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Normalization of microarray data is essential for removing experimental biases and revealing meaningful biological results. Motivated by a
problem of normalizing microarray data, a semilinear in-slide model (SLIM) has been proposed. To aggregate information from other arrays,
SLIM is generalized to account for across-array information, resulting in an even more dynamic semiparametric regression model. This
model can be used to normalize microarray data even when there is no replication within an array. We demonstrate that this semiparametric
model has a number of interesting features. The parametric component and the nonparametric component that are of primary interest can
be consistently estimated, the former having a parametric rate and the latter having a nonparametric rate, whereas the nuisance parameters
cannot be consistently estimated. This is an interesting extension of the partial consistent phenomena, which itself is of theoretical interest.
The asymptotic normality for the parametric component and the rate of convergence for the nonparametric component are established. The
results are augmented by simulation studies and illustrated by an application to the cDNA microarray analysis of neuroblastoma cells in
response to the macrophage migration inhibitory factor.
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1. INTRODUCTION

DNA microarrays monitor the expression of tens of thou-
sands of genes in a single hybridization experiment using oli-
gonucleotide or cDNA probes. The technique has been widely
used in many biomedical research and biological studies.
A challenge in analyzing microarray data is the systematic bi-
ases due to variations in experimental conditions, such as the
efficiency of dye incorporation, intensity effect, DNA concen-
tration on arrays, amount of mRNA, variability in reverse tran-
scription, and batch variation, among others. Normalization is
required to remove the systematic effects of confounding fac-
tors so that meaningful biological results can be obtained.

Several useful normalization techniques aim to remove the
systematic biases such as the dye, intensity, and print-tip block
effects. The simplest such technique is the global normaliza-
tion method featured in software packages such as GenePix4.0
and analyzed by Kroll and Wölfl (2002). Such a technique im-
plicitly assumes that there is no print-tip block effect and no
intensity effect. Without such an assumption, the method is sta-
tistically biased. The “lowess” method of Dudoit et al. (2002)
significantly relaxes the foregoing assumption. But it assumes
that the average expression levels of up-regulated and down-
regulated genes at each intensity level are about the same in
each print-tip block. This assumption was further relaxed by
Tseng, Oh, Rohlin, Liao, and Wong (2001) to only a subset
of more conservative genes based on a rank-invariant selection
method. As admitted by Tseng et al. (2001), the method is not
expected to be useful when there are far more genes that are up-
regulated (or down-regulated). Such situations can occur when
cells are treated with some reagents (Grolleau et al. 2002; Fan,
Tam, Vande Woude, and Ren 2004). In an attempt to further
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relax the foregoing biological assumption, Huang, Wang, and
Zhang (2003) and Huang and Zhang (2003) introduced a semi-
linear model to account for the intensity effect and to aggregate
information from other arrays to assess the intensity effect. The
method is expected to work well when the gene effect is the
same across arrays.

In an attempt to further relax the aforementioned statistical
and biological assumptions in the cDNA microarray normaliza-
tion, Fan et al. (2004) developed a new method of estimating the
intensity and print-tip block effects by aggregating information
from the replications within a cDNA array. cDNA microarray
chips are usually constructed by dipping a printer head contain-
ing 16 spotting pins into a 96-well plate containing cDNA solu-
tions, printing these 16 spots on the slide, washing the spotting
pins, dipping them into different 16 wells and printing again,
and so on (see Craig, Black, and Doerge 2003 for details). For
the specific designs of cDNA microarrays used by Fan et al.
(2004), there are 111 clones that are printed twice on the cDNA
chips. The locations of these 222 replications appear random
in the 32 blocks (see Sec. 4.2). In other words, replications are
achieved not by printing twice the same 16 spots on a printer
head, but by constructing the wells in plates themselves. The
replications of the clones in the cDNA chips contain much in-
formation about systematic biases, such as the print-tip block
and intensity effects. In fact, for two identical clones of cDNA
in the same slide, apart from the random errors, the expression
ratios should be the same. Observed differences of expression
ratios tell us a lot of information about the print-tip block and
intensity effects. The seemingly random patterns of replications
enable one to unveil the print-tip block effect. This cannot be
achieved if only the same 16 spots in a well plate are printed
twice.

To put the foregoing problem into a statistical framework, let
G be the number of genes and let I be the number of replications
of gene g within an array. (I should depend on g, because most
do not have replications.) Following Dudoit et al. (2002), let
Rgi and Ggi be the red (Cy5) and green (Cy3) intensities of the
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gth gene in the ith replication. Let Ygi be the log-intensity ratio
of red over green channels of the gth gene in the ith replication,
and let Xgi be the corresponding average of the log intensities
of the red and green channels, that is,

Ygi = log2
Rgi

Ggi
, Xgi = 1

2
log2(RgiGgi).

To model the intensity and print-tip block effects, we consider
the following high-dimensional partial linear model for mi-
croarray data:

Ygi = αg + βrgi + γcgi + m(Xgi) + εgi, (1)

where αg is the treatment effect associated with the gth gene;
rgi and cgi are the row and column of the print-tip block where
the gth gene of the ith replication resides; β and γ are the row
and column effects with constraints

r∑

i=1

βi = 0 and
c∑

j=1

γj = 0,

where r and c are the number of rows and columns of the
print-tip block; m(·) with constraint Em(Xgi) = 0 is a smooth-
ing function of X representing the intensity effect; and εgi is
random error with mean 0 and variance σ 2(Xgi).

In our illustrative example in Section 4.2, there are 19,968
genes in an array, residing in 8 × 4 blocks with r = 8 and c = 4.
Among those, are 111 genes with two replications. For those
genes without replications, because αg is free, they provide no
information about the parameters β and γ and the smooth func-
tion m(·). We need to estimate the parameters from the genes
with replications. With a slight abuse of notation, for this illus-
trative example, G = 111 and I = 2.

For the normalization purpose, our aim is to find a good es-
timate of the print-tip block and intensity effects. Let β̂ , γ̂ , and
m̂(·) be good estimates for model (1). Then the normalization
is to compute

Y∗
g = Yg − β̂rg − γ̂cg − m̂(Xg) (2)

for all genes. Interpolations and extrapolations are needed to
expedite the computation when m(·) is estimated over a set of
fine grid points. According to model (1), Y∗

g ≈ αg +εg, in which
the effects of confounding factors have been removed. Thus, as
far as the process of the normalization is concerned, the para-
meters β and γ and the function m(·) are of primary interest
and the parameters {αg} are nuisance parameters. Of course, in
the analysis of treatment effect on genes, the parameters {αg}
represent biological fold changes and are of primary interest.

Model (1) has a much wider spectrum of applications than
at first appearance. First, if there is no replication within an ar-
ray but there are four (say) replications across arrays, by imag-
ing a super array that contains these four arrays, “within-array”
replications are artificially created. In this case I is the number
of arrays, and G is the number of genes per array. The basic
assumption behind this method is that the treatment effect on
the genes remains the same across arrays. This is not an un-
reasonable assumption when the same experiment is repeated
several times. Second, by removing the row and column effects
and applying model (1) directly to each block of microarrays,
resulting in

Ygib = αg + mb(Xgi) + εgib, (3)

the model allows nonadditive effect between the intensity and
blocks. [The index b can be removed from model (3), and
hence this model becomes a submodel of (1).] In this case G is
the number of genes within a block. For example, if there are
624 genes in a block and 4 replications of arrays, then G = 624
and I = 4. Third, the idea can also be adapted to normalize the
Affymetrix arrays by imaging “treatment” and “control” arrays
as the outputs from green channels and red channels. This will
enable us to remove intensity effects in the Affymetrix arrays.
Finally, by thinking of rows as blocks and deleting the column
effects, model (1) can accommodate nonadditive column and
row effects. The additivity in model (1) is to facilitate the appli-
cations in which G is relatively small.

The challenge of our problem is that the number of nuisance
parameters is large. In fact, for many practical situations, I = 2
and G can be large, on the order of hundreds or larger. So our
asymptotic results are based on the assumption that G → ∞.
This is in contrast with the assumption of Huang and Zhang
(2003), where I tends to infinity. The number of nuisance para-
meters in (1) grows with the sample size. In our illustrative ex-
ample, half of the parameters are nuisance ones. The question is
whether the parameters of primary interest can be consistently
estimated in the presence of a large number of nuisance parame-
ters and how much it costs to estimate these parameters. Such
a problem is poorly understood, and a thorough investigation is
needed.

To provide more insight into the problem, consider writing
model (1) in the matrix form as

Yn = Bnαn + Znβ + M + εn, n = G × I, (4)

where Yn = (Y1, . . . ,Yn)
T , Bn is an n × G design matrix, Zn is

an n × d random matrix with d being the sum of the num-
bers of rows and columns, β = (β1, . . . , βr, γ1, . . . , γc) is the
print-tip block effect, M = (m(X1), . . . ,m(Xn))

T is the inten-
sity effect, and εn = (ε1, . . . , εn)

T . The theory on the partial
linear model is usually based on the assumption that G is fixed
or at least G/n tends to 0 at certain rate (see Härdle, Liang,
and Gao 2000). However, in our application, αn cannot be con-
sistently estimated, because G/n = 1/I in (4). It is not clear
whether the parameters β and the function m(·) can be consis-
tently estimated. The answer might not be affirmative for gen-
eral matrix Bn. For our application, the matrix Bn is in a specific
form, Bn = IG ⊗1I , where ⊗ is the Kronecker product, IG is the
G×G identity matrix, and 1I is a vector of length I with all ele-
ments 1. Using such a structure, the answer is affirmative. In the
next section we show that β can be estimated at the paramet-
ric rate n−1/2 and m(·) can be estimated at the nonparametric
rate n−2/5. Further, we derive the asymptotic normality of β and
describe the exact cost for estimating the nuisance parameters.
Our results are interesting extensions of the partial consistent
phenomenon studied by Neyman and Scott (1948). They show
that when the number of nuisance parameters grow with sample
size, one parametric component can be consistently estimated,
but the other part cannot be. Our results are of theoretical in-
terest in their own right, in addition to providing insights and
methodological advance for the problem of microarray normal-
ization.

The remainder of the article is organized as follows. In Sec-
tion 2 we derive the profile least squares estimators for the
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parameters αn and β and the function m(·). We further demon-
strate that the proposed estimators for β and m(·) are consis-
tent and admit optimal rates of convergence. Section 3 extends
model (1) to aggregate information from other arrays. Both sim-
ulated and real data examples are given in Section 4. Technical
proofs and regularity conditions are relegated to the Appendix.

2. PROFILE LEAST SQUARES AND
ASYMPTOTIC PROPERTIES

2.1 Profile Least Squares Estimator

In this section we derive the profile least squares estimators
for αn and β and the function m(·). For any given αn and β ,
(4) can be written as

Yn − Bnαn − Znβ = M + εn. (5)

Thus, adopting a local linear regression technique, the estimator
of M is

M̂ = S(Yn − Bnαn − Znβ),

where S is a smoothing matrix that depends only on the obser-
vations {Xi, i = 1, . . . ,n}. The explicit form of S is shown in the
Appendix for the local linear smoother (Fan 1992). Substituting
M̂ into (5), we have

Ỹn = B̃nαn + Z̃nβ + εn,

where Ỹn = (I − S)Yn, B̃n = (I − S)Bn, and Z̃n = (I − S)Zn.
This is a synthetic (but not a true) linear model. By the
least squares method and a slight complex computation (Rao
and Toutenburg 1999), we have the following estimates for
β and αn:

β̂ = (
Z̃T

n Z̃n − Z̃T
n PB̃n

Z̃n
)−1Z̃T

n

(
I − PB̃n

)
Ỹn (6)

and

α̂n = (B̃T
n B̃n)

−B̃T
n (Ỹn − Z̃nβ̂), (7)

where PB̃n
= B̃n(B̃T

n B̃n)
−B̃T

n is a projection matrix of B̃n.
The foregoing profile least squares estimators can be com-

puted by the following iterative algorithm:

Step 1. Given β̂ and m̂(·) (assume their initial values to
be 0’s), estimate αg by

α̂g = I−1
I∑

i=1

(
Ygi − β̂rgi − γ̂cgi − m̂(Xgi)

)
.

