x is standardized, assume that
the linearity condition is satisfied, that is,

E
(
x
∣∣PSy|x x

)= PSy|x x. (2)

Then, under (1), the centered “inverse regression,” E(x|y) −
E(x), is confined to Sy|x. This means that

SE(x|y) ⊂ Sy|x,

where SE(x|y) represents the space spanned by the centered “in-
verse regression” E(x|y) − E(x). As Chiaromonte, Cook, and
Li (2002) discussed, if we assume that

y⊥⊥x|PSE(x|y)x, (3)

and if (2) holds, then SE(x|y) = Sy|x. In other words, an esti-
mate of SE(x|y) would provide a good approximation to Sy|x.
If condition (3) is not satisfied, then, following the suggestion
of Li (1991) and Cook and Weisberg (1991), we can explore
higher conditional moments of x given y or consider the so-
called “central kth-moment subspace” (CKMS) (Yin and Cook
2002). We assume that SE(x|y) = Sy|x and restrict our attention
to SIR.

In the general case, �−1
x SE(x|y) = Sy|x. Note that {�−1

x η1,

. . . ,�−1
x ηK} is a basis of Sy|x, where η1, . . . ,ηK are the eigen-

vectors associated with the K largest eigenvalues of the matrix
cov{E(x|y)}. Therefore, to estimate Sy|x, we need only construct
an estimate of cov{E(x|y)}. In contrast, it is well known that

�x = cov{E(x|y)} + E{cov(x|y)} =: cov{E(x|y)} + �p.

Thus, by estimating �p and �x, we can also obtain an estimate
of cov{E(x|y)}, and then the estimate of Sy|x.

Alternatively, we can derive the estimate of Sy|x using the
standardized variable x, z = �

−1/2
x {x − E(x)}. As is known,

Sy|z = �
1/2
x Sy|x (see Li 1991; Cook 1998, chaps. 10 and 11).

Hence {�−1/2
x η′

1, . . . ,�
−1/2
x η′

K} is also a basis of Sy|x, where
η′

1, . . . ,η
′
K are the eigenvectors associated with the K largest

eigenvalues of matrix cov{E(z|y)}.
Li (1991) suggested two ways to estimate the basis of Sy|x.

Once we have an estimate �̂x of �x, we can either estimate
cov{E(x|y)} directly or estimate �p first and then estimate
cov{E(x|y)} by �x − �p. The same can be applied to z. The
following estimate is for �p.

Let {(yi,xi), i = 1, . . . ,n} be an iid sample and, according
to the value of yi, denote the order statistics by (y(i),x(i)), i =
1, . . . ,n, where y(1) ≤ · · · ≤ y(n) and x(i) are called the con-
comitant of y(i) (see Yang 1977). We introduce a double sub-
script (h, j) in which the first element refers to the slice number
and the second number refers to the order number of an obser-
vation in the given slice, that is,

y(h,j) = y(c(h−1)+j), x(h,j) = x(c(h−1)+j),

where c > 0 is the number of y(i) in every slice. The estimate �̂p

of �p has the form

�̂p = 1

H

H∑

h=1

{
1

c − 1

c∑

j=1

(

x(h,j) − 1

c

c∑

�=1

x(h,�)

)

×
(

x(h,j) − 1

c

c∑

�=1

x(h,�)

)T}

, (4)

where H = [(n + c − 1)/c] is the number of slices where [a] is
the largest integer part of a. In practice, the number of y(i) in
the last slice may be less than c, but this has little effect on SIR,
because the number of slices H is very large.

When the dimension p of x is fixed, Hsing and Carroll (1992)
proved the root-n consistency of the estimate �̂p for the case in
which each slice contains two of the ordered y(i), that is, c = 2.
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Zhu and Ng (1995) established the root-n consistency for the
case where c is an arbitrarily fixed number and the case where
c → ∞ as n → ∞. We study the asymptotic properties of �̂p
and �̂x − �̂p.

3. ASYMPTOTIC PROPERTIES OF SLICED INVERSE
REGRESSION WITH LARGE p

Let (yi,xi), i = 1, . . . ,n, be an independent and identically
distributed (iid) sample. Denote the inverse regression curve
and the associated residual by m(y) = E(x|y) and

εi = xi − m(yi) and ε(i) = x(i) − m
(
y(i)

)
,

i = 1, . . . ,n. (5)

Here m(y) is a p-dimensional vector with components mi(y) =
E(xi|y), i = 1, . . . ,p. Note that the ε(i)’s are also concomi-
tants of the y(i). It is clear that the εi’s are iid and that (see
Yang 1977) they are independent with mean 0 when the or-
der statistics, y(i)’s, are given. Because p → ∞ as n → ∞, all
p,xi,�x, y(i), ε(i), and m(y(i)) depend on n and should be de-

noted by pn, x(n)
i ,�

(n)
x , y(n)

(i) , ε
(n)
(i) , and mn(y

(n)
(i) ). For notational

simplicity, we omit “n” from the subscripts and superscripts un-
less stated otherwise.

To study the asymptotic behavior, we need smoothness con-
ditions on the inverse regression curve m(y). Let �n(B) be the
collection of all n-point partitions, −B ≤ y∗

(1) ≤ · · · ≤ y∗
(n) ≤ B,

of the interval [−B,B], where B > 0 and n ≥ 1. Any vector-
valued or real-valued function, m(y), is said to have a total vari-
ation of order r if, for any fixed B > 0,

lim
n→∞

1

nr√p
sup

�n(B)

n−1∑

i=1

∥∥m
(
y∗
(i+1)

)− m
(
y∗
(i)

)∥∥= 0, (6)

where ‖ · ‖ is the Euclidean norm—namely, ‖A‖ is the root
of the squared sum of all elements of A. A similar defini-
tion of total variation has been given by Hsing and Carroll
(1992) and Zhu and Ng (1995), except for the value

√
p in

the denominator. We have this value because in the Euclidean
norm of m(y∗

(i+1)) − m(y∗
(i)) there are p terms to be summed.

We use
√

p to average these terms. There are many functions
of total variation; a special case is the function that satisfies
the Lipschitz condition. This can be easily seen because for
some C > 0, ‖m(y∗

(i+1)) − m(y∗
(i))‖ ≤ C

√
p‖y∗

(i+1) − y∗
(i)‖ and

(1/
√

p )
∑n

i=1 ‖m(y∗
(i+1)) − m(y∗

(i))‖ ≤ C‖y∗
(n) − y∗

(1)‖ ≤ 2CB.
Thus, such a function is of a total variation of any order r > 0.

Furthermore, for the components mi(·) of m(·), if there is
a nondecreasing real-valued function M and a real number B0
such that for any two points, say y1 and y2, both in (−∞,−B0]
or [B0,∞),

|mi(y1) − mi(y2)| ≤ |M(y1) − M(y2)|, i = 1, . . . ,p, (7)

then we say that the function m(y) is nonexpansive in the metric
of MB0 on both sides of B0.

The following theorem states the strong and weak conver-
gence of ‖�̂p − �p‖.

Theorem 1. Assume that the following conditions are satis-
fied:

(A) supi≤p E(|xi|l) < C1 for some constants l ≥ 4 and C1,
where x = (x1, . . . , xp)

T .

(B) The inverse regression function m(y) has a total varia-
tion of order r, 0 < r < 1/4. When p converges to infinity, yi are
dependent on n, and we assume the following condition.

(C) Let Fn(·) be the distribution from which the sample yi’s
are drawn. Let Y be the random variable following the dis-
tribution Fn(·). Suppose that there are two random variables,
W1 and W2, with distributions G1 and G2 such that G1(x) ≤
Fn(x) ≤ G2(x); that is, W2 ≺ Y ≺ W1, where “≺” represents
“stochastically less than.” Similarly “�” represents “ stochasti-
cally greater than.”

(D) For any B0, m(y) is nonexpansive in the metric of
MB0(y) on both sides of a positive number B0, such that
l × r > 2 for the l of condition (A),

E
(|M(W1)|l

)
< ∞ and E

(|M(W2)|l
)
< ∞.

Then we have for any fixed c ≥ 2, when p =
o(nmin{1/2,1−2/l−2r}) as n → ∞,

‖�̂p − �p‖ = Op
(
pn−1/2)

and

‖(�̂x − �̂p) − (�x − �p)‖ = Op
(
pn−1/2).

When p = o(n1/4/(log n)), the foregoing two terms almost
surely have the convergence rate o(pn−1/4(log n)).

Remark 1. Condition (A) is almost necessary for obtaining
the rate of weak convergence with root n. When p is fixed,
the existence of a fourth moment is a necessary condition (see
Petrov 1995). Condition (B) assumes the smoothness of the in-
verse regression m(y). It is slightly stronger than that of Zhu
and Ng (1995) when p is fixed; therefore, it is quite mild. As
for conditions (C) and (D), they are special for our problem. In
the case where p is fixed and the distribution Fn of yi is also
independent of n, conditions (C) and (D) are reduced to those
of Zhu and Ng (1995). Hence the conditions are needed to uni-
formly bind the distribution series Fn(·).

Remark 2. For high-dimension p, it is a natural concern
whether �̂x will be ill-conditioned, because the inverse matrix
�̂

−1
x is needed when standardized variable z is used to con-

struct the estimate of the CDR space. It is noteworthy that for

a fixed p, when n is large, �̂
−1
x cannot be ill-conditioned if

�x is of full rank. When p is large, x is normally distributed,
and �x is of full rank, the smallest and largest eigenvalues of
�

−1/2
x �̂x�

−1/2
x − Ip converge to 0 almost surely as n → ∞

and p/n → 0. That is, for large p, once n is large enough,

�̂x and �̂
−1
x are also of full rank. Thus the ill-conditioning

problem can also be avoided (see Bai 1999). In our case, p =
o(nmin{1/2,1−2/l−2r}) satisfies this requirement.

Remark 3. In the cases where all moments of x exist and the
total variation of order r is small, p = o(nmin{1/2,1−2/l−2r}) can
be close to O(n1/2). It is noteworthy that p = O(n1/2) is the
fastest possible rate if we do not assume extra conditions. This
is because each element of �̂p − �p has an optimal rate n−1/2

and ‖�̂p − �p‖ is the root of the squared sum of p2 elements.
The resulting rate of ‖�̂p −�p‖ must have a factor p. But some
data, such as DNA microarray data, have even higher dimension
than the sample size. In this case the asymptotic behavior of the
estimate is very difficult to study unless �̂p − �p has a special
structure. This is an important issue that merits further study.
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Remark 4. The choice of the number, c, of data points in
each slice is of practical importance. When p is fixed, Zhu and
Ng (1995) derived that for a wide range of c, the convergence of
the estimate can be achieved. When p varies with n, we have not
obtained a similar result for the case with c → ∞ and c/n → 0
as n → ∞ due to technical difficulties. However, we guess that
if the convergence rate of c is much slower than that of p, then
the consistency may still hold. We will consider this problem in
a future study. When c is proportional to n (i.e., the number of
slices is fixed), the CDR space can still be estimated, because
the space that is determined by an approximation of �x −�p is
a subspace contained in the CDR space although the estimator
is not consistent with the matrix �x − �p. In this case the as-
ymptotics are much easier to study. The basic idea is as follows.
In each slice there are n/H data points where H is a fixed num-
ber. Hence we can immediately use central limit theorems to a
H-dimensional vector, the components of which are the sam-
ple covariance matrices based on the data in each slice. This
is because each sample covariance matrix can be rewritten as-
ymptotically as a sum of iid random variables; see the relevant
work of Li and Zhu (2004).

Remark 5. By the known result of strong convergence
about the sum of independent random variables (see Petrov
1995, thm. 9.20, p. 278), we can easily derive that almost
surely ‖�x − �̂x‖ = O(pn−1/2 log n). The proof is given in
the Appendix. Similar to Corollary 1, we can also derive
the convergence of the eigenvalues of �̂x. Let {γi} and {γ̂i}
be the eigenvalues of �x and �̂x. Under the condition that
limp→∞ min1≤i≤p{γi} > b > 0, we also have that when n is
large, limp→∞ min1≤i≤p{γ̂i} > b/2 > 0. Note that

�̂
−1
x − �−1

x = �−1
x (�x − �̂x)�̂

−1
x .

By Lemma A.2 in the Appendix, the symmetry of both
�̂x and �−1

x and Corollary 1, it is not difficult to show that

‖�−1
x − �̂

−1
x ‖ ≤ 1

(min1≤i≤p{γi}min1≤i≤p{γ̂i})‖�x − �̂x‖

= O
(
pn−1/2 log n

)
a.s.

Together with Theorem 1 and Corollary 1, we can obtain the
same convergence rates as those of Theorem 1 for the estimate
of the basis, {�−1

x η1, . . . ,�
−1
x ηK}. Hence, when we use the

standardized variable z = �̂
−1/2
x (x − E(x)), the asymptotic re-

sults of Theorem 1 and Corollary 1 are also similar.

Consider the convergence of the eigenvectors associated with
the largest K eigenvalues of �̂x − �̂p and the projection spaces
of these eigenvectors. Let λp1 ≥ · · · ≥ λpp denote the eigenval-
ues of �x − �p and λ̂p1 ≥ · · · ≥ λ̂pp denote the eigenvalues
of �̂x − �̂p. Furthermore, let Pλpi and Pλ̂pi

be the projection

spaces associated with λpi and λ̂pi. Note that if an eigenvalue
is distinct from others, then the corresponding projection space
is the space spanned by the associated eigenvector. Theorem 1
implies the following corollary.

Corollary 1. Assume that the conditions of Theorem 1 hold.
For each i = 1, . . . ,K, |λpi − λ̂pi| converges in probability to 0 at
the same rates as in Theorem 1. In addition, assume that λp1 ≥

· · · ≥ λpK are distinct in the sense that

lim inf
n→∞

∣∣λp(i−1) − λpi
∣∣> 0, i = 2, . . . ,K.

Then, for i = 1, . . . ,K, ‖Pλpi − Pλ̂pi
‖ also converge in probabil-

ity to 0 at the same rate as in Theorem 1.

4. DETERMINATION OF THE DIMENSION OF Sy|x

Differing from the methods in the literature, we suggest a
procedure of the BIC type for determining the dimension. It can
be used to handle the problems with high-dimensional covari-
ates. The procedure is easy to implement and the consistency of
the estimate is established.

Zhao, Krishnaiah, and Bai (1986a,b) studied a problem of
detecting the number of signals from noise. By analyzing the
eigenvalues of the covariance matrix of the sample, they pro-
posed a BIC-type model selection procedure to determine the
number of signals and proved the consistency of the estimate.
There is some similarity between their problem and the deter-
mination of the dimension of Sy|x. We now borrow their idea to
construct a determination criterion.

Let � = �x −�p = cov{E(x|y)} and �̂ = �̂x − �̂p. Because
the smallest p − K eigenvalues of � are 0, we can consider
the largest K eigenvalues the signals and the value of K the
number of signals. To apply the method used by Zhao et al.
(1986a,b), we artificially add an identity matrix Ip, which acts
as a covariance matrix of white noise to � and �̂ .

Let � = � + Ip and �̂ = �̂ + Ip. Let θ1 ≥ θ2 ≥ · · · ≥ θp be
the eigenvalues of � and θ̂1 ≥ θ̂2 ≥ · · · ≥ θ̂p be the eigenvalues
of �̂. It is clear that θi = λi + 1, where λi are the eigenvalues
of � . Determining the dimension of Sy|x now becomes estimat-
ing K, the number of the eigenvalues of Ω >1.