Step 2. Given α̂n and m̂(·), estimate β by fitting the linear
model

Ygi − α̂g − m̂(Xgi) = βrgi + γcgi + εgi.

Center the estimated coefficients of β and γ so that
their averages are 0.

Step 3. Given α̂n and β̂ , estimate the function m(·) by
smoothing Ygi − α̂g − β̂rgi − γ̂cgi on Xgi. Center the
estimated function to have mean value 0.

Step 4. Continue Steps 1–3 until convergence.

In our implementation, it takes only a couple of iterations
for the algorithm to converge. The advantage of this estima-
tion algorithm is that it effectively separates the estimation
problem into two parts, so that the nonparametric compo-
nent can be estimated locally, whereas the parametric compo-
nents can be estimated globally by using all of the data. The
method is in contrast with the spline method of Huang et al.
(2003). First, the parameters αn and β are estimated one by
one. This avoids inverting any large matrix and is very useful
for the high-dimensional microarray data. Second, αn and β

can be estimated by the weighted least squares in presence
of heteroscedasticity [e.g., the noise level depends smoothly
on an unknown function σ(Xgi)]. Third, the smoothing para-
meters in Step 3 can be selected by using an existing tech-
nique, such as the preasymptotic substitution method of Fan
and Gijbels (1995) and the empirical bias method of Ruppert
(1997), among others. In our implementation, we use the em-
pirical bias method of Ruppert (1997).

2.2 Asymptotic Properties on Parametric Component

To facilitate the presentation and technical proofs, we assume
that

{(rgi, cgi,Xgi, εgi), i = 1, . . . , I,g = 1, . . . ,G}
are a random sample from a population. More generally, we as-
sume that the random variables {(Zj,Xj, εj) : j = 1, . . . ,n} in (4)
are a random sample from a population. For model (1), the ran-
dom variable Zj is the indicator variable associated with the col-
umn and row effects. These assumptions are made to facilitate
theoretical derivations. However, the scope of applications goes
beyond these technical assumptions, as demonstrated in our
simulation studies. For simplicity, assume for the moment that
the model (4) is homoscedastic, namely var(εj|Zj,Xj) = σ 2.
Then we have the following asymptotic property for β̂ .

Theorem 1. Under the regularity conditions in the Appen-
dix, the profile least squares estimator of β is asymptotically
normal, that is,

√
n(β̂ − β)

D−→ N
(

0,
I

I − 1
σ 2�−1

)
,

with � = E{Z − E(Z|X)}T{Z − E(Z|X)}.
When αn is known, model (4) reduces to the partial linear

model. In this case the asymptotic variance is � (see, e.g.,
Speckman 1988; Carroll, Fan, Gijbels, and Wand 1997), which
is the semiparametric information bound. Because there are
G nuisance parameters, they cost at least G data points to es-
timate, and the remaining degrees of freedom are n − G =
n(I − 1)/I. The factor I/(I − 1) is the price that we have to
pay for estimating the nuisance parameters αn. This price fac-
tor is the minimum that we can have. To appreciate this, let us
consider a very simple model,

Ygi = αg + βUgi + εgi,

where εgi ∼ N(0, σ 2) and Ugi is distributed with EUgi = 0 and
EU2

gi = 1. The efficient information bound for estimating β is
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n−1σ 2I/(I − 1), a factor I/(I − 1) larger than the case where
αg’s are known.

Our theoretical result is derived under the random design
of Z; it also holds for fixed design of Z satisfying certain mathe-
matical conditions. This is indeed shown via simulation studies
in Examples 3 and 4 in Section 4.1.

We now consider the situation of heteroscedastic error in the
model (4), that is,

εn = (σ (X1)ε1, . . . , σ (Xn)εn)
T

with a continuous standard deviation function σ(·) on the sup-
port of X. Suppose that we ignore the heteroscedasticity in the
estimation procedure. We then have the following theorem for
the asymptotic property of β̂ .

Theorem 2. Under the regularity conditions in the Appen-
dix, the profile least squares estimator of β is asymptotically
normal, that is,

√
n(β̂ − β)

D−→N
(

0,
I2

(I − 1)2
�−1V�−1

)
,

where, with � given in Theorem 1,

V = (I − 1)2

I2
Eσ 2(X){Z − E(Z|X)}T {Z − E(Z|X)}

+ I − 1

I2
Eσ 2(X) · �.

Theorem 2 examines the impact of heteroscedasticity on the
ordinary least squares estimate. The heteroscedasticity is not
explicitly taken into account for the following reasons. First,
even if the conditional variance function is known, after stan-
dardization, our model structure will be changed—the special
structure of Bn in (3) does not hold any more. In our simula-
tion studies in Example 2, not much improvement is achieved
by using weighted least squares. In fact, it is not clear to us
whether the weighted least squares must outperform the ordi-
nary least squares for this special class of models. Further re-
search is needed.

2.3 Nonparametric Part

The purpose of this article is to show that the nonparamet-
ric function m(·) and parametric parameter β can be estimated
consistently and efficiently. Theorems 1 and 2 have already
shown that β can be estimated at root-n rate, which is negligi-
ble for nonparametric estimation. To simplify technical deriva-
tions without losing the essential ingredient, we assume that
β is known. Therefore, model (4) can be simplified as

Yn = Bnαn + M + εn, (8)

where Bn = IG ⊗ 1I and n = G × I. Instead, putting identifia-
bility on the function m, we impose the identifiability condition∑G

i=1 αi = 0 to facilitate the technical arguments.
The profile least squares estimator can be regarded as the it-

erative solution to the following equation (see the algorithm in
Sec. 2.1):

[
I P
S I

][
Bnαn

M

]
=
[

P
S

]
Yn,

where

P = Bn(I − 11T/n)(BT
n Bn)

−1BT
n

= (I − 11T/n)Bn(BT
n Bn)

−1BT
n .

According to the results of Opsomer and Ruppert (1997), the
estimate of M has the explicit form

M̂ = {I − (I − SP)−1(I − S)}Yn, (9)

provided that the inverse matrix exists. Then we have the fol-
lowing asymptotic property for M̂.

Theorem 3. Under the regularity conditions in the Appendix,
the risk of the profile least squares M̂ is bounded as follows:

MSE{m̂(x)|X1, . . . ,Xn}

≤ I

n(
√

I − 1)2

n∑

i=1

{
µ2

2h4

4
{m′′(Xi)}2 + σ 2ν0

nhf (Xi)

}

+ op

(
h4 + 1

nh

)

= I

(
√

I − 1)2

(
µ2

2h4

4
E{m′′(X)}2 + σ 2ν0|�|

nh

)

+ op

(
h4 + 1

nh

)
,

where

MSE{m̂(x)|X1, . . . ,Xn}

= 1

n

n∑

i=1

E
{[m̂(Xi) − m(Xi)]2|X1, . . . ,Xn

}

and � is the support of the random variable X.

For the situation of heteroscedastic errors, if we ignore the
error structure and apply ordinary least squares, then we have
the following theorem.

Theorem 4. Under the regularity conditions in the Appendix,
the full-iterative backfitting estimator M̂ has

MSE{m̂(x)|X1, . . . ,Xn}

≤ I

(
√

I − 1)2

(
µ2

2

4
E{m′′(X)}2h4

+
{

(I − 1)Eσ 2(X) · |�|
I2

+ (I − 1)2

I2

∫

�

σ 2(x)dx

}
ν0

nh

)

+ op

(
h4 + 1

nh

)
.

It is clear from Theorems 3 and 4 that the nonparametric
components achieve the optimal rate of convergence O(n−2/5)

when the bandwidth h is of order n−1/5.
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3. AGGREGATION ACROSS ARRAYS

In the preceding section, the intensity effect and the gene ef-
fect were estimated using the information within one slide. An
advantage of this is that the arrays are allowed to have differ-
ent gene effects, namely αg can be slide-dependent. This oc-
curs when samples were drawn from different subjects. In many
other situations, the samples may come from the same subject.
In this case it is natural to assume that the treatment effects on
genes are the same across arrays, and one can aggregate the in-
formation from other arrays. This kind of aggregation idea has
appeared in work of Huang and Zhang (2003) for a different
semiparametric model.

Model (3) is an aggregated model, allowing interactions be-
tween blocks and intensities. Dropping the block label b, it be-
comes

Ygj = αg + m(Xgj) + εgj, j = 1, . . . , J, (10)

where J is the number of arrays. This model is the same as (8),
and Theorems 3 and 4 give asymptotic performance for the in-
tensity effect (at each block) of m. In model (10), the intensity
effects are the same across arrays. The results can be general-
ized to the array-dependent model

Ygj = αg + mj(Xgj) + εgj, j = 1, . . . , J. (11)

The functions mj can be estimated at rate O(n−2/5).
A generalization of model (1) is the semiparametric model

Ygij = αg + βj,rgi + γj,cgi + mj(Xgij) + εgij, (12)

g = 1, . . . ,G, i = 1, . . . , I, and j = 1, . . . , J, with J being the
number of arrays, where rgi and cgi are the row and column
of the print-tip block where the gth gene of the ith replica-
tion resides (this usually does not depend on the array) and
β j = (βj,1, . . . , βj,r, γj,1, . . . , γj,c) and mj(·) represent the block
effect and intensity effect for each array j. The model (12) is not
identifiable when there is no replication within an array (I = 1)
and is identifiable when there is a replication I > 1. Because all
arrays share the same amount of gene effect, αg, the nuisance
parameters αg can be estimated more accurately. The question
is how much better the parameters of interest, β j and mj(·), can
be estimated by using the aggregation.

The algorithm in Section 2.1 can be modified as follows:

Step 1. Given β̂ j and m̂j(·) (assume their initial values to
be 0’s), estimate αg by averaging over

Y∗
gij = Ygij − β̂j,rgi − γ̂j,cgi − m̂j(Xgij)

with respect to i and j.
Step 2. Given α̂n and m̂j(·), estimate β j using the linear

model

Y∗
gij = Ygij − α̂g − m̂(Xgij) = βj,rgi + γj,cgi + εgij.

This is done for each separate j. Center-estimate β’s
and γ ’s to have mean 0.

Step 3. Given α̂n and β̂ j, estimate function mj(·) with

Y∗
gij = Ygij − β̂j,rgi − γ̂j,cgi = mj(Xgij) + εgij.

Again, this is done for each separate j. Center m̂j so
that its average is 0.

Step 4. Continue Steps 1–3 until convergence.

Assume that the data from each array are iid samples with
homoscedastic error. Then the problem is similar to (1), but the
cost for estimating nuisance parameters is shared by J arrays.
One key difference is that the rows rgi and columns cgi do not
depend on the array j. This makes the problem under study more
difficult. Put model (12) into the matrix form as

Y = Bα + Z∗β + M + ε,

where Y = (YT
1 , . . . ,YT

J )T , Yj = (Y11j,Y12j, . . . ,YGIj)
T ,

B = (B1, . . . ,BJ)
T , Bj = IT

G ⊗ 1T , Z∗ = diag(Z1, . . . ,ZJ),
β = (βT

1 , . . . ,βT
J )T , M = (MT

1 , . . . ,MT
J )T , and Mj = {mj(Xgij),

g = 1,2, . . . ,G, i = 1, . . . , I}T , with Z1 = Z2 = · · · = ZJ = Z
as the gene position in each array remains the same. Assume
that the conditional distribution of Z given (Xi,Xj) is the same
for all i 
= j. Following a proof similar to that of Theorem 1,
we have the following asymptotic normality for the aggre-
gated estimator. The asymptotic is based on the assumption
that G → ∞.