Borrowing the idea of maximum likelihood estimation in the
normal distribution case, we define

log L(θ) = −n

2
log |�| − n

2
tr�−1�̂, (8)

because it is a function of θ = (θ1, . . . , θp). Let �k be the set
consisting of all values such that θ1 ≥ θ2 ≥ · · · ≥ θk > 1 and
θk+1 = · · · = θp = 1. In addition, let τ denote the number of θ̂i’s
that are >1. According to Zhao et al. (1986a,b), we can have a
specific form of supθ∈�k

log L(θ),

sup
θ∈�k

log L(θ) = −n

2

p∑

i=1

log θ̂i − np

2

+ n

2

p∑

i=1+min(τ,k)

(log θ̂i + 1 − θ̂i). (9)

Note that this supreme does not involve the unknowns relating
to the matrix � and its eigenvalues, θi’s. For defining the esti-
mator K̂ of the true dimension K, (9) is equivalent to

n

2

p∑

i=1+min(τ,k)

(log θ̂i + 1 − θ̂i).

and thus we can define a procedure based on it. A criterion of
BIC type is defined as follows. Let

log Lk = n

2

p∑

i=1+min(τ,k)

(log θ̂i + 1 − θ̂i) (10)
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and

G(k) = log Lk − Cnk(2p − k + 1)

2
, (11)

where the second term is the penalty term, Cn is a penalty con-
stant, and k(2p − k + 1)/2 equals the number of free parame-
ters of (8) needed to estimate when θ ∈ �k. It can be justified
as follows. When k is fixed, the SIR matrix � is p × p being
of rank k. Hence the last p − k columns of this matrix are the
linear combinations of the first k columns. The total number
of the parameters in these k columns is kp. Furthermore, be-
cause of the symmetry of the matrix, in the left-upper k × k
submatrix k(k − 1)/2 elements are the same as those above
the diagonal. Hence the total number of the free parameters is
kp − k(k − 1)/2 = k(2p − k + 1)/2.

The estimator of K is defined as the maximizer K̂ of G(k)
over k ∈ {0, . . . ,p − 1}, that is,

G(K̂) = max
0≤k≤p−1

G(k). (12)

The following result states the weak and strong consistency
of K̂.

Theorem 2. Assume that p = O(ns), K is a constant indepen-
dent of n, ‖� − �̂‖ = OP(n−t) [or O(n−t) a.s.], t > 0,2t > s,
and Cn satisfies the following:

(a) limn→+∞ Cn/n1−s = 0
(b) limn→+∞ Cn/n1−2t = ∞.

Then K̂ − K = oP(1) or = o(1) a.s.

Remark 6. From the proof of Theorem 1, we know that there
are s and t satisfying the designed conditions of Theorem 2. If
p = O(ns) and Cn = O(na), then, from the results of Theorem 1,
we derive that for any small η > 0,

‖� − �̂‖ = Op
(
n2s−1/2) or O

(
ns+η−1/4) a.s.

Thus, from Theorem 2, the power a of Cn can be chosen within
the range 1 − 2t = 4s < a < 1 − s for the weak convergence
and 1/2 + 2s < a < 1 − s for the strong convergence. If p is
fixed, then s = 0, and we can select a in the interval [0,1) and
[1/2,1) for the weak and strong convergence. Therefore, the
range is fairly wide.

Remark 7. In our procedure, we artificially add a covariance
matrix, Ip, to the matrix � . There is an alternative to construct-
ing �. Note that �x = � + �p. Then, if �p is nonsingular, we
can replace the previous � and �̂ by

� = �x�
−1
p = ��−1

p + Ip and

�̂ = �̂x�̂
−1
p = �̂�̂

−1
p + Ip.

Remark 8. Note that the BIC-type method consistently esti-
mates the dimension of the CDR space under the condition that
the estimator of SIR matrix is consistent at some rate. The limit
distribution is not necessary. Therefore, the method is easy to
use and is readily extended to other dimension-reduction meth-
ods, such as SAVE and MAVE. In contrast, the popular sequen-
tial test method can be easily used when the limit distribution
of the estimator of the SIR matrix is available and its limiting
variance is easy to estimate; otherwise, we must use a Monte
Carlo approximation to simulate its distribution. Permutation

(e.g., Cook and Weisberg 1991) or the bootstrap may be ap-
plicable if the consistency of these approximations can be veri-
fied.

5. SIMULATION STUDY

To investigate the performance of estimation and dimension-
ality determination by the BIC-type method, we carried out a
set of simulations. In this section we report part of the results
of these simulations. We used five models. To measure the dis-
tance between the CDR space and its estimator, we first ob-
tained the eigenvectors {β̂1, . . . , β̂K} associated with the first
K largest eigenvalues of �̂x − �̂p, then multiplied these vec-
tors from the left by �̂

−1
x to form an estimator B of Sy|x. As

suggested by Li (1991), for any i, we use the squared multiple
correlation coefficient R2(β̂ i) to measure the distance between

β̂
T
1 x and B, where

R2(β̂ i) = max
β∈Sy|x

(β̂ i�xβ
T)2

β̂ i�xβ̂
T
i · β�xβ

T
, (13)

and use the average of R2(β̂ i)’s to measure the distance be-
tween B and Sy|x. We can also use the squared trace correlation,
the average of the squared canonical correlation coefficients be-

tween β̂
T
1 x, . . . , β̂

T
Kx and βT

1 x, . . . ,βT
Kx, denoted by R2(B̂), as

our criterion (see also Hooper 1959). These two criteria are sim-
ilar, but in the simulation we report all values of R2(β̂ i)’s, so
that the performance of the estimation can be described more
clearly.

Example 1. Consider the model

y = x1 · (x2 + x3 + 1) + ε, (14)

where ε is normally distributed with mean 0 and variance σ 2.
In the simulation, σ = .5. The variables x1, x2, and x3 are the
components of x = {x1, . . . , xp} (p ≥ 3) and are independent
of ε. x is assumed to have a multivariate normal distribution
N(0, Ip), and the CDR space is spanned by two vectors, β1 =
(1,0, . . . ,0) and β2 = (0,1,1, . . . ,0).

We report the simulation results with n = 400 and 800 in Ta-
ble 1. To examine the sensitivity of the estimator to the selection
of the number of slices, we considered c = 10,20,40, and 80.
All of the reported results are the averages of 500 independent
replicates, and the values in parentheses are the standard devia-
tions.

Looking at Table 1, we see that when n is fixed and p gets
larger, the values of R2(β i)’s get smaller. Clearly, dimension-
ality has an impact on the performance of the estimation. As
expected, when n gets larger, the estimation improves. Com-
paring the case with (p = 10,n = 400) with the case with
(p = 20,n = 800) shows that the magnitudes of R2 are sim-
ilar, as does comparising the case (p = 20,n = 400) and the
case (p = 40,n = 800) also shows this. Thus these examples
indicate that the ratio p/n plays an important role in the conver-
gence of the estimator (see the discussion in Remark 2).

For selecting the number of slices, which is equivalent to se-
lecting the number c of data points in each slice, we found that
generally the range of the slice numbers for selection is fairly
wide. As Zhu and Ng (1995) proved, the root-n consistency
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Table 1. Estimation of the CDR Space With Model (14)

c = 10 c = 20 c = 40 c = 80

p R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

n = 400
10 .90 .71 .91 .78 .93 .80 .92 .76

(.07) (.22) (.05) (.16) (.04) (.10) (.05) (.14)
20 .78 .51 .84 .61 .83 .66 .82 .59

(.12) (.21) (.06) (.18) (.07) (.13) (.07) (.15)
30 .69 .35 .78 .52 .75 .53 .74 .49

(.14) (.21) (.08) (.14) (.09) (.16) (.09) (.14)
40 .60 .29 .71 .42 .72 .43 .70 .39

(.13) (.17) (.10) (.16) (.09) (.16) (.9) (.13)
50 .53 .26 .61 .32 .63 .34 .63 .33

(.17) (.18) (.11) (.16) (.10) (.15) (.10) (.12)

n = 800
10 .96 .87 .96 .91 .96 .92 .97 .92

(.02) (.09) (.02) (.04) (.02) (.05) (.02) (.04)
20 .90 .72 .92 .81 .92 .83 .93 .83

(.04) (.14) (.04) (.10) (.03) (.06) (.03) (.06)
30 .85 .62 .88 .73 .89 .74 .88 .74

(.05) (.16) (.04) (.11) (.04) (.08) (.04) (.08)
40 .80 .51 .83 .64 .85 .69 .84 .67

(.06) (.18) (.04) (.12) (.05) (.09) (.5) (.10)
50 .75 .41 .80 .57 .81 .62 .80 .60