Theorem 5. Under the regularity conditions in the Appen-
dix, the profile least squares estimator of β j is asymptotically
normal, that is,

√
GI(β̂ j − β j)

D−→ N (0, σ 2�j),

where �∗ = E{Z − E(Z|X1)}T{Z − E(Z|X2)}, � = E{Z −
E(Z|X)}T {Z − E(Z|X)} and

�j =
(

IJ − 1

IJ
� + 1

IJ
�∗
)−1

+ 1

J

(
I · �∗−1 ·

(
IJ − 1

IJ
� + 1

IJ
�∗
)

− I
)−1

×
(

IJ − 1

IJ
� + 1

IJ
�∗
)−1

with X,X1, and X2 having the same distribution as that of Xgij.

Despite its complicated asymptotic expression, Theorem 5
shows the extent to which the cost of estimating nuisance para-
meter αg can be reduced. To simplify our results, we consider
the fact that Zgij is independent of Xgij. Then � = �∗ and

�j = J(I − 1) + 1

J(I − 1)
�−1. (13)

This shows that model is not identifiable when I = 1. Because
the sample size for estimating βj is GI when the αg’s are known,
the cost for estimating the αg’s for each array is about

GI − GIJ(I − 1)

J(I − 1) + 1
= GI

J(I − 1) + 1

data points. For example, if I = 2, J = 6, and G = 111 as in
the illustrative example in Section 4.2, then the loss of degrees
of freedom due to estimating nuisance parameters decreases
from 111 to 31.71. However, the efficiency of the intensity
effect mj cannot be improved very much, because it is esti-
mated separately from each slide. Indeed, from an asymptotic
standpoint, β can be treated as if they were known for esti-
mating mj(·), whether or not the information from other arrays
are aggregated. Because the errors in estimating mj(·) dominate
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those in estimating the block effects, the accuracy for normal-
ization (2) cannot be improved very much by aggregating in-
formation from other arrays. This gives theoretical support to
the arraywise normalization method of Fan et al. (2004). That
method has an additional advantages of computational expe-
dience and robustness to the assumption that the gene effects
remain the same across arrays.

Aggregation does give us one important advantage: It re-
duces the cost of estimation nuisance parameters per array. With
aggregated sample size IJG, which amounts to 1,332 for our il-
lustrative example, we may be willing to relax the additive col-
umn and row effect. Namely, we may extend model (12) to the
more flexible model

Ygij = αg + δj,bgi + mj(Xgij) + εgij, (14)

where {bgi} (ranging from 1 to 32 in our application) is the
block where the gene g with repetition i resides and {δj,k} mea-
sures the block effect of the jth array, consisting of J(cr−1) pa-
rameters. This can also be considered as a specific mathematical
model of (12) by thinking β = δ and γ = 0. Thus Theorem 5
continues to apply, and their estimation errors are negligible in
comparison with those in estimation mj(·). Model (12) is a spe-
cific case of (14) with additive row and column effects. Thus
model (14) reduces possible modeling biases. The normaliza-
tion (2) now becomes

Y∗
g = Yg − δ̂bg − m̂(Xg), (15)

for each slide.
The foregoing results are based on the assumption that Z1 =

· · · = ZJ for microarray applications. In contrast, it is possi-
ble to design the case that Z1,Z2, . . . ,ZJ are independent. This
amounts to using model (12) with crgj and rrgj. The following
theorem gives the result on this specific case.

Theorem 6. Under the regularity conditions in the Appen-
dix, the profile least squares estimator of β j is asymptotically
normal, that is,

√
G(IJ − 1)/J(β̂ j − β j)

D−→ N (0, σ 2�−1
j ),

where �j = E{Zj − E(Zj|Xj)}T{Zj − E(Zj|Xj)}.
This specific model is of theoretical interest, with possi-

ble applications to other statistical problems. For this specific
model, �∗ = 0 in Theorem 5, and Theorem 6 can be deduced
from Theorem 5. With this specific design, the cost for estimat-
ing the αg’s for each reduces array further to G/J data points.
For example, if I = 2, J = 6, and G = 111, then the loss of
degrees of freedom due to estimating nuisance parameters de-
creases from 111 to 18.5. This compares with 31.7 data point
with fixed design Z1 = · · · = ZJ mentioned earlier.

4. SIMULATION AND APPLICATION

In this section we use several simulated examples to augment
the partial consistent phenomenon demonstrated in the last two
sections. We conclude this section with an application of the
proposed method to the normalization of the microarray data
arising from the study of neuroblastoma cells in response to
the stimulation of the macrophage migration inhibitory factor
(MIF), a growth factor.

4.1 Simulations

Our theoretical results are illustrated empirically by four ex-
amples. The first two examples study the situation under which
the genes with replications are randomly placed on arrays. One
of these is a homoscedastic model, and the other is a het-
eroscedastic model. The last two examples show that our re-
sults continue to apply to fixed designs. Because our models
and the partial consistent results are motivated by the analysis
of microarray data, the validity of the randomness assumption
arises for replicated genes. We use Example 3 to demonstrate
that our methods continue to work for the replications similar to
our illustrative example in Section 4.2. Finally, in Example 4 we
apply our method to the case in which no gene has replications
within an array and the design of genes is fixed. In all exam-
ples, we assume that there are 32 print-tip blocks with 4 rows
and 8 columns. The performance of α̂n, β̂ , and m̂(·) is assessed
by the mean squared errors (MSEs),

MSE(̂αn) = 1

G

G∑

g=1

(̂αg − αg)
2,

MSE(β̂) = 1

r + c
‖β̂ − β‖2,

and

MSE(m̂) = 1

GI

G∑

g=1

I∑

i=1

{m̂(Xgi) − m(Xgi)}2.

The MSEs are examined by varying G and I. To examine the
impact of heteroscedasticity on the efficiency of parameters, we
also consider the weighted least squares method, in which Steps
1 and 2 are implemented by using the weighted least squares
with the conditional variance function estimated by smoothing
the squared residuals on Xgi (see Fan and Yao 1998).

Example 1. In this example we choose G = 100,200,400,
800 and I = 2,3,4. For each pair of (G, I), we simulate
N = 200 datasets from model (1). To examine how much the
aggregated method in Section 3 can improve estimation of
the intensity effect m(·) and print-tip block effect (β and γ ),
we simulate data from model (12) with the same print-tip
block effect and intensity effect as in model (1). We as-
sume that there are J = 4 arrays available for us to aggre-
gate the information. We repeat the simulation N = 50 times,
each time consisting of J = 4 arrays for aggregation. The de-
tails of simulation scheme for this example are as follows:

αn. The expression levels of the genes are generated from
the standard double-exponential distribution.

β. For the row effects, first generate {β ′
i , i = 1, . . . ,4}

from N(0, .5), then set βi = β ′
i − β̄ ′, which will guaran-

tee that
∑4

i=1 βi = 0. The column effects are generated
in the same way.

X. The intensity is generated from a mixture distribution.
We generate x from probability distribution .0004 ×
(x − 6)3I(6 < x < 16) with probability .7 and from uni-
form distribution over [6,16] with probability .3.
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Table 1. MSEs of Example 1, Ordinary Least Squares and Weighted Least Squares Estimations, n = 200

Ordinary least squares Weighted least squares

I G = 100 G = 200 G = 400 G = 800 G = 100 G = 200 G = 400 G = 800

m 2 .1454 .0752 .0358 .0201 .1890 .0882 .0422 .0242
3 .0780 .0397 .0234 .0137 .1112 .0505 .0275 .0162
4 .0515 .0273 .0167 .0100 .0739 .0339 .0204 .0117

β 2 .0668 .0299 .0151 .0069 .0691 .0306 .0151 .0069
3 .0318 .0148 .0071 .0033 .0330 .0148 .0072 .0033
4 .0211 .0098 .0050 .0024 .0216 .0099 .0050 .0024

α 2 .6428 .5690 .5290 .5203 .7041 .5919 .5389 .5259
3 .3930 .3607 .3520 .3411 .4383 .3765 .3582 .3443
4 .2788 .2676 .2630 .2573 .3103 .2784 .2678 .2596

m(·). Set the function m(X) = √
5(sin X − .2854), whose ex-

pectation is 0.
Z. For each given gene, its associated block is assigned at

random at one of 32 print-tip blocks.
ε. εgi is generated from the standard normal distribution.

This is a homoscedastic model. The estimation procedure
described in Section 2.1 is used to estimate αn, β , and m(·).
Table 1 presents the MSEs of the ordinary least squares and
weighted least squares estimators for α̂n, β̂ , and m̂(·). The table
shows that when the number of replications I is fixed, the MSEs

of m(·) and β decrease as the number of genes increases, which
indicates the consistency of the estimators of m(·) and β . How-
ever, the MSEs of αn are very stable as the number of genes
increases, which demonstrates the inconsistency of the estima-
tor for αn. Furthermore, to visualize the MSEs and the conver-
gence rates, these MSEs are also depicted in Figure 1, where
log(MSE) − log(I/(I − 1)) is plotted against log(n). Note that
n = IG and that the factor I/(I − 1) is used to correct the inter-
cept term (see Thm. 1). The figure shows that β has the para-
metric rate n−1/2 and m(·) has the nonparametric rate n−2/5.
Table 2 presents the MSEs for α̂n, β̂ , and m̂(·), which are also

(a) m(·) (b) β

(c) α (d) Estimated m(·)

Figure 1. Example 1. (a)–(c) Plots of MSEs of m( · ), β, and α: Ordinary least squares (∗), weighted least squares (+), aggregated method (◦).
The dotted lines are the regression lines for the MSEs of the three different estimators. The slopes are shown for m( · ) and β . (d) The performance
of m̂( · ) when G = 400 and I = 2. The dotted line is the true function of m( · ), and the solid lines are two estimated functions.
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Table 2. MSEs of Example 1, Aggregation Across Arrays
Estimation, n = 50, J = 4

I G = 100 G = 200 G = 400 G = 800

m 2 .0761 .0413 .0216 .0149
3 .0502 .0269 .0166 .0116
4 .0373 .0188 .0146 .0093

β 2 .0433 .0193 .0086 .0043
3 .0246 .0109 .0054 .0027
4 .0160 .0077 .0041 .0019

α 2 .1553 .1420 .1370 .1346
3 .0980 .0885 .0906 .0881
4 .0688 .0668 .0689 .0666

plotted in Figure 1, when the information from four arrays is ag-
gregated. Clearly, αn is estimated more accurately by aggregat-
ing information across arrays with the assumption that the gene
effects remain the same across arrays. In contrast, the improve-
ments on the estimation of β and m(·) are relatively smaller. Ac-
cording to Theorems 1 and 5, the asymptotic relative efficiency
for estimating β is (4I − 4)/(4I − 1). The relative efficiencies
are in line with those given in Tables 1 and 2.

To demonstrate the effectiveness of estimated functions and
parameters, Figure 1 also shows two randomly selected esti-
mates m̂(·) for G = 400 and I = 2. Figure 2 summarizes the
boxplots of row {β̂k} and column {γ̂k} effects based on 200 sim-
ulations with G = 400 and I = 2. The biases of these estimates
are clearly negligible, and coefficients are estimated with simi-
lar accuracy. This is consistent with our design of simulations.
For simplicity, we present only the results based on the ordinary
least squares method.

Example 2. In this example we also choose G = 100,200,
400,800 and I = 2,3,4. For each pair of (G, I), we simu-
late n = 200 datasets from the model (1). To examine the ef-
fectiveness of using information across arrays, we simulate
n = 50 datasets from the model (12), each consisting of J = 4
arrays with parameters taken from model (1). The parame-
ters in this example are taken to mimic the real data in the
next section. The details of simulation scheme are as follows:

αn. The expression levels of the first 50 genes follow stan-
dard double exponential, and the rest are 0’s.

β. The row and column effects are fixed. Set

βr = (.2, .15,−.2,−.15)′

and

βc = (.15, .125, .1, .075,−.15,−.125,−.10,−.075)′.

X. Same as in Example 1.
m(·). Set the function m(X) = 10(.2708 − √

(16 − X)/32 ),
whose expectation is 0.

Z. Same as in Example 1.
ε. εgi is generated from the normal distribution with

mean 0 and variance σ 2(Xgi) = .15+ .015(12−Xgi)
2 ×

I{Xgi < 12}.