(.09) (.18) (.07) (.13) (.05) (.12) (.05) (.10)

can be maintained in a rather wide range of slice numbers, al-
though the asymptotic variance is affected. The simulation re-
sults given herein support this theoretical conclusion. Another
finding of interest is that the choice of c is not seriously af-
fected by the dimension p. From p = 10–50, the values of R2

with c = 20,40,80 are very similar.
To determine the dimension, we must consider the selection

of Cn when we use the BIC proposed in this article. For a dif-
ferent problem, the choice of Cn has been discussed by Bai,
Krishnaiah, and Zhao (1989). In our simulations, we consid-
ered Cn = c−1Wn where c is the number of data points in each
slice. We used the term c−1 because Zhu and Ng (1995) have
proven that the asymptotic variance of �̂p depends on (c−1)−1,
which then plays the role of a variance σ 2 that is used in the
BIC for variable selection (see Eubank 1999). Selecting Cn is
then equivalent to selecting Wn. We tried several values. From
Theorem 2, Wn can be selected in a fairly wide range. Note that
Schwarz (1978) used log n, and from Theorem 2, a rate of nα

for some α satisfies the conditions. Therefore, we started with
a rate of log n and a rate of n1/3, and tried several combinations
of these two values: Wn = .1 log n, .5 log(n), .1n1/3, .5n1/3,
(.5 log(n) + .1n1/3), and (.5 log(n) + .1n1/3)/2. Table 2 gives
the results of Wn = (.5 log(n) + .1n1/3)/2, which performs bet-
ter overall than the other Wn’s.

A competitor in the literature is the now-standard sequential
test (ST) method. ST includes the chi-squared test (CST) sug-

gested by Li (1991) when the distribution of X is normal, as well
as the weighted chi-squared test (WCST) proposed by Bura and
Cook (2001a) when X is not normally distributed. These two
methods were compared. It is noteworthy that when p → ∞, no
asymptotic results are available for sequential tests. But in prac-
tice both n and p are fixed, and we can still use this method. The
proportions of the correct decisions based on the CST reported
in Table 2 were obtained in the following way. Let the nomi-
nal level be .05. Set the hypothesis H0 : d = 1 versus H1 : d > 1.
We recorded the simulation experiments that reject H0. Then
set the hypothesis H0 : d = 2 versus H1 : d > 2. Among the
recorded experiments in the previous test, we recorded the de-
cisions that reject the null hypothesis. This procedure proceeds
until H0 : d = K versus H1 : d > K for K ≤ p − 1, where K is
the true dimension of the CDR space. The results reported in
Table 2 are the proportions of correct decisions at step K of the
500 simulation experiments.

Because X is normally distributed in this example, we use the
CST. Interestingly, from Table 2, we can see that a large c (or,
equivalently, a small number of slices) favors the CST, as does
high dimensions. The results reported in Table 2 based on the
BIC do not show this trend. When we choose the respective c
that favors its corresponding methodology, the BIC outperforms
the CST for p ≤ 30, whereas the ST works better when p =
40,50.

Table 2. Proportion of Correct Decisions About the Dimension of the CDR Space With Model (14)

BIC with Wn = (.5 log(n) + .1n1/3)/2 Chi-squared test

n = 400 n = 800 n = 400 n = 800

p c = 10 c = 20 c = 40 c = 80 c = 10 c = 20 c = 40 c = 80 c = 10 c = 20 c = 40 c = 80 c = 10 c = 20 c = 40 c = 80

10 .78 .92 .93 .94 .94 .99 .99 .98 .39 .71 .82 .82 .70 .94 .94 .95
20 .73 .82 .81 .87 .85 .95 .95 .90 .24 .48 .54 .67 .46 .80 .88 .93
30 .69 .62 .54 .65 .81 .82 .90 .70 .17 .34 .40 .51 .31 .65 .75 .89
40 .43 .26 .20 .32 .63 .76 .79 .51 .11 .26 .34 .39 .27 .54 .70 .86
50 .12 .06 .12 .13 .42 .54 .72 .19 .10 .21 .28 .35 .18 .50 .60 .75
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Table 3. Estimation of the CDR Space With Model (15)

c = 5 c = 10 c = 20 c = 40

n R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

Distribution (A)
100 1.00 .55 1.00 .61 .99 .57 .99 .50

(0) (.28) (0) (.27) (.01) (.28) (.01) (.29)
200 1.00 .65 1.00 .75 1.00 .79 1.00 .74

(0) (.28) (0) (.23) (0) (.20) (0) (.22)
300 1.00 .737 1.00 .82 1.00 .88 1.00 .86

(0) (.25) (0) (.18) (0) (.11) (0) (.16)
400 1.00 .79 1.00 .87 1.00 .90 1.00 .92

(0) (.21) (0) (.15) (0) (.11) (0) (.08)

Distribution (B)
100 .98 .56 .98 .64 .99 .67 .98 .66

(.03) (.30) (.02) (.31) (.01) (.28) (.02) (.30)
200 .99 .59 .99 .65 .99 .78 .99 .71

(.01) (.32) (.01) (.31) (.01) (.30) (.01) (.22)
300 .99 .64 1.00 .73 1.00 .79 1.00 .82

(.01) (.32) (0) (.27) (0) (.24) (0) (.19)
400 1.00 .67 1.00 .76 1.00 .82 1.00 .87

(.01) (.31) (0) (.27) (0) (.23) (0) (.17)

Example 2. In this example we consider a model used by
Velilla (1998),

y = (4 + x1)(x2 + x3 + 2) + ε, (15)

where ε has a normal distribution with mean 0 and variance σ 2

with σ = .5 in the simulations. The variables x1, x2, and x3 are
the components of x = {x1, . . . , x5} and are independent of ε.
This model is similar to (14) but has different distributions of x,
as follows:

(A) x has a normal distribution N5(0,�), where � =
diag(2,2,2,4,2).

(B) x is obtained by

x = Cv + B(B′B)−1w,

where

C =






0 0 0
1 0 0

−1 0 0
0 1 1
0 1 −1






, B =






1 0
0 1
0 1
0 0
0 0






.

Here v = (v1, v2, v3)
′ consists of three iid uniform random

variables on (−4,4), and w = (w1,w2)
′ has two indepen-

dent components, of which w1 is distributed with a mixture
.5N(0,4) + .5N(0,16) of two normal distributions and w2 has
the U(−4,4) distribution, where U(−4,4) is the uniform distri-
bution on (−4,4). Velilla (1998) proved that x in case (B) also
satisfies the linearity condition designed by Li (1991), although
it is not elliptically distributed.

Because p = 5 is relatively small, we can consider small
sample sizes. In the simulation, the sample size was n =
100,200,300,400. Tables 3 and 4 report the results with
model (15). Case (A) is used to ascertain whether difference
between the variances of the components of x affects the esti-
mation efficiency. Looking at Table 3, we find that in a normal
case, the effect is not significant. For the selection of c, the
pairs (n = 100, c = 10), (n = 200,300, c = 20), and (n = 400,
c = 40) give large values of R2. It seems that, overall, H = 10
may work well. For case (B), SIR still works, although its per-
formance is not as good as that of case (A) with normal covari-
ates. Again, the estimation is not very sensitive to the choice of
the slice number; c = 20 works well, and H = 10 may still be
considered as a working value for practical use.

For the determination of dimensionality, Table 4 reports the
results of the BIC and the CST for (A) and WCST for (B) with
c = 5,10,20. The normal distribution of x clearly favors the
two methods, but for the very nonnormal case (B), estimation
for K is more difficult. A comparison of these two methods in-
dicates that the BIC is clearly better than the CST/WCST re-
gardless of whether or not the distribution of x is normal.

Example 3. In this example we consider a model in which
the CDR space is spanned by β1 = (1,0, . . . ,0)T in mean and
β2 = (0,1,1, . . . ,0)T in variance as

y = (4 + x1) + (x2 + x3 + 2) · ε. (16)

Here ε has a normal distribution with mean 0 and variance σ 2

with σ = .5 in the simulation. The variables x1, . . . , x3 are

Table 4. Proportion of Correct Decisions About the Dimension of the CDR Space With Model (15)

BIC with Wn = (.5 log(n) + .1n1/3)/2

Distribution (A) Distribution (B)
Chi-squared test
Distribution (A)

Weighted chi-squared test
Distribution (B)

n c = 5 c = 10 c = 20 c = 5 c = 10 c = 20 c = 5 c = 10 c = 20 c = 5 c = 10 c = 20

100 .53 .57 .60 .33 .39 .34 .17 .31 .36 .24 .32 .37
200 .68 .81 .88 .44 .41 .53 .33 .57 .75 .28 .36 .50
300 .79 .92 .95 .46 .51 .68 .44 .73 .90 .30 .50 .58
400 .88 .95 .98 .53 .63 .75 .57 .81 .93 .38 .55 .65
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Table 5. Estimation of the CDR Space With Model (16)

c = 5 c = 10 c = 20 c = 40

n R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

Distribution (A)
100 .95 .51 .97 .53 .97 .50 .95 .33

(.06) (.29) (.03) (.29) (.03) (.30) (.04) (.25)
200 .98 .52 .98 .61 .99 .64 .98 .64

(.02) (.31) (.03) (.30) (.01) (.28) (.01) (.27)
300 .99 .61 .99 .70 .99 .76 .99 .72

(.01) (.28) (.01) (.28) (.01) (.23) (.01) (.30)
400 .99 .63 .99 .76 .99 .81 .99 .83

(.01) (.30) (.01) (.23) (.01) (.21) (.01) (.17)

Distribution (B)
100 .99 .30 .99 .32 .99 .40 .97 .30

(.01) (.29) (.01) (.29) (.01) (.31) (.03) (.26)
200 .99 .30 .99 .36 .99 .41 .99 .31

(.01) (.28) (.01) (.30) (.01) (.32) (.01) (.33)
300 1.00 .30 .99 .36 .99 .43 .99 .41

(0) (.28) (0) (.31) (0) (.32) (0) (.27)
400 1.00 .34 1.00 .36 1.00 .46 1.00 .48

(0) (.29) (0) (.31) (0) (.32) (0) (.33)

the components of x = {x1, . . . , xp} (p = 5) and are indepen-
dent of ε, and x has the same distributions (A) and (B) as in
model (15). For this model, the situation is similar to that of
Example 2; the methods work better in the normal case (A). As
to the selection of c, we come to a similar conclusion that SIR
is not sensitive to the number of slices and c = 20 works well
with the sample size that we used. In addition, H = 10 may be
a good choice for practical use.

For determining dimensionality, we considered c = 5,10,20
when the sample size was ≤300. Looking at Table 6, we clearly
see that the dimension is difficult to estimate, especially in the
nonnormal case (B). This is because, in contrast to the model of
Example 2, one dimension is included in the variance. Hence
this model does not favor the SIR. Therefore, we considered a
larger sample size to explore how large a sample size is needed
to obtain a good estimator; n = 400,800,1,600,3,200 were
tested. For sequential test method, similar to those of Exam-
ple 2, in the normal case (A) we use the CST and in the nonnor-
mal case (B) we use the WCST. In a normal case, the estimation
will be satisfactory when n ≥ 800; however, for the nonnor-
mal case (B), n = 3,200 is still not large enough. This obser-
vation demonstrates that we may need to use other means to
obtain a better structure of data such as that suggested by Cook
and Nachtsheim (1994). Between the BIC and the CST/WCST,

the former generally performs better, although in case (B) the
WCST performs slightly better when the sample size is large.

A comparison of models (15) and (16) provides evidence that
SIR has difficulty estimating the CDR space when basis is in the
variance part.

Example 4. Finally, we consider a model with a three-
dimensional CDR space,

y = x1(x2 + x3 + 2) + (x4 + x5 + 2)3 + ε, (17)

where ε is normally distributed with mean 0 and variance σ 2.
In the simulation, σ = .5. The variables x1, x2, x3, x4, and x5
are the components of x = {x1, . . . , xp} (p ≥ 5) and are inde-
pendent of ε. x = (x1, x2, . . . , xp) is normally distributed with
Np(0, Ip). The CDR space is spanned by β1 = (1,0, . . . ,0)T ,
β2 = (0,1,1, . . . ,0)T , and β3 = (0,0,0,1,1, . . . ,0)T .

Based on our experience, we believe that a small sample size
cannot provide a good estimation of the CDR space of this
model. Here we report the results with n = 400 and n = 3,200
to demonstrate the difficulty of estimating the CDR space and
the large sample size needed to obtain an acceptable estimation.

Table 7 shows that the R2(β̂3)’s are small, even when p = 10.
When n is increased to 3,200, the R2(β̂3)’s become acceptably
large when p ≤ 20. Increasing the dimension p significantly re-
duces the performance of the estimation. Clearly, for larger p,

Table 6. Proportion of Correct Decisions About the Dimension of the CDR Space With Model (16)

BIC with Wn = (.5 log(n) + .1n1/3)/2

Distribution (A) Distribution (B)
Chi-squared test
Distribution (A)

Weighted chi-squared test
Distribution (B)

n c = 5 c = 10 c = 20 c = 5 c = 10 c = 20 n c = 5 c = 10 c = 20 c = 5 c = 10 c = 20

100 .28 .28 .23 .20 .16 .13 100 .08 .15 .16 .02 .06 .09
200 .29 .43 .48 .13 .13 .13 200 .12 .24 .38 .04 .08 .08
300 .34 .49 .61 .09 .11 .13 300 .21 .34 .51 .04 .05 .10

Distribution (A) Distribution (B) Distribution (A) Distribution (B)

c = 20 c = 40 c = 80 c = 20 c = 40 c = 80 c = 20 c = 40 c = 80 c = 20 c = 40 c = 80

400 .72 .79 .69 .11 .17 .19 400 .60 .71 .63 .09 .16 .19
800 .92 .98 .99 .11 .20 .28 800 .87 .91 .93 .14 .24 .31

1,600 .99 1.00 .99 .12 .27 .47 1,600 .95 .95 .94 .20 .33 .52
3,200 .99 1.00 1.00 .15 .38 .76 3,200 .96 .93 .96 .32 .52 .77
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Table 7. Estimation of the CDR Space With Model (17)

c = 10 c = 20 c = 40 c = 80

p R2(β̂1) R2(β̂2) R2(β̂3) R2(β̂1) R2(β̂2) R3(β̂3) R2(β̂1) R2(β̂2) R2(β̂3) R2(β̂1) R2(β̂2) R2(β̂3)

n = 400
10 1.00 .70 .30 1.00 .77 .33 1.00 .80 .33 1.00 .74 .24

(.001) (.19) (.22) (.001) (.15) (.23) (.001) (.13) (.23) (.002) (.14) (.18)
20 .99 .46 .20 1.00 .56 .21 .99 .60 .21 .99 .53 .14

(.002) (.22) (.16) (.002) (.19) (.15) (.002) (.17) (.16) (.003) (.06) (.12)
30 .99 .30 .16 .99 .40 .16 .99 .47 .16 .99 .41 .12

(.003) (.18) (.13) (.003) (.18) (.13) (.003) (.17) (.13) (.004) (.14) (.11)
40 .99 .23 .13 .99 .31 .13 .99 .37 .13 .98 .31 .10

(.004) (.14) (.11) (.003) (.17) (.11) (.004) (.15) (.10) (.005) (.14) (.09)

n = 3,200
10 1.00 .94 .47 1.00 .95 .60 1.00 .95 .70 1.00 .95 .69

(.0003) (.03) (.26) (.0003) (.03) (.25) (.0003) (.02) (.20) (.0003) (.03) (.19)
20 1.00 .87 .26 1.00 .89 .37 1.00 .90 .43 1.00 .89 .47

(.0004) (.05) (.19) (.0004) (.04) (.21) (.0004) (.04) (.21) (.0005) (.04) (.19)
30 1.00 .79 .17 1.00 .83 .22 1.00 .85 .31 1.00 .84 .36

(.0005) (.07) (.14) (.0005) (.05) (.17) (.0005) (.04) (.18) (.0006) (.05) (.16)
40 1.00 .72 .12 1.00 .78 .18 1.00 .79 .24 1.00 .79 .29

(.0006) (.09) (.11) (.0005) (.06) (.14) (.0006) (.05) (.15) (.0007) (.05) (.14)

we should use larger datasets to obtain a reasonable estimation.
The selection of c seems similar to that of the previous exam-
ples. Within a large range of c (from 20 to 80), the performance
of SIR is similar.