This heteroscedastic model contains many features similar to
those in the real microarray data. Tables 3 and 4 give similar
results to those of Tables 1 and 2. They demonstrate that the es-
timation of m(·) and β is consistent, but estimation of αn is not.
Also note that for both homoscedastic and heteroscedastic mod-
els, ordinary least squares and weighted least squares yield the
similar results. This is somewhat surprising. But we speculate
that the degree of heteroscedasticity is not sufficiently large for
the ordinary least squares and the weighted least squares to per-
form analogously. Further, as pointed out after Theorem 2, it is
not clear that weighted least squares must outperform ordinary
least squares under the current model. The results in Figure 3
are similar to those of Figure 1. Here we present the results
only for weighted least squares estimators [in (d)]. Indubitably,
the aggregation dramatically improves the estimate of αn. It
also improves the accuracy of the estimated intensity effect and
print-tip block effect.

Example 3. In this example we assess the impact of ran-
domness assumption to our proposed method by fixing the
replicated pairs throughout simulation. We simulate n = 200
datasets from model (1) for the pair (G = 111, I = 2). The sim-
ulation scheme is the same as in Example 2, except the man-
ner in which these 222 genes are placed onto microarrays. To
be closer to reality, we mimic the real data in the next section
and fix the print-tip block positions of these 222 genes through-
out simulations. The locations of the repeated pairs are iden-
tical to those in the real data. Table 5 compares the MSEs of
α, β , and m(·) under both random and fixed designs. They are
comparable, which in turn indicates that the asymptotic results
continue to hold for fixed designs (in which the randomness as-
sumption is violated).

Example 4. This example examines the effectiveness of nor-
malization when there are no replicated genes within an array.
Data are simulated from model (11) with α, X, m(·), and ε gen-
erated in the same manner as those in Example 2. Model (11) is
fitted for different number of genes G within a block of an array
and for different number of available arrays J for aggregation.
Table 6 presents the results.

(a) (b)

Figure 2. Boxplots of the Estimated (a) Row {β̂k } and (b) Column {γ̂k } Effects When G = 400 and I = 2 for Example 1.
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Table 3. MSEs of Example 2, Ordinary Least Square and Weighted Least Square Estimation, n = 200

Ordinary least squares Weighted least squares

I G = 100 G = 200 G = 400 G = 800 G = 100 G = 200 G = 400 G = 800

m 2 .0398 .0214 .0099 .0047 .0402 .0216 .0101 .0047
3 .0245 .0105 .0058 .0027 .0289 .0107 .0078 .0027
4 .0160 .0073 .0042 .0019 .0171 .0074 .0044 .0020

β 2 .0129 .0061 .0026 .0014 .0127 .0060 .0025 .0013
3 .0058 .0027 .0013 .0007 .0055 .0026 .0012 .0006
4 .0038 .0018 .0009 .0004 .0035 .0017 .0008 .0004

α 2 .1261 .1085 .1004 .0960 .1253 .1059 .0960 .0908
3 .0766 .0677 .0655 .0637 .0783 .0643 .0627 .0584
4 .0551 .0503 .0487 .0474 .0531 .0469 .0447 .0432

Table 4. MSEs of Example 2, Aggregation Across Arrays
Estimation, n = 50, J = 4

I G = 100 G = 200 G = 400 G = 800

m 2 .0219 .0102 .0049 .0027
3 .0134 .0068 .0035 .0018
4 .0106 .0053 .0025 .0014

β 2 .0073 .0034 .0017 .0008
3 .0041 .0020 .0010 .0005
4 .0029 .0015 .0008 .0004

α 2 .0302 .0256 .0247 .0241
3 .0178 .0170 .0163 .0161
4 .0142 .0128 .0122 .0118

It is clear when the number of available arrays increases,
the MSEs for the m’s (averaging MSE over J arrays) decrease,
because the average cost per array for estimating the α’s de-
creases. When G increases, the MSEs for m decrease dramati-
cally, demonstrating that m is a consistent estimate. This is not
true for the MSEs of the α’s, because α cannot be estimated
consistently. These are consistent with our theoretical results.

4.2 Application

The dataset used here was collected and analyzed by Fan
et al. (2004). The biological aim of the study is to understand
how genes are affected by the macrophage MIF in neuroblas-

(a) m(·) (b) β

(c) α (d) Estimated m(·)

Figure 3. Example 2. (a)–(c) Plots of MSEs of m( · ), β , and α: Ordinary least-squares (∗), weighted least-squares (+), aggregated method (◦).
The dotted lines are the regression lines for the MSEs of the three different estimators. The slopes are shown for m( · ) and β . (d) The performance
of m̂( · ) when G = 400 and I = 2. The dotted line is the true function of m( · ) and the solid lines are two estimated functions.



790 Journal of the American Statistical Association, September 2005

Table 5. MSEs of Example 3, G = 111, I = 2, n = 200

Ordinary least squares Weighted least squares

Fixed design Random design Fixed design Random design

m .0368 .0373 .0382 .0395
β .0114 .0116 .0110 .0114
α .1253 .1212 .1237 .1216

toma cells. Neuroblastoma is the second most common pedi-
atric solid cancer and accounts for approximately 15% cancer
deaths. MIF plays a central role in control of the host inflam-
matory and immune response and is linked to fundamental
processes that control cell proliferation, cell survival, and tu-
mor progression. It is overexpressed in several human cancers.
To gain better understanding of the role of MIF in the develop-
ment of neuroblastoma, the global gene expression of the neu-
roblastoma cell line stimulated with MIF is compared with that
of those without MIF stimulation using cDNA microarrays. The
details of the design and experiments were given by Fan et al.
(2004).

The cDNA microarrays used here consist of 19,968 clones
of sequence-validated human genes, printed on 8 × 4 print-
tip blocks. Among these, 111 cDNA clones of genes were
printed twice on each array. Figure 4(a) shows schematically
the 32 print-tip blocks, with a point in the block indicating one

Table 6. MSEs of Example 4, n = 100

G J = 2 J = 4 J = 6 J = 8

m 500 .0142 .0092 .0084 .0080
1,000 .0065 .0043 .0040 .0038

α 500 .0973 .0483 .0323 .0242
1,000 .0957 .0474 .0317 .0237

of these 111 genes (the dot represents one clone, and the tri-
angle represents its replication). These 222 clones are nearly
uniformly distributed on the 32 blocks [see Figs. 4(b) and 4(c)].
Figure 4(d) shows the distribution, among 111 pairs of repeated
genes, of the distance between two repeated clones. For exam-
ple, if one gene is located in block (3,2) and the other is located
in block (5,3), then its distance is

√
4 + 1.

In the notation that we have introduced, c = 8, r = 4, G =
111, and I = 2. Figures 5(a) and 5(b) shows the values of log
ratios and log intensities for the repeated genes for a given array.
Because the clones are identical, the differences in expression
provide valuable information for estimating the systematic bi-
ases. The differences come from the location of the clones and
the random errors. Following the work of Tseng et al. (2001),
Dudoit et al. (2002), and Huang et al. (2003), we need to re-
move the systematic biases before carrying out any statistical
analysis.

(a) (b)

(c) (d)

Figure 4. cDNA Microarrays. (a) Schematic representation of the locations with replications; a dot represents one clone, and a triangle represents
its replication. (b) The distribution of the blocks where genes with repetitions reside. (c) Pie chart for the rows where genes with repetitions reside.
(d) Histogram for the distances of the blocks for two repeated clones.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Repeated Genes. (a) and (b) Observed log ratios and log intensities for pairs of repeated clones. (c) Fitted function m along with
normalized (squares) and unnormalized (triangles) ratios for a given array plotted against the log intensity. (d) Normalized log ratios (vs. their log
intensities), with intensity and print-tip effect removed for the given array. [Thick curves are the standard deviation curves multiplied by 2, and the
dashed curve is the estimated function from (c).] (e) and (f) The Q–Q plot for log ratios and standardized ratios.

We applied the model (1) to estimate the print-tip block
and intensity effects for each array. For the array given in
Figures 5(a) and 5(b), the estimated function m is depicted
in Figure 5(c), in which unnormalized and normalized log
ratios are plotted against their associated log intensities. The
estimated values of β and γ are not reported here. The es-
timates were obtained by the ordinary least squares method.
With the estimated block and intensity effects, the system-
atic biases in 19,968 genes can be removed via (2). The nor-
malized results are presented in Figure 5(d). It is clear that
the low intensity is associated with high variation in log ra-
tios. The degree of heteroscadesticity (i.e., the conditional

standard deviation) is estimated by using the method of Fan
and Yao (1998). The estimated standard deviation function,
σ̂ (Xg), is also plotted in Figure 5(d). Let µ̂(·) be the regres-
sion function of the normalized log ratios {Y∗

g } on its asso-
ciated log intensities {Xg}. The quantile–quantile (Q–Q plots
for checking normality for the normalized log ratios {Y∗

g }
and the standardized log ratios {(Y∗

g − µ̂(Xg))/σ̂ (Xg)} are de-
picted in Figures 5(e) and 5(f ). As shown in Figure 5(f ), af-
ter standardization, the data become more normally distributed,
indicating that the degree of heteroscedasticity has been prop-
erly assessed. Further analysis of this dataset was done by Fan
et al. (2004).
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5. DISCUSSION

Motivated by the problem of normalizing cDNA microarray
data, two semiparametric models are proposed. An interesting
feature of the models is that the number of nuisance parameters
is proportional to the sample size. These nuisance parameters
cannot be estimated consistently. However, the parameters of
main interest for the normalization problem can be estimated
consistently. The cost for estimating the nuisance parameters is
pinned down; each nuisance parameter costs us basically one
data point. This is the minimum price that we have to pay, as
we have demonstrated.

Our proposed model has a wide spectrum of applications. In
addition to be applicable to various situations with within-array
replications, it can even be applied to the case without within-
array replications. It can also be used at a block level, and this
avoids the additive assumption on the intensity and block ef-
fects.

Aggregation is a powerful approach to improving the ac-
curacy of estimated parameters. As we have demonstrated, it
reduces the price for estimating one nuisance parameter per
data point to per 1/J data point per array. As a result, the
block effects are estimated more accurately. In the normaliza-
tion process, the main source of estimation errors comes from
the nonparametric component—the intensity effect. Thus, as far
as the asymptotic is concerned, aggregation helps only partially
in the accuracy of normalization. However, as we have shown
in the simulation, the aggregation does help in estimating both
block and intensity effects for finite samples.

Aggregation gives us much more data points for removing
systematic biases. It allows us to impose some more flexible
models to access the block and intensity effects. Because of
increased sample size, we have more flexibility in proposing
different kind of semiparametric models for normalization and
analysis of data.

Within-array replications are powerful for removing system-
atic biases and level of measurement errors. It is not difficult
to print several hundreds of repeated clones in a cDNA chip.
Thus our requirement that G be large should be easy to fulfill.
With increased sample sizes and our analysis technique, the sys-
tematic biases due to the experimental variations can be better
removed.

APPENDIX: PROOFS

The following technical conditions are imposed. They are not weak-
est possible conditions, but they are imposed to facilitate the technical
proofs:

1. The function m(·) has a bounded second derivative.
2. � is nonsingular, and E(Z|X = x) is Lipschitz continuous in x.
3. Each component of Z is bounded.
4. The random variable X has a bounded support �. Its density

function f (·) is Lipschitz continuous and bounded away from 0
on �.

5. The function K(·) is a symmetric density function with compact
support.

6. nh8 → 0 and nh2/(log n)2 → ∞.

The following notation is used in the proofs of the lemmas
and theorems. Let µi = ∫

uiK(u)du, νi = ∫
uiK2(u)du, and cn =

{log(1/h)/(nh)}1/2 + h2. Also let

Dx =




1 X1−X
h

...
...

1 Xn−X
h



 and

S =




[1 0]{DT
x WxDx}−1DT

x1
Wx1

...