The determination of the dimension is also difficult. To pro-
vide insights into how the dimension of the CDR space can be
estimated, in Table 8 we report the proportions of the estimated
dimensions of the CDR space in the 500 replications. Neither
the BIC nor the CST works for n = 400 (see Table 8); a large
sample size is needed. We also report the simulation results with
n = 3,200. Table 8 clearly shows that when the sample size is
equal to 400, the BIC tends to estimate K as 2 and the CST
seems to estimate K even smaller. This becomes clearer when
the dimension p of X is large. When n = 3,200, both methods
can obtain a high proportion of correct decisions, and the BIC
outperforms the CST, especially when p is large. Another in-
teresting observation is that, in contrast to the performance of
estimation with model (14), the CST gets worse when p gets
larger.

In summary, estimation of the SIR matrix is not very sensitive
to the choice of c or, equivalently, to the number of slices. The
choice of c is not greatly affected by the dimension p, and thus
we can choose the number of slices regardless of the dimen-
sion of the covariates. Based on our simulations, the number of
slices chosen can fall between 10 and 20. Compared with the se-
quential test method for determining the dimension of the CDR
space, the advantages of the BIC are that it does not rely on the
limit distribution of the estimator of the SIR matrix and that it

can be readily applied to other dimension-reduction methods,
such as the SAVE and the MAVE. However, the need to select
Cn is a disadvantage. Whether there is a data-driven selection
for Cn deserves further study.

APPENDIX: PROOFS OF THEOREMS

A.1 Notation

For the sake of convenience, we have assumed that n/c is an inte-
ger. Here we define some notation. Recalling (4) and (5), we define
Yn = (y(1), . . . , y(n))

T , Xn = (x(1), . . . ,x(n))p×n as a p × n matrix,
Xh = (x(h,1), . . . ,x(h,c))p×c,h = 1,2, . . . ,H, as p × c matrices, and
for any integer t, et = (1, . . . ,1)T as a t × 1 column vector and
E t = (et, . . . , et)

T
t×p as a t×p matrix. We further define more matrices.

Set Ic to be the c × c identity matrix and

Pc = Ic − 1

c
eceT

c , Qc = Pc −
(

1 − 1

c

)
Ic = 1

c
(Ic − eceT

c );

Mn = (
m
(
y(1)

)
, . . . ,m

(
y(n)

))
p×n,

Mh = (
m
(
y(h,1)

)
, . . . ,m

(
y(h,c)

))
p×c;

εn = (
ε(1), . . . , ε(n)

)
p×n, εh,c = (

ε(h,1), . . . , ε(h,c)
)
p×c,

and

M̃n = [{
m
(
y(1)

)− m
(
y(2)

)}
, . . . ,

{
m
(
y(n−1)

)− m
(
y(n)

)}
,

m
(
y(n)

)]
p×n,

Table 8. Proportions of the Estimated Dimensions of the CDR Space With Model (17), H = 10

BIC with Wn = (.5 log(n) + .1n1/3)/2 Chi-squared test

n = 400 n = 3,200 n = 400 n = 3,200

p 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

K = 1 .05 .07 .05 .04 0 0 0 .04 .14 .35 .44 .58 0 0 0 0
K = 2 .86 .84 .85 .85 .02 .05 .07 0 .75 .59 .51 .40 .02 .15 .30 .39
K = 3 .09 .09 .10 .11 .98 .95 .91 .89 .11 .06 .05 .02 .94 .83 .67 .59
K = 4 0 0 0 0 0 0 .02 .07 0 0 0 0 .04 .02 .03 .02

NOTE: The true dimension is three.
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where the ε(i)’s are as defined in (5) and ε(h,j) = ε(c(h−1)+j). Further-
more, for any t,

Tt =






1 −1

1
. . .
. . . −1

1






t×t

and

St = T−1
t =






1 1 · · · 1

1 · · · ...
. . . 1

1






t×t

.

From the definitions of M̃n and Tn, it is clear that M̃T
n = TnMT

n .
Now we can rewrite �̂p in terms of the foregoing notation in a ma-

trix form. Because Xn = Mn + εn,

�̂p = 1

H(c − 1)

H∑

h=1

XhPcXT
h

= 1

H(c − 1)
Xn(IH ⊗ Pc)XT

n

= 1

H(c − 1)
εn(IH ⊗ Pc)ε

T
n

+ 1

H(c − 1)

{
εn(IH ⊗ Pc)MT

n + Mn(IH ⊗ Pc)ε
T
n
}

+ 1

H(c − 1)
Mn(IH ⊗ Pc)MT

n

=: J1 + J2 + J3, (A.1)

where “⊗” represents the Kronecker product. Note that Pc + Qc =
(1 − 1/c)Tc. Then IH ⊗ Pc + IH ⊗ Qc = (1 − 1/c)IH . J1 is then
decomposed as

J1 = 1

H(c − 1)

{(
1 − 1

c

)
εnεT

n

}
+ 1

H(c − 1)
{εn(IH ⊗ Qc)ε

T
n }

=: K1 + K2. (A.2)

It is easy to see that

‖�p − �̂p‖ ≤ ‖�p − K1‖ + ‖K2‖ + ‖J2‖ + ‖J3‖. (A.3)

We need only derive the convergence rate of the foregoing four terms
on the right side of (A.3). For this, we introduce the following lemmas.

A.2 Lemmas

Throughout this and the following sections, b is a constant that may
take different values with each appearance.

Lemma A.1. Under the conditions of Theorem 1,

lim
n→∞

1

nr√p

n∑

i=2

{∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥}= 0 a.s.

Proof. If all yi ∈ [−B,B] for some B > 0, then the result follows
from condition (B) of Theorem 1. Now we need only consider the case
where the support of y(n)

i is unbounded. It suffices to show that the
sums

Sn1 = 1

nr√p

[n(1−θ̂ )]∑

i=[nθ̂]+1

{· · ·},

Sn2 = 1

nr√p

[nθ̂]∑

i=2

{· · ·},

and

Sn3 = 1

nr√p

n∑

i=[n(1−θ̂ )+1]
{· · ·}

converge to 0 almost surely as n → ∞, where [a] is the largest integer
part of a.

We deal with Sn1 first. Recall the definition of G2(x) and G1(x) in
condition (C) of Theorem 1. For any fixed δ, we define two events: For
any β > 0,

An = {
y([nδ]) > G−1

2 (β)
}

and

Bn = {
y([n(1−δ)]) < G−1

1 (1 − β)
}
.

For δ < 1/2, select 0 < β < δ(1/2)1/δ and a B0 such that B0 >

G−1
1 (1 − β) and −B0 < G−1

2 (β). Then for any small η, for n suffi-
ciently large, we can derive that, combining (6) with condition (D) of
Theorem 1,

P{Sn1 > η} = P

{
1

nr√p

[n(1−δ)]∑

i=[nδ]+1

∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥> η

}

≤ P

{
1

nr√p

[n(1−δ)]∑

i=[nδ]+1

∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥> η,AnBn

}

+ P{(AnBn)c}
≤ P(Ac

n) + P(Bc
n) + o(1),

where AnBn represents the intersection of two events An and Bn.
Now we deal with P(Ac

n) and P(Bc
n). Suppose that w(i) is the

ith-order statistic of iid random variables wi, i = 1, . . . ,n, that has the
distribution G2(x) of W2 because by condition (C), Y � W2, and then
y([nδ]) � w([nδ]). Thus,

P(Ac
n) = P

{
y([nδ]) ≤ G−1

2 (β)
}≤ P

{
w([nδ]) ≤ G−1

2 (β)
}
.

From the properties of order statistics, we know that

P
{
w([nδ]) ≤ G−1

2 (β)
}

≤ n!
([nδ] − 1)!(n − [nδ])!

∫ β

0
t[nδ]−1(1 − t)n−[nδ] dt.

By Stirling’s formula, n! is asymptotically equal to ( n
e )n

√
2πn; then

we have

P(Ac
n) = O

{(
β

δ

)[nδ] 1

(1 − δ)n−[nδ]
}
.