[1 0]{DT
xn

Wxn Dxn}−1DT
xn

Wxn



 ,

where Wx = diag{Kh(X1 −X), . . . ,Kh(Xn −X)}, K(·) is a kernel func-
tion, h is a bandwidth, and Kh(·) = K(·/h)/h. Set 	(X) = E(ZT |X).

Lemma A.1. Let (X1,Y1), . . . , (Xn,Yn) be iid random vectors,
where the Yi’s are scalar random variables. Further assume that
E|Yi|4 < ∞ and supx

∫ |y|4f (x, y)dy < ∞, where f denotes the joint
density of (X,Y). Let K be a bounded positive function with a bounded
support that satisfies Lipschitz’s condition. Then, under condition 6,

sup
X

∣∣∣∣∣
1

n

n∑

i=1

[
Kh(Xi − X)Yi − E{Kh(Xi − X)Yi}

]
∣∣∣∣∣

= Op

({
log(1/h)

nh

}1/2)
.

Proof. This follows immediately from the result of Mack and
Silverman (1982).

Lemma A.2. Under conditions 1–6, we have

n−1Z̃T
n (I − PB̃)Z̃n

P−→ I − 1

I
�,

where � = E{Z − E(Z|X)}T {Z − E(Z|X)}.
Proof. Note that

DT
x WxDx

=
( ∑n

i=1 Kh(Xi − X)
∑n

i=1
Xi−X

h Kh(Xi − X)
∑n

i=1
Xi−X

h Kh(Xi − X)
∑n

i=1(
Xi−X

h )2Kh(Xi − X)

)
.

Each element of the foregoing matrix is in the form of a kernel regres-
sion. By Lemma A.1,

n−1DT
x WxDx = f (X)

(
1 0
0 µ2

)
+ Op(cn). (A.1)

Using the same argument, we have

n−1DT
x WxZn = f (X)	(X)(1,0)T + Op(cn).

Combining the last two results yields that, uniformly in X ∈ �,

[1,0]{DT
x WxDx}−1DT

x WxZn = 	(X) + Op(cn).

Then we have

SZn =



	(X1)

...

	(Xn)



+ Op(cn)

and

Z̃n =




ZT
1 − 	(X1)

...

ZT
n − 	(Xn)



+ Op(cn) =̂A + Op(cn). (A.2)
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By the law of large numbers, we have

n−1Z̃T
n Z̃n = n−1

n∑

i=1

{Zi − 	(Xi)
T }{ZT

i − 	(Xi)} + Op(cn)

P−→ E
(
Z − E(Z|X)(Z − E(Z|X)

)T = �.

Hence, to prove the lemma, we only consider the limit of n−1Z̃T
n ×

PB̃n
Z̃n. It is easy to show that

n−1Z̃T
n PB̃n

Z̃n = n−1AT PB̃n
A + Op(cn).

Let (PB̃n
)ij =̂pij and (A)ij =̂aij = Zij − E(Zij|Xi), where Zij is the

jth component of random vector Zi, which represents the ith obser-
vation of Z. Then the (i, j) component of 1

n AT PB̃n
A is

(
1

n
AT PB̃n

A
)

ij
= 1

n

n∑

k=1

n∑

l=1

akipklalj

= 1

n

n∑

k=1

akipkkakj + 1

n

n∑

k 
=l

akipklalj

=̂ I1 + I2.

For the term I2, we have

EI2
2 = 1

n2
E

{ n∑

k1 
=l1

n∑

k2 
=l2

ak1ipk1l1 al1jak2ipk2l2 al2 j

}
.

Note that (Z1,X1), . . . , (Zn,Xn) are iid, and that pij depends only on
{X1, . . . ,Xn} for any pair (i, j). Because E(ak1j|Xk1 ) = 0, we have

E
{
ak1ipk1l1 al1jak2ipk2l2 al2 j

}

= E
{
pk1l1 pk2l2 E

(
ak1ial1jak2ial2 j

∣∣Xk1 ,Xk2 ,Xl1 ,Xl2
)}

= E
{
pk1l1 pk2l2 E

(
al1jak2ial2 j

∣∣Xk2 ,Xl1 ,Xl2
)
E
(
ak1i

∣∣Xk1

)}

= 0,

when k1 
= k2 and k1 
= l2. Using the same argument and pkl = plk , we
have

EI2
2 = 1

n2

n∑

k 
=l

E{akipklalj}2 + 1

n2

n∑

k 
=l

E{p2
klakiakjaljali}.

Because the aij’s are uniformly bounded by condition 3,

EI2
2 ≤ 2C

n2

n∑

k 
=l

p2
kl ≤ 2C

n2
tr
(
P2

B̃n

)≤ 2C

n
,

where C is a constant. Hence

I2 = op(1). (A.3)

Note that I1 can be decomposed as

I1 = 1

n

n∑

k=1

pkk(akiakj − Eakiakj) + 1

n

n∑

k=1

pkkEakiakj =̂ J1 + J2.

Because tr(S) = Op(1/h) and tr(SST ) = Op(1/h), it is easy to know
that tr(PB̃n

) = n
I + Op(1/h). Hence,

J2 = 1

I

ij + Op

(
1

nh

)
, (A.4)

where 
ij is the (i, j)th element of �. Furthermore, if we can show that

1 ≥ pkk ≥ 1

I
+ Op

(
1

nh

)
, (A.5)

then, by

tr
(
PB̃n

)=
n∑

k=1

pkk = n

I
+ Op

(
1

h

)
, (A.6)

it is easy to show that

1

n

n∑

k=1

(pkk − I−1)2 = Op

(
1

nh2

)
.

By the law of large numbers, J1 is bounded as

J1 = 1

n

n∑

k=1

(pkk − I−1)(akiakj − Eakiakj)

+ 1

nI

n∑

k=1

(akiakj − Eakiakj)

≤ 1

n

{ n∑

k=1

(pkk − I−1)2

}1/2{ n∑

k=1

(akiakj − Eakiakj)
2

}1/2

+ op(1)

= op(1). (A.7)

By (A.4) and (A.7), we have

I1 = 1

I

ij + op(1). (A.8)

By (A.3) and (A.8), Lemma A.2 holds, that is,

1

n
Z̃T

n (I − PB̃)Z̃n
P−→ I − 1

I
�.

We now need to establish (A.5). Consider the projection matrix

PB̃n1
= (I − S)Bn1

(
BT

n1(I − ST )(I − S)Bn1
)−BT

n1(I − ST ),

where Bn1 is the first column vector of Bn. It is easy to show that

PB̃n
PB̃n1

= PB̃n1
PB̃n

and

PB̃n
− PB̃n1

= (
PB̃n

− PB̃n1

)2 ≥ 0.

By the definition of S, it is easy to show that

S = (S1, . . . ,Sn)T [I + diag{Op(cn)}],
where

Si =
(

Kh(X1 − Xi)

nf (Xi)
, . . . ,

Kh(Xn − Xi)

nf (Xi)

)T
.

Thus we have

BT
n1(I − ST )(I − S)Bn1 =

n∑

i=1

( I∑

j=1

Kh(Xj − Xi)

nf (Xi)

)2

{1 + Op(cn)}

+ I − 2
I∑

i=1

I∑

j=1

Kh(Xj − Xi)

nf (Xi)
.

Because

I∑

i=1

( I∑

j=1

Kh(Xj − Xi)

nf (Xi)

)
{1 + Op(cn)} = Op

(
1

nh

)

and

n∑

i=1

( I∑

j=1

Kh(Xj − Xi)

nf (Xi)

)2

{1 + Op(cn)} = Op

(
1

nh

)
,
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we have

BT
n1(I − ST )(I − S)Bn1 = I

{
1 + Op

(
1

nh

)}
.

Hence, for i = 1, . . . , I, we obtain
(
PB̃n

)
ii ≥ (

PB̃n1

)
ii

= 1

I

{
1 + Op

(
1

nh

)}{
1 −

I∑

j=1

Kh(Xj − Xi)

nf (Xi)
{1 + Op(cn)}

}2

= 1

I
+ Op

(
1

nh

)
, i = 1, . . . , I.

By a similar argument, we can show that

(
PB̃n

)
ii ≥ 1

I
+ Op

(
1

nh

)
, i = I + 1, . . . ,n.

This completes the proof of Lemma A.2.

Lemma A.3. Under conditions 1–6, we have

n−1Z̃T
n (I − PB̃)(I − S)M = Op(c2

n).

Proof. By a similar proof to that of Lemma A.2, and by Lemma A.1,
it is easy to see that

(I − S)M = Op(cn).

Defining P = (P1, . . . ,Pn)T = (I − PB̃n
)(I − S)M, we have

1

n

n∑

i=1

P2
i ≤ n−1‖(I − S)M‖2 = Op(c2

n).

By (A.2) and the Cauchy–Schwartz inequality,

1

n
Z̃n
(
I − PB̃n

)
(I − S)M = 1

n

n∑

i=1

Pi{Zi − 	(Xi) + Op(cn)}

= n−1
n∑

i=1

Pi{Zi − 	(Xi)} + Op(c2
n).

We now deal with the first term. Note that Pi depends only on X ran-
dom variables and E(Zi|Xi) = 	(Xi). Hence, for some constant C,

E

[
n−1

n∑

i=1

Pi{Zi − 	(Xi)}
]2

≤ Cn−2
n∑

i=1

P2
i = O(n−1c2

n).

This leads to
1

n
Z̃n
(
I − PB̃n

)
(I − S)M = Op(c2

n).

Hence, Lemma A.3 holds.

Lemma A.4. Under conditions 1–6, we have

n−1/2Z̃T
n (I − PB̃)(I − S)εn

D−→ N
(

0,
I − 1

I
σ 2�

)
.

Proof. By Lemma A.1, we have Sεn = Op(cn). By similar argu-
ments as in Lemma A.3 and under condition 6, we have

1√
n

Z̃n
(
I − PB̃n

)
Sεn = Op(

√
nc2

n) = op(1).

Therefore, by Slutsky’s theorem, the central limit theorem (see
van der Vaart 1998), and Lemma A.2, we have

1√
n

Z̃T
n
(
I − PB̃n

)
(I − S)εn

= 1√
n

Z̃T
n
(
I − PB̃n

)
εn + op(1)

D−→N
(

0,
I − 1

I
σ 2�

)
.

Proof of Theorem 1

By (6) and Lemma A.2, we have

√
n(β̂ −β) = √

n
(
Z̃T

n Z̃n − Z̃T
n PB̃n

Z̃n
)−1Z̃T

n
(
I−PB̃n

)
(I−S)(M+εn).

By Lemmas A.2 and A.3, we have

√
n
(
Z̃T

n Z̃n − Z̃T
n PB̃n

Z̃n
)−1Z̃T

n
(
I − PB̃n

)
(I − S)M

= Op(
√

nc2
n) = op(1).

Hence,

√
n(β̂ − β)

= √
n
(
Z̃T

n Z̃n − Z̃T
n PB̃n

Z̃n
)−1Z̃T

n
(
I − PB̃n

)
(I − S)εn + op(1).

By Lemma A.4, we have

1√
n

Z̃T
n
(
I − PB̃n

)
(I − S)ε

D−→N
(

0,
I − 1

I
σ 2�

)
.

Therefore, using Lemma A.2, we conclude that

√
n(β̂−β)

D−→ N
(

0,
I

I − 1
σ 2�−1��−1

)
=N

(
0,

I

I − 1
σ 2�−1

)
.

This completes the proof of Theorem 1.

Lemma A.5. Under conditions 1–6,

λi{(I − SP)(I − SP)T } ≥ (
√

I − 1)2

I
+ Op(cn)

holds uniformly for {λi, i = 1, . . . ,n}, where λi(A) denotes the eigen-
value of matrix A.

Proof. We first consider the eigenvalues of the matrix SPST . Be-
cause

P = (I − 1n1T
n /n)Bn(BT

n Bn)−1BT
n

= Bn(BT
n Bn)−1BT

n − 1n1T
n /n

= 1

I
IG ⊗ (1I1T

I ) − 1

n
1n1T

n

and S1n = 1n, it is easy to show that

SPST = SBn(BT
n Bn)−1BT

n ST − 1n1T
n /n

= 1

I
S
(

I − 1

n
1n1T

n

)
ST + 1

I
S{IG ⊗ (1I1T

I ) − I}ST

−
(

1 − 1

I

)
1

n
1n1T

n

=̂ K1 + K2 + K3.