Recall that β
δ < ( 1

2 )1/δ and δ < 1
2 . Then there is a ρ1 with 0 < ρ1 < 1,

P(Ac
n) = O(ρn

1 ). (A.4)

Similarly, we can obtain that for some ρ2 with 0 < ρ2 < 1,

P(Bc
n) = O(ρn

2 ). (A.5)

From (A.4) and (A.5), the strong convergence of Sn1 follows the
Borel–Cantelli lemma.

Because the arguments for proving the convergence of Sn2 and Sn3
are similar, we present only the proof for Sn3 here. Invoking condi-
tion (B) of Theorem 1 and the monotonic property of M(·) assumed
in (7), we have

Sn3 = 1

nr√p

n∑

i=[n(1−δ)+1]

∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥

≤ n−r
n∑

i=[n(1−δ)+1]

∣∣M
(
y(i)

)− M
(
y(i−1)

)∣∣
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= n−r∣∣M
(
y[n(1−δ)]

)− M
(
y(n)

)∣∣

≤ n−r∣∣M
(
y(n)

)∣∣.

Without loss of generality, we assume that M(y(n)) is positive. Then
we need only prove that n−rM(y(n)) → 0 a.s. n → ∞. Note that for
any η > 0,

P
{
n−rM

(
y(n)

)
> η

} = 1 − [
P{n−rM(y) ≤ η}]n

= 1 − [
1 − P{n−rM(y) > η}]n.

By condition (C), there is a W1 such that Y ≺ W1, and from condi-
tion (D), it is easily derived that for a constant b > 0,

P{n−rM(y) > η} ≤ P{n−rM(W1) > η} ≤ b

(εnr)l
.

Using the inequality (1 − α)n ≥ 1 − nα,0 ≤ α ≤ 1, we obtain that

P
{
n−rM

(
y(n)

)
> η

}= 1 − [
1 − P{n−rM(y) > η}]n ≤ n

b

(ηnr)l
.

As l × r > 2, the Borel–Cantelli lemma yields n−rM(y(n)) → 0 a.s.
n → ∞, and then the convergence of Sn3 is proved. The proof of the
lemma is finished.

Lemma A.2. If M1 is an n × p real-valued matrix, M2 is a p × n
real-valued matrix, and M3 and M4 are two n×n real-valued matrices,
then

‖M1M2‖ ≤ λ
1/2
max(M2MT

2 )‖M1‖,
λmax(M1M2) = λmax(M2M1),

and

λmax(M3M4) ≤ λmax(M3)λmax(M4),

where λmax(·) represents the maximum eigenvalue (see Bai 1999).

Lemma A.3. Under the conditions of Theorem 1, we have

max
j

max
i

∣∣ε(i)( j)
∣∣ = max

j
max

i
|εi( j)|

= Op
(
n1/lp

)
or O

(
n1/lp(log n)2/l) a.s.,

where j = 1, . . . ,p and i = 1, . . . ,n, ε(i)( j) and εi( j) are the jth com-
ponents of random vector ε(i) and εi defined in (5).

Proof. For any j = 1, . . . ,p, let |εnj| = max1≤i≤n |ε(i)( j)|. It is clear
that |εnj| = maxi |εi( j)| and maxj maxi |ε(i)( j)| = maxi |εnj|. We inves-
tigate only the almost-sure convergence, because the convergence in
probability is much easier to obtain. Choosing η = bn1/lp(log n)1/2,
together with the iid property of variables εi, we have that

P
(

max
j

|εnj| ≥ η
)

≤ max
j

P
{|εnj| ≥ bn1/l(log n)2/l}

≤ max
j

[
1 − P

{|εnj| ≤ bn1/l(log n)2/l}]

= max
j

(
1 − [

1 − P
{|ε1( j)| ≥ bn1/l(log n)2/l}]n).

Furthermore, invoking condition (A), we can easily derive the finite-
ness of the lth moment of |εi( j)|, and

P
{|ε1( j)| ≥ bn1/l(log n)2/l}≤ b

n(log n)2
.

Hence

max
j

(
1 − [

1 − P
{|ε1( j)| ≥ bn1/l(log n)2/l}]n)

≤ 1 −
{

1 − b

n(log n)2

}n
≤ 1 − exp

{
− b

(log n)2

}

≤ b

(log n)2
.

The Borel–Cantelli lemma implies strong convergence of the sub-
sequence {max1≤j≤p |εemj| : m ≥ 1} of {max1≤j≤p |εnj| : n ≥ 1}. Using
the subsequence approach, we need only show that for any n with
em ≤ n ≤ em+1,

P
{

max
em≤n≤em+1

(
max

j
|εnj| − max

j
|εemj|

)
≥ η

}

= P
{

max
j

|εem+1j| − max
j

|εemj| ≥ η
}

≤ max
j

P
{

max
em≤n≤em+1

|εnj| ≥ bem/lm2/l
}

≤ b

m2
.

The last inequality comes from the same argument as the foregoing
with the upper bound b/(log n)2. This means that the difference be-
tween εnj and its subsequence also converges almost surely to 0 at the

rate n−1/lp(log n)2/l.
For the convergence in probability, we do not need to use the sub-

sequence approach. The rate is clearly O(n−1/lp). The proof is com-
pleted.

A.3 Proof of Theorem 1

The Proof for Strong Convergence. As described earlier, to prove
the strong convergence of �̂p we need only prove convergence of the
right side of (A.3). The proof is divided into four steps:

a. |J2| = o(n−1+1/l+rp3/2(log n)2/l) a.s. as n → ∞.
From the definition of J2 in (A.1), we need only consider the term

∥∥∥∥
1

H(c − 1)
εn(IH ⊗ Pc)M̃T

n

∥∥∥∥.

Recalling the definitions of Pc and eceT
c in Section A.1, we have

PceceT
c = 0. Invoking the equations M̃T

n = TnM̃T
n and Sn = T−1

n , we
can derive that, together with the properties of the Kronecker product
and recalling that Sn = T−1

n ,

‖εn(IH ⊗Pc)M̃T
n ‖ = ‖εn(IH ⊗Pc)SnM̃T

n ‖ = ∥∥εn{IH ⊗ (PcSc)}M̃T
n
∥∥.

From the definitions of εn and En in Section A.1, we have
∥∥εn(IH ⊗(PcSc))M̃T

n
∥∥≤ max

1≤i≤n,1≤j≤p

∣∣ε(i)( j)
∣∣∥∥En{IH ⊗(PcSc)}M̃T

n
∥∥.

Also note that in matrix IH ⊗ (PcSc), all elements of the last column
are 0 and the elements such as ak1k2 = 0 if |k1 − k2| > c and ak1k2 ≤ 1
otherwise. Then, by the first inequality of Lemma A.2, we have

∥∥En{IH ⊗ (PcSc)}M̃T
n
∥∥≤ 2c

n∑

i=2

∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥.

Applying Lemma A.3 to ε(i)( j) and Lemma A.1 to M̃T
n , we have

max
1≤j≤p

max
1≤i≤n

∣∣ε(i)( j)
∣∣= O

(
n1/lp(log n)2/l) a.s.

and
n∑

i=2

∥∥m
(
y(i)

)− m
(
y(i−1)

)∥∥= O(nr√p ) a.s.
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Hence we almost surely have

1

H(c − 1)

∥∥εn{IH ⊗ (PcSc)}M̃T
n
∥∥= O

(
n−1+1/l+rp3/2(log n)1/l).

b. ‖J3‖ = O(n2r−1p) a.s. as n → ∞.
By Lemma A.2 and the property of the Kronecker product, we can

obtain that, from the definition of MT
n and M̃T

n ,

‖Mn(IH ⊗ Pc)MT
n ‖ = ‖M̃n(IH ⊗ ST

c PcSc)M̃T
n ‖.

Note that the last row and last column of the matrix IH ⊗ ST
c PcSc

are both 0. Let M̃n1 be a matrix with elements equal to those of M̃n
except that the elements of the last column are 0. Then the matrix
M̃n(IH ⊗ ST

c PcSc)M̃T
n can be rewritten as M̃n1(IH ⊗ ST

c PcSc)M̃T
n1.

It is also clear that λ
1/2
max(ST

c PcSc) ≤ b for some b > 0. Thus, invoking
Lemma A.1,

‖J3‖ = 1

H(c − 1)
‖M̃n(IH ⊗ Pc)M̃T

n1‖

≤ bc

n(c − 1)
‖M̃T

n1‖2 = O(n2r−1p) a.s.