For the term K2, we have

(K2)ij =
n∑

l=1

n∑

k=1

Sil
1

I
{IG ⊗ (1I1T

I ) − I}lkSjk

= 1

I

G−1∑

s=0

I∑

l=1

I∑

k=1,k 
=l

Si(sG+l)Sj(sG+k)

= 1

I

I∑

l=1

I∑

k=1,k 
=l

G−1∑

s=0

Si(sG+l)Sj(sG+k).
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By (A.1) and Lemma A.1,

G−1∑

s=0

Si(sG+l)Sj(sG+k)

=
{G−1∑

s=0

Kh(XsG+l − Xi)

nf (Xi)

Kh(XsG+k − Xj)

nf (Xj)

}
{1 + Op(cn)}

= G

n2
{1 + Op(cn)} = 1

In
{1 + Op(cn)},

which holds uniformly for i, j = 1, . . . ,n. Hence, we obtain

(K2)ij = 1

I

I∑

l=1

I∑

k=1,k 
=l

1

In
{1 + Op(cn)} = I − 1

In
{1 + Op(cn)}

or

K2 = I − 1

I

1

n
1n1T

n {1 + Op(cn)} = −K3{1 + Op(cn)}.
Therefore,

SPST = K1 + K3 · Op(cn).

It is obvious that the eigenvalues of K1 satisfy

0 ≤ λi(K1) ≤ 1

I
, i = 1, . . . ,n.

Thus the eigenvalues of SPST have

0 ≤ λi(SPST ) ≤ 1

I
+ Op(cn). (A.9)

On the other hand, for any vector z satisfying ‖z‖ = 1 and letting y2 =
zT SPST z, y ≥ 0, we have

zT (I − SP)(I − SP)T z = 1 − zT (SP + PST )z + zT SPST z

≥ 1 − 2y + y2.

By (A.9),

y2 ≤ 1

I
+ Op(cn).

Hence

zT (I − SP)(I − SP)T z ≥
(

1 − 1√
I

)2
+ Op(cn).

This leads to the conclusion of Lemma A.5.

Proof of Theorem 3

By (9), we have

M̂ = {I − (I − SP)−1(I − S)}{Bnαn + M + εn}
= (I − SP)−1S(I − P)Bnαn + {I − (I − SP)−1(I − S)}M

+ {I − (I − SP)−1(I − S)}εn.

Because
∑G

i=1 αi = 0, it is easy to show that

(I − SP)−1S(I − P)Bnαn = 0.

Then we have

M̂ − M = −(I − SP)−1(I − S)M + {I − (I − SP)−1(I − S)}εn

and

MSE{M̂} = 1

n
‖(I − SP)−1(I − S)M‖2

+ 1

n
E
∥∥{I − (I − SP)−1(I − S)}εn

∥∥2

= L1 + L2.

By Fan (1992), we have

(I − S)M = µ2

2
M′′h2 + op(h2).

Hence, by Lemma A.5,

L1 ≤ I

(
√

I − 1)2

1

n

µ2
2h4

4

n∑

i=1

{m′′(Xi)}2 + op(h4)

= I

(
√

I − 1)2

µ2
2h4

4
E{m′′(X)}2 + op(h4). (A.10)

For L2, we have that
∥∥{I − (I − SP)−1(I − S)}εn

∥∥2

= ‖(I − SP)−1S(I − P)εn‖2

≤
{

I

(
√

I − 1)2
+ Op(cn)

}
‖S(I − P)εn‖2.

Thus,

L2 ≤
{

I

(
√

I − 1)2
+ Op(cn)

}
1

n
E‖S(I − P)εn‖2

=
{

I

(
√

I − 1)2
+ Op(cn)

}
σ 2

n
tr(S(I − P)ST )

≤
{

I

(
√

I − 1)2
+ Op(cn)

}
σ 2

n
tr(SST ). (A.11)

It is not difficult to know that

tr(SST ) =
n∑

i=1

ν0

nhf (Xi)
+ op

(
1

nh

)
,

and by the law of large numbers, we have that

1

n

n∑

i=1

ν0

nhf (Xi)
= σ 2ν0|�|

nh
+ op

(
1

nh

)
.

Therefore, by (A.10) and (A.11), Theorem 3 holds.

Proof of Theorem 2

To deal with the situation of heteroscedastic error, following the
proof of Theorem 1 and Lemma A.4, we only prove that

n−1/2Z̃T
n
(
I − PB̃n

)
(I − S)εn

D−→ N (0,V),

where

V = (I − 1)2

I2
Eσ 2(X){Z−E(Z|X)}T {Z−E(Z|X)}+ I − 1

I2
Eσ 2(X) ·�.

Similar to Lemma A.5 and its proof, we may consider the eigenval-
ues of the matrix BT

n (I−S)T (I−S)Bn. Then we know that the nonzero
eigenvalues of this matrix are larger than a constant and that the vector
1n is the eigenvector of this matrix with zero eigenvalues. Hence, by a
special form of Bn, we can show that

PB̃n
= 1

I
IG ⊗ (1I1T

I ) + Op

(
1

nh

)
,

where Op(1/nh) denote a matrix whose elements are uniformly with
order 1/nh.

Finally, using Lemma A.1 and the same computation steps as in the
proof of Lemma A.2, we obtain that

1

n
Z̃T

n
(
I − PB̃n

)
W
(
I − PB̃n

)
Z̃n

P−→ V,

where W = diag{σ 2(X1), . . . , σ 2(Xn)}. Then, following the steps in
the proof of Lemma A.4, Theorem 2 can be proved.
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Proof of Theorem 4

To prove Theorem 4, following the steps of the proof of Theorem 3,
we need only consider tr(S(I − P)W(I − P)ST ). However, we know
the detail form of the matrices P and W, by the properties of S and
some computation. Thus Theorem 4 is easily proved.

Proof of Theorem 5

To prove Theorem 5, we can still follow the steps from (5) to (7),
adopting a local linear regression technique. The estimate of M is

M̂ = S(Y − Bα − Zβ),

where S = diag(S1, . . . ,SJ) and Sj is a smoothing matrix that depends
only on the observations {Xgij, g = 1, . . . ,G, i = 1, . . . , I}. Hence we
can also obtain the estimate of β as

β̂ = (Z̃T Z̃ − Z̃T PB̃Z̃)−1Z̃T (I − PB̃)Ỹ,

where Ỹ = (I − S)Y, B̃ = (I − S)B, Z̃ = (I − S)Z, and PB̃ =
B̃(B̃T B̃)T B̃T .

Noticing that the special structures of S, B̃, Z̃, and PB̃ are somewhat
different from those in the proof of Theorem 1, the rank of PB̃ is of the
order G + op(G), and the sample size is GIJ. Following the proof of
Lemma A.2, we can show that

1

GI
(Z̃T Z̃ − Z̃T PB̃Z̃)

P−→ �∗∗,

where

�∗∗ = IJ − 1

IJ
IG ⊗ � + 1

IJ
IG ⊗ �∗ − 1

IJ
1G1T

G ⊗ �∗. (A.12)

Then, following the proof of Theorem 1 and using matrix inverse com-
putation, Theorem 5 can be obtained.

Proof of Theorem 6

The difference of proof between Theorem 6 and Theorem 5 lies
in the limiting matrix of 1

GI (Z̃
T Z̃ − Z̃T PB̃Z̃). By using the condition

that Z1,Z2, . . . ,ZJ are independent, we have �∗ = 0. It follows from
(A.12) that

1

GI
(Z̃T Z̃ − Z̃T PB̃Z̃)

P−→ IJ − 1

IJ
diag(�1, . . . ,�J).

Theorem 6 follows from a proof similar to that of Theorem 5.

[Received December 2003. Revised September 2004.]
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Comment
Chiara SABATTI

The normalization of cDNA arrays is an issue of high prac-
tical relevance, being an initial necessary step in the analysis
of microarray data, which are nowdays used extensively in ge-
netics and biological research. The impact of statistics on this
area can be described as both considerably high and disap-
pointingly low. Statisticians (e.g., Tseng, Oh, Rohlin, Liao, and

Chiara Sabatti is Assistant Professor, Departments of Human Genetics and
Statistics, University of California Los Angeles, Los Angeles, CA 90095.

Wong 2001; Yang et al. 2002) first pointed out that the “global
normalization” technique proposed by the developers of array
technology overlooked a series of measurable effects and in turn
suggested more flexible and sensitive strategies whose value
has been recognized by practitioners. Indeed, even commercial
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software currently incorporates methodology inspired by such
contributions as those by Tseng et al. (2001) and Yang et al.
(2002). Fan, Peng, and Huang further enlarge the bag of statis-
tical tools available for normalization. This represents a clear
success. Nonetheless, disappointing that evidence from statis-
tics has not motivated—so far—the development of more reli-
able technology or better understanding of the nature of these
biases. For example, the results from different normalization
strategies, including the one described in the present article,
clearly indicate a strong intensity effect (m) that is highly vari-
able from slide to slide. Although statistical correction is possi-
ble, there is very little understanding of the biochemical process
that produces such biases. I wish that this statistically detected
distortion was taken more seriously and that more energy was
invested in the understanding of its basis and development of
better technology.

The normalization strategy described in this article exploits
the presence on one array of multiple spots measuring the
expression value of the same gene. This design allows the au-
thors to do without the assumption of zero average expres-
sion change across all (or a crudely identified large subset of )
genes with similar intensity. The analysis of the experiments
for which this assumption is more problematic will benefit most
from the suggested methodology. One such case is represented
by custom arrays, where the spotted genes are preselected ac-
cording to the “suspicion” that they may be affected by the
treatment under investigation. For example, consider arrays that
are printed only with genes believed to be expressed in a spe-
cific tissue (“brain array”) and used to study the effects of bio-
logical treatments known to impact the same tissue. More strik-
ing, Geschwind et al. (2001) pioneered the use of a subtraction
technique in a first step to identify genes that appear differen-
tially expressed in two cell lines under study; in a second step,
these genes are spotted on an array, and the amounts of their
transcripts are further quantified. In this situation, one clearly
expects the majority of genes to change expression, and the use
of traditional normalization techniques presents difficulties.

Fan, Peng, and Huang show that the iterative procedure they
suggest leads to consistent estimates as the number of genes
with replicate spots tends to infinity, as long as the replicates
are placed “appropriately” on the array. This result is reassur-
ing for statisticians, but also has important experimental design
implications. A more detailed analysis of when asymptotic be-
havior “kicks in” would be very useful for determining how
many replicate spots should be printed on an array—currently
this number tends to be rather small, with an unsatisfactory spa-
tial distribution. The fact that presently only a few genes are
replicated (so that the relevant sample size for their method is
small) may have guided the authors’ model choice that appears
questionable; they use additive row and column effects to model
the print-tip means. Besides an economy of parameters, I fail to
understand why one should not use a factor with as many lev-
els as print tips, because this seems to correspond more directly
with the technological process used in spotting the arrays. Ar-
guably, the same asymptotic results would hold with this more
general model, and again, important design suggestions may be
derived in terms of how many replicates are needed to estimate
these effects.