The proof is finished.
c. ‖K2‖ = O(n−1/4p(log n)1/2) a.s. as n → ∞.
Note that ‖K2‖4 can be written as

‖K2‖4 = 1

H4(c − 1)4c4

∥∥∥∥∥

H∑

h=1

εh,cQ′
cε

T
h,c

∥∥∥∥∥

4

,

where εh,c is defined in Section A.1 and

Q′
c = cQc =






0 −1 · · · −1

−1
. . . −1 −1

...
...

−1 · · · −1 0






c×c

.

Furthermore,

E

∥∥∥∥∥

H∑

h=1

εh,cQ′
cε

T
h,c

∥∥∥∥∥

4

= E

[

tr

( H∑

h1=1

εh1,cQ′
cε

T
h1,c

H∑

h2=1

εh2,cQ′
cε

T
h2,c

)]2

=
H∑

h1=1

H∑

h2=1

H∑

h3=1

H∑

h4=1

E
[
tr
(
εh1,cQ′

cε
T
h1,c

εh2,cQ′
cε

T
h2,c

)

× tr
(
εh3,cQ′

cε
T
h3,c

εh4,cQ′
cε

T
h4,c

)]
.

Together with the special structure of Q′
c and the conditional indepen-

dence of ε(i) given the y(i)’s, we know that E{tr(εhi,cQ′
cε

T
hi,c

} = 0 for
i = 1,2,3,4. Then it is easy to derive that if h1 �= hj, where j = 2,3,4,

E tr
(
εh1,cQ′

cε
T
h1,c

εh2,cQ′
cε

T
h2,c

)
tr
(
εh3,cQ′

cε
T
h3,c

εh4,cQ′
cε

T
h4,c

)= 0.

For the other cases, invoking the conditions of Theorem 1 and the con-
ditional independence of the ε(i)’s given the y(i)’s, we have that for
some b > 0,
∣∣E
[
tr
(
εh1,cQ′

cε
T
h1,c

εh2,cQ′
cε

T
h2,c

)
tr
(
εh3,cQ′

cε
T
h3,c

εh4,cQ′
cε

T
h4,c

)]∣∣

≤ p4c8E
[(|εi( j)|4)2]≤ bp4c8.

Thus

E

(∥∥∥∥∥

H∑

h=1

εh,cQ′
cε

T
h,c

∥∥∥∥∥

4)

≤ 3bH2p4c8 = 3bn2p4c6,

and then, for any η > 0,

P(‖K2‖ > η) ≤ E(‖K2‖4)

η4
≤ 3bn2p4c6

n4(c − 1)4η4
= O(n−2p4/η4).

Choosing η = n−1/4p(log n)1/2, the Borel–Cantelli lemma implies the
conclusion.

d. ‖K1 − �p‖ = O(n−1/2p(log n)) a.s. as n → ∞.
Note that �p is the expectation of K1. This means that K1 − �p

is a centered sample mean. Each of its elements is a sum of the in-
dependent identically distributed variables with mean 0 and finite sec-
ond moment. Because the fourth moment of X is finite, invoking the
result of theorem IX 20 of Petrov (1995, p. 278), every element of
‖K1 − �p‖ has order O(n−1/2 log n) a.s. Together with the definition
of the Euclidean norm, the resulting convergence rate is pn−1/2 log n.
It can be immediately derived that ‖K1 − �p‖ = O(n−1/2p log n) a.s.
as n → ∞.

Together with steps a–d, and r < 1/4, we complete the proof of the
strong convergence of ‖�̂p − �p‖.

As for the convergence of the term ‖(�̂x − �̂p) − (�x − �p)‖, we
need only note that ‖�̂x − �x‖ can have the same convergence rate
as ‖�̂p − �p‖. The proof is similar to step d, as follows. Consider
every element of �x − �̂x. Without loss of generality, we consider
the left-upper element on the diagonal. We know that the left-upper
element, σ1,1, of �x can be rewritten as the difference of the second
moment and the square of the first moment of X, and similarly for �̂x.
As the lth moment of X is finite, applying the result of Petrov (1995) to
the difference relating to the second-moment and first-moment terms,
we can easily obtain the convergence rate O(n−1/2(log n)). Together
with the definition of the Euclidean norm again, the resulting conver-
gence rate is O(pn−1/2(log n)).

The Proof for Weak Convergence. We now turn to the proof of
the weak convergence. From the lemmas, we have that in step a
we use the rate for the convergence in probability to obtain ‖J2‖ =
OP(n−1+1/l+rp3/2), in step b we use the exactly the same argument
to obtain ‖J3‖ = Op(pn−1+2r), in step c we can choose η = n1/2p
with no use of the Borel–Cantelli lemma to achieve the rate ‖K2‖ =
Op(pn−1/2), and in step d a standard argument for weak convergence
is adopted to arrive at ‖K1 − �p‖ = (pn−1/2) (see Petrov 1995).
When p = o(nmin{1/2,1−2/l−2r}), the desired convergence rate can be
achieved. The weak convergence of ‖(�̂x − �̂p)− (�x −�p)‖ can be
proved similarly. The proof of Theorem 1 is finished.

A.4 Proof of Corollary 1

Recall the definition of λpi before Corollary 1. Note that λp1 ≥
λp2 ≥ · · · ≥ λpK > λp(K+1) = · · · = λpp = 0. It is clear that

p∑

k=1

|λpk − λ̂pk|2 ≤ ‖�p − �̂p‖2.

The convergence of λ̂pk can be derived from Theorem 1 immediately.
For the convergence of the estimate P̂λpi

of the projection

space Pλpi , because the nonzero eigenvalues are distinct, the projection
spaces are just those of eigenvectors. For brevity, let Mp = �x − �p
and M̃pn = �̂x − �̂p. Therefore, invoking Theorem 1, Corollary 1,
and the representation of P̂λpi

of Zhu and Ng (1995) for fixed p, the

conclusion is reached immediately. We omit the details of the proof
here.

A.5 Proof of Theorem 2

We deal with the strong convergence first. The proof for the weak
convergence is similar. Throughout the proof, the argument is with
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probability 1 unless stated otherwise. Let K be the true value of the
dimension of � = �x − �p. Note that

G(K) − G(k) = log LK − log Lk − Cn(K − k)(2p − k − K + 1)

2
.

From Corollary 1, we have that for large n,

θ̂i > 1, i = 1, . . . ,K, and min(τ,K) = K,

where τ is the number of θ̂i with θ̂i > 1. If k < K, then min(τ, k) = k.
Thus, for large n,

log LK − log Lk = −1

2
n

K∑

i=k+1

(log θ̂i + 1 − θ̂i) = 1

2
nWn(K, k),

where

Wn(K, k) = −
K∑

i=k+1

(log θ̂i + 1 − θ̂i).

We have that

lim
n→∞ Wn(K, k) = W(K, k) ≡ −

K∑

i=k+1

(log θi + 1 − θi) > 0.

Hence we have that for large n,

log LK − log Lk >
1

4
nW(K, k).

Note that limn→∞ Cn/n1−s = 0 and p = O(ns). Then

Cn(K − k)(2p − k − K + 1)

n
→ 0. (A.6)

Therefore, recalling the formula of G(K) − G(k), for large n, we have
that

G(K) − G(k) > 0. (A.7)

If k > K, then we have, together with (10),

| log LK − log Lk| ≤ n
p∑

i=K+1

| log θ̂i + 1 − θ̂i|.

Invoking the Taylor expansion, we derive that

| log LK − log Lk| ≤ n
p∑

i=K+1

1

2
(θ̂i − 1)2(1 + o(1))

≤ n‖� − �̂‖2 = O(n1−2t) a.s.

Because limn→∞ Cn/n1−2t = ∞, we can see that for large n,

G(K) − G(k) = O(n1−2t) + Cn(k − K)(2p − k − K + 1)

2
> 0.

(A.8)

From (A.7) and (A.8), it follows that for large n,

K̂ = K.

Thus the strong consistency of the estimate is proved.

[Received January 2004. Revised July 2005.]
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