From a methodological standpoint, the focus of the article
is on partial consistency in the presence of nuisance parame-
ters. Asymptotic analysis is carried out sending G to infinity,
that is, the number of genes in the study (albeit with repli-
cate spots), rather than the number of replicate hybridizations.
This appropriately adapts to the nature of array experiments
that always survey a large number of genes, with few repli-
cates. Indeed, a key element for successful statistical analysis
in this context has been the identification of features shared
by a large number of genes that can be estimated, turning the
curse of dimensionality into a “blessing” (Donoho 2000): print-
tip and dye effects as in the present article; variances of ex-
pression values, assuming that genes with similar intensities
share a common variance (see, e.g., Baldi and Long 2001);
the percentage of genes that do not experience changes in ex-
pression (see, e.g., Storey and Tibshirani 2003; Storey, Taylor,
and Siegmund 2004); and the distribution of the expression val-
ues for nonchanger genes (Efron, Tibshirani, Storey, and Tusher
2001; Sabatti, Karsten, and Geschwind 2002). Often the statis-
tical methodologies used to take advantage of the large number
of genes fall under the umbrella of empirical Bayes methods
(Li and Wong 2001; Newton, Kendziorski, Richmond, Blattner,
and Tsui 2001; Efron, Tibshirani, Storey, and Tusher 2001;
and many others). The results of Fan, Peng, and Huang are in
terms of partial consistency in presence of nuisance parameters,
bringing to the attention of the statistical community a different
paradigm that can be used successfully with the same goal.

Can we identify other features in microarray data whose di-
mension does not increase with the number of genes and that
are of scientific interest? The deconvolution-type model pre-
sented by Liao et al. (2003) may be one such example. The
goal is to reconstruct, from gene expression data, the changes
in concentration of regulatory proteins. To sketch the biologi-
cal question, recall that the transcription of genes is controlled
in large part by regulatory proteins that switch back and forth
between active and inactive states in response to varying cell
conditions. A relatively small number of such proteins is re-
sponsible for the regulation of the entire genome. Liao et al.
(2003) noted the technical difficulty of directly measuring the
changes in concentration of these transcription factors and at-
tempt to reconstruct them from the variation in expression
levels of their known targeted genes. The authors consider the
following model for the log ratio of expression of gene i in ex-
periment t:

yit =
L∑

j=1

aijpjt + εit, t = 1, . . . ,M, i = 1, . . . ,G,

where aij quantifies the control strength of transcription factor j
on gene i, pjt is the concentration of active form of transcrip-
tion factor j in experiment t, and εit is an error term. The total
number of genes is indicated by G, whereas L and M repre-
sent the total number of transcription factors and experiments.
In this setting, a large number of aij are equal to 0, as each gene
is regulated by only one or at most few transcription factors.
The number and the position of these 0’s leads to an identifia-
bility condition for the parameters a and p that is analogous to
that reported by Anderson (1984). Liao et al. (2003) described
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an iterative estimation procedure, but only sketched the evalu-
ation of the properties of this estimator. In light of the analysis
presented by Fan, Peng, and Huang {aij} can be described as
a nuisance parameter, with dimension increasing with increas-
ing G. It might be possible to carry out the analogy between
these two models at a further, more substantive level and obtain
a partial consistency result for p.

Another context in which the methodology described in the
article may be applicable is normalization and probe weight-
ing in genotyping arrays. This technology is based on the same
principles of gene expression arrays and was introduced at
roughly the same time (Pastinen et al. 2000). Its commercial-
ization by such companies as Affymetrix has lately increased
its popularity, attracting the attention of statisticians (e.g., Hao,
Li, Rosenow, and Wong 2004). One chip is used to determine
the alleles of one individual at tens of thousands of genomic
locations, where it is known that two variants, different at one
nucleotide, are present in the population. cDNA correspond-
ing to each of the two polymorphisms is synthesized on the ar-
ray. After hybridization with a sample of DNA collected from
an individual, the intensity of the spots corresponding to each
allele is compared and used to define a genotype. More pre-
cisely, in the Affymetrix genotype array, a single SNP is as-
sayed using 40 spots, each spot containing multiple copies of
a different probe. Twenty of these represent a match to 1 of
the 2 polymorphisms, and 20 are mismatches used to measure
cross-hybridization. Half of the match probes (10) are comple-
mentary to the first allele (a in what follows), and half are com-
plementary to the second (b allele). The probes complementary
to one allele are further divided into two groups, according to
which strand of DNA (sense or antisense) they reproduce. Each
of the five probes in one of these groups differs because of the
position of the polymorphism; one probe has the polymorphic
base right in the middle of its length, and the others are ob-
tained by sliding it by one, two, or three base pairs. The mis-
match probes differ from corresponding match probes at the
central nucleotide. This setting is very similar to that used in
gene expression arrays by this same company and opens up the
problem of how to best combine the signal coming from all of
the 20 probe pairs (match and corresponding mismatch). In the
context of gene expression experiments, Li and Wong (2001)
and Irizarry et al. (2002) analyzed this question in detail and
showed, with a series of data analyses, that the sensitivity of
probes varies widely and that different probes should receive
different weights in assessing the value of the results. The cur-
rent Affymetrix algorithm for genotype calling (Liu et al. 2003)
performs quality control checks that may result in the exclusion
of the signal coming from some probes, but does not carry out a
systematic probe selection and weighting. The introduction of
such steps may help reduce the no-call rate and facilitate the
interpretation of the overall intensity at one marker in terms of
DNA copy number (Lin et al. 2004). The problem of defining
a summary value starting from multiple probes is not unrelated
to that of normalization considered in the article. To clarify this
point, consider the model for the difference between matched
and mismatched probes proposed by Li and Wong (2001),

yijt = θitφj + εijt, t = 1, . . . ,M, i = 1, . . . ,G,

where θit is the expression value for gene i in experiment t,
φj is the affinity of probe j, and εijt is a Gaussian iid error term.

To make relevant inference on θit (which is linked to the geno-
type of the individual t), we need to estimate φj. But unlike the
situation considered by Fan, Peng, and Huang, the probe effects
φj are gene-specific (and maybe should be denoted by φji for
clarity). This makes it impossible to take advantage of G → ∞
for their estimation, unless a model based on probe characteris-
tics (e.g., position of the mutation, nucleotide content) is used.
However, in the context of genotyping arrays, one can meaning-
fully assume that the number of experiments T (genotyped in-
dividuals) will be large. Indeed, there is considerable interest in
using this technology to carry out association mapping studies,
which would require genotyping of thousands of individuals. In
such cases, {θit} may be considered nuisance parameters, and it
may be possible to describe a consistent estimator for {φji}.
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Comment
Bruce A. CRAIG

1. INTRODUCTION

I would like to begin by congratulating Fan, Peng, and Huang
on their innovative approach to normalizing spotted cDNA mi-
croarray data. Although numerous articles have been written
on this topic, the use of duplicate spots in the normalization
process has rarely been discussed. Given the apparent within-
slide spatial effects (Smyth, Yang, and Speed 2003; Balázsi,
Kay, Barabási, and Oltvai 2003), these spots have the potential
to be very helpful not only in the normalization process itself,
but also in assessing the effectiveness of a normalization proce-
dure. Unfortunately, the focus of the article limits the discussion
of this approach and leaves several questions regarding the im-
plementation and effectiveness unanswered. It is on these ques-
tions that I want to focus here, in the hope of prompting further
investigation into the use of these spots.

2. MULTIPLE VERSUS SINGLE
SPOT NORMALIZATION

Much of the popularity of microarray analysis stems from the
fact that scientists can view the simultaneous behavior of genes
affected by a stimulus at the total genome level. Because du-
plicate spots take up space on the slide, there is a general reluc-
tance to include them unless there are no other probes of interest
(exceptions would be housekeeping or control probes). In addi-
tion, having duplicate spots often means that additional genetic
material (i.e., labeled cDNA) must be extracted from the cells,
because each probe must be in more than one well in the tem-
plate (see sec. 2). Given these constraints, if duplicate spots are
to be recommended, then their benefit needs to be made clear.

For example, there are already several useful normalization
methods in the literature that attempt to account for the within-
slide biases and do not rely on duplicate spots (Dudoit et al.
2002; Smyth and Speed 2003). Although the authors point out
that these alternative approaches rely on some key assumptions
that can be relaxed with a duplicate spot analysis, it is not clear
how often these key assumptions will be unreasonable. Do the
authors propose that duplicate spots should always be used, or
that they should be used only in situations when these assump-
tions will likely be violated? In other words, the relative ef-
fectiveness of their approach is unclear. Although the authors’
goals were not directed at addressing this issue, their simulation
framework (using, e.g., example 2) could be used to compare
their approach with, for example, the print-tip loess method.

3. FABRICATION OF SLIDES

I do not agree with the authors about the relative ease of print-
ing several hundred repeated probes on a slide. There are sev-
eral additional design aspects to consider before fabricating the
slides. First, there is the choice of the probes. Because these
will be used to estimate the intensity effect, it appears that one
would want a set of probes that span a wide range of intensities.

Bruce A. Craig is Associate Professor, Department of Statistics, Purdue Uni-
versity, West Lafayette, IN 47907 (E-mail: bacraig@stat.purdue.edu).

Is the selection of such a set an easy task? The composite loess
is a similar single-spot normalization approach, in that only a
subset of probes are used to estimate the intensity effect (Smyth
and Speed 2003). For this approach, a set of control probes (that
are not differentially expressed) have been specifically designed
to provide a large intensity range. It is not obvious to me that
a randomly selected set of probes to duplicate will readily pro-
vide this range.

Second, to estimate the print-tip block effects and treatment
effect for each probe, it is necessary to spread the duplicate
spots across print blocks. Although Fan, Peng, and Huang al-
lude briefly to some of the construction aspects necessary for
this to occur, I feel that the importance of this slide layout
requires a more detailed discussion. Although their examples
assume random placement of duplicates (or placement of du-
plicates that appears random), this is not readily feasible using
the typical automated printing equipment.

3.1 cDNA Printing Process

A spotted cDNA slide contains numerous spots arranged in
a row–column format, with each spot comprising cDNA of a
particular probe. Printing is commonly performed by a robotic
apparatus designed to spot genetic material at specific points on
the slide using a printing tool. The printing tool is generally ei-
ther a 4 × 4 or 4 × 12 grid of pins (although other arrangements
are possible) that transfers genetic material from the wells of a
microtiter plate (commonly a 96 or 384 well plate) to the sur-
face of the slide. The microtiter plate or set of plates is also
known as the template.

When using a solid pin printing tool, the printing tool first
dips into a collection of template wells, each pin into a separate
well, and collects genetic material on each pin tip. The print-
ing tool then moves to the slide and prints this genetic material
on the slide. The printing tool is washed, and the process is re-
peated for a different set of template wells. The sets of template
wells and order of printing depends on the particular printing
equipment.

Figure 1, from Craig, Black, and Doerge (2003), contains a
simple example of the printing process for a small 256 spot
microarray using a 4 × 4 grid of pins. The print tool picks up
probe material from 16 adjacent wells on the template (black
filled circles) and deposits the probes on the glass slide. This
process continues, with the printing performed in such a manner
as to allow each pin to print a subarray of spots that lie next to
each other (gray spots).

3.2 Generating Duplicate Spots

One method of “replicating” spots that is usually available
with the printing equipment is to repeatedly dip the printing
tool into the same sets of template wells. Each additional dip is
known as an offset (i.e., two dips is known as a double offset).
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Figure 1. Example of a Simple 256-Spot Microarray. Panel (a) is the template, and (b) and (c) are the microarray drawn to scale and expanded
respectively to show the correspondence between the template wells and the spots on the microarray.

If each pin tip is only associated with one print block, the dupli-
cate spots will be printed in the same block, and it would not be
possible to account for the spatial effects without making some
additional assumptions.

With this in mind, Craig, Vitek, Black, Tanurdzic, and
Doerge (2002) discussed designing the template because there
is a one-to-one correspondence (provided that there are no off-
sets) between it and the slide. To use the proposed normaliza-
tion approach, one must have duplicate wells for the selected
probes. Although one could design the template on a well-by-
well basis, rarely would one be willing to spend the time to do
this. Typically, the template is created using a multi-tip pipette
so that one can fill several template wells at once. Craig et al.
(2002) described such an approach for a small-probe example
involving an eight-tip pipette.

As mentioned earlier, this approach likely requires the gen-
eration of additional genetic material to fill multiple wells. Al-
ternatively, one might be able to use one well provided that the
template could be rotated (say 90 degrees) after the first set of
probes have been printed. Because the microtiter plates are not
square, this may not be feasible with the robotic printing equip-
ment.

4. SUMMARY

The authors have proposed a very flexible approach to nor-
malization of cDNA microarray data. Although they discuss

numerous variations of this approach, I find the idea of us-
ing duplicate spots very intriguing. I have been a proponent
of duplicate spots for some time, but have had a hard time
convincing myself and scientists of their importance in the
two-dye cDNA experiment. It would appear that within-slide
replicates can be quite valuable, because they allow one to
have better control of the normalization approach. There is al-
ways the concern with the single-spot normalization techniques
of overfitting and removing more than just noise. I hope that
these comments prompt further investigation of this approach.
Again, I want to thank the authors for a very thought-provoking
article.
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Normalization is a critical component in microarray data
analysis. Its purpose is to remove systematic biases in the
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observed expression values and to establish baseline inten-
sity ratios across the whole dynamic range. Many researchers
have considered this problem (see, e.g., Chen, Dougherty, and
Bittner 1997; Kerr, Martin, and Churchill 2000; Yang et al.
2002; Yang, Dudoit, Luu, and Speed 2001; Tseng, Oh, Rohlin,
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Liao, and Wong 2001; Park et al. 2003). In particular, Fan, Tam,
Vande Woude, and Ren (2004) proposed a semilinear in-slide
model (SLIM) method that makes use of replications of a subset
of genes in an array. In the present interesting and stimulating
article, Fan, Peng, and Huang generalized the SLIM method to
account for across-array information, resulting in an aggregated
SLIM, so that replication within an array is no longer required.
A focus of the article is the efficient estimation and calculation
of semiparametric information for block effects in the case of
fixed numbers of replications and arrays where the gene effects
cannot be estimated consistently. This elegant result is a sig-
nificant contribution to the semiparametric estimation theory,
because the existing theory deals mainly with the case where
the “nuisance parameters” can be consistently estimated.

We have proposed a two-way semilinear model (TW–SLM)
for normalization and analysis of cDNA microarray data
(Huang, Kuo, Koroleva, Zhang, and Soares 2003; Huang,
Wang, and Zhang 2003; Huang and Zhang 2003). There are
three main features of the TW–SLM that are different from
the existing methods such as global and lowess normaliza-
tion. First, normalization for each array in the TW–SLM is
based on pooled information from all of the arrays. Second, the
TW–SLM normalization curves and the gene effect parameters
are estimated simultaneously in a single regression model. Each
TW–SLM normalization curve does not attempt to fit the data
from an individual array; rather, it fits the data after gene effects
are adjusted for. This is in contrast to the lowess method, which
estimates the normalization curves without adjusting for gene
effects, which may cause the differentially expressed genes to
be incorrectly “normalized” and result in a loss of power for de-
tecting differentially expressed genes, because such genes tend
to pull the normalization curve toward themselves. Third, in the
framework of the TW–SLM, the uncertainty due to normaliza-
tion is taken into account in the estimation of the standard er-
rors of gene effects. The models proposed by Fan et al. (2004)
and Fang, Peng, and Huang and the TW–SLM deal with the
same problem with philosophically similar approaches, but our
studies focus on different aspects of the problem and present
orthogonal theoretical results. Thus we especially appreciate
the opportunity to comment on this article. Here we give a brief
description of the TW–SLM and some of its extensions, and
discuss their relationship to the SLIM and its aggregations.

1. THE TWO–WAY SEMILINEAR MODEL

Suppose that there are J genes and n arrays in the study and
that each gene is spotted once in an array. Let uij and vij be the
intensity levels of gene j in array i from the type 1 and type 2
samples. Let yij be the log-intensity ratio of the jth gene in the
ith array, and let xij be the corresponding average of the log-
intensity, that is,

yij = log2
uij

vij
,

(1)
xij = 1

2
log2(uijvij), i = 1, . . . ,n, j = 1, . . . , J.

Let zi ∈ R
d be a covariate vector associated with the ith array.

The TW–SLM is

yij = fi(xij) + z′
iβ j + εij, i = 1, . . . ,n, j = 1, . . . , J,

(2)

where β j ∈ R
d is the effect associated with the jth gene, fi is the

intensity-dependent normalization curve for the ith array, and
εij is the residual term with mean 0 and variance σ 2

ij . For (2) to
be identifiable, we restrict

∑J
j=1 β j = 0.

We call (2) TW–SLM because it contains the two-way
ANOVA model as a special case with fi(xij) = αi and zi = 1.
Our approach naturally leads to the general TW–SLM,

yij = fi(xij) + z′
ijβ j + εij, (3)

which could be used to incorporate additional prior knowledge
into the TW–SLM; see Section 3. The identifiability condition∑

j β j = 0 is no longer necessary in (3) unless zij = zi as in (2).
The covariate vectors zi in (2) can be used to code various de-

sign schemes, such as the loop, reference, and factorial designs
(Kerr and Churchill 2001). For example, for the two-sample di-
rect comparison design, zi = 1, i = 1, . . . ,n. For an indirect
comparison design using a common reference, we can intro-
duce a two-dimensional covariate vector, zi = (zi1, zi2)

′. Let
zi = (1,0)′ if the ith array is of the type 1 sample versus the
reference, and zi = (0,1)′ if the ith array is of the type 2 sample
versus the reference. Now β j = (βj1, βj2)

′ is a two-dimensional
vector and βj1 − βj2 represents the difference in the expression
levels of gene j after normalization. The covariate vector zi can
also include other factors that contribute to the variations of the
observed expression values.

2. MULTIWAY SEMILINEAR MODELS

Just as TW–SLM is a semilinear extension of two-way
ANOVA, for datasets with a higher-dimensional structure, mul-
tiway ANOVA can be extended to multiway semilinear models
(MW–SLM) in the same manner by including nonparametric
and linear functions of covariates as the main and interactive
terms/effects in the model. This approach is important in de-
signing experiments and in understanding and interpretating the
contribution of different effects and identifiability conditions,
because it provides a direct, clear match between MW–SLM
and ANOVA models. We describe our approach through the
following examples motivated by real datasets.

In model (2), it is only made explicit that normalization
curves, fi, are array-dependent. It is straightforward to construct
a 3W–SLM to normalize data at the printing-pin block level,

yikj = fik(xikj) + z′
iβkj + εikj, (4)

with the identifiability condition
∑

j βkj = 0, where yikj and xikj

are the log-intensity ratio and log-intensity product of gene j
in the kth block of array i. Model (4) includes nonparametric
components for the block and array effects and their interaction
and linear components for the gene effects and their interaction
with the block effects. It was used by Huang et al. (2003) to ana-
lyze the Apo A1 data (Callow, Dudoit, Gong, Speed, and Rubin
2000), as an application of the TW–SLM (for each fixed k) at
the block level. The interaction between gene and block effects
is present in (4) because we assume that different sets of genes
are printed in different blocks. If a replication of the same (or
entire) set of genes is printed in each block, then we may as-
sume no interaction between gene and block effects (βkj = β j)
in (4) and reduce it to the TW–SLM with (i, k) as a single index,
treating a block in an array in (4) as an array in (2).
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As an alternative to (4), we may also use constants to model
the interaction between array and block effects as in ANOVA,
resulting in the model

yikj = fi(xikj) + γik + z′
iβkj + εikj, (5)

with identifiability conditions
∑

i γik = ∑
k γik = 0 and∑

kj βkj = 0. This can be viewed as an extension of the three-
way ANOVA model Eyikj = µ + αi·· + γik· + β·k· + β·kj + β··j
without the {i, j} or three-way interaction, via µ + αi·· ⇒ fi and
β·k· + β·kj + β··j ⇒ βkj. Note that the main block effects are
represented by fik in (4) and by βkj in (5).

Our approach easily accommodates designs where genes are
printed multiple times in each array. Such a design is helpful for
improving the precision and for assessing the quality of an array
using the coefficient of variation (Tseng et al. 2001). Suppose
that there is a matrix of printing-pin blocks in each array and
that a replication of the same (or entire) set of genes is printed
in each column of blocks in the matrix in each array. As in (5),
a 4W–SLM can be written as

yicrj = fi(xicrj) + γicr + z′
iβrj + εicrj (6)

for observations with the jth gene in the block at cth column and
rth row of the matrix in the ith array, with identifiability con-
ditions

∑
i γicr =∑

r γicr = 0 and
∑

rj βrj = 0, with or without
the three-way interaction or the interaction between the column
and row effects in γicr . Note that the matrix of blocks does not
have to match the physical columns and rows of printing-pin
blocks. In model (6), the only nonparametric component is the
array effects, and the block effects are modeled as in ANOVA. If
the block effects also depend on the log-intensity product xicrj,
then we can combine the fi and γicr in (6) as ficr(xicrj), result-
ing in the TW–SLM (for each fixed r) at the row level, equiva-
lent to (4). If the replication of genes is not balanced, then we
may use an MW–SLM derived from an ANOVA model with
incomplete/unbalanced design or the modeling methodologies
described in Section 3.

From the foregoing examples, it is clear that in an MW–SLM,
the combination of main and interactive effects represented by a
term is determined by the labeling of the parameter (not that of
the covariates) of the term, as well as by the presence or absence
of associated identifiability conditions. Furthermore, because
the center of a nonparametric component [e.g.,

∑
j fi(xij) in a

TW–SLM] is harder to interpret than the center of a paramet-
ric component, identifiability conditions are usually imposed
on parametric components. As a result, a nonparametric com-
ponent representing an interactive effect usually represents all
of the associated main effects as well, and many MW–SLMs
are equivalent to an implementation of the TW–SLM with a
suitable partition of data, as in (4).

3. CONTROL GENES AND INCORPORATION OF
PRIOR KNOWLEDGE IN THE MW–SLM

We describe three methods for incorporating prior knowl-
edge in an MW–SLM: augmenting models, coding covariates,
and imposing linear constraints. An important application of
these methods is incorporating control genes in normalization.

In many customized microarray experiments, it is useful to
include a set of control genes (e.g., spiked genes, housekeep-
ing genes, and specially selected DNA sequences) with equal

concentrations in the Cy5 and Cy3 channels. An important rea-
son for using control genes is to calibrate scanning parame-
ters; for example, intensity levels from the control genes can
be used for tuning the laser power in each scanning channel to
balance the Cy5 and Cy3 intensities. Specially constructed con-
trols can also be used to aid in normalization (Yang et al. 2002).
However, control genes do not necessarily show an observed
1:1 ratio because of experimental variations. In addition, be-
cause the number of control genes printed in a slide is often
small, control genes may not cover the whole dynamic range of
intensity levels, or the coverage may be too sparse. Therefore, it
is in general not adequate to use just control genes as the basis
for normalization.

Let yc
ik and xc

ik be the log-intensity ratio and the product of
the kth control gene in the ith array, i = 1, . . . ,n, k = 1, . . . ,K.
Then we can augment the TW–SLM (2) as

yc
ik = fi(x

c
ik) + εc

ik, yij = fi(xij) + z′
iβ j + εij. (7)

The first equation is for the control genes, whose correspond-
ing βc

k are 0. Note that a common fi is used in (7) for each
array. Data from both control genes and genes under study con-
tribute to the estimation of normalization curves as well as gene
effects. With the inclusion of control genes, the identifiability
condition

∑
j β j = 0 in (2) should be removed here, because it

is neither necessary nor appropriate for (7).
We may also use the general TW–SLM (3) to model control

genes by simply setting zij = 0 if a control gene is printed at the
jth spot in the ith array and zij = zi otherwise, where zi is the
design variable for the ith array as in (2).

A more general (but not necessarily simpler) method of in-
corporating prior knowledge is to impose constraints in addi-
tion to or as alternatives to the identifiability conditions in an
MW–SLM. For example, we set β j = 0 if j corresponds to a
control gene, and β j1 = · · · = β jr if there are r replications of
an experimental gene at spots { j1, . . . , jr} in each array.

4. LOCATION AND SCALE NORMALIZATION

The models that we have described earlier are for location
normalization. It is often necessary to perform scale normaliza-
tion to make arrays comparable in scale. The standard approach
is to perform scale normalization after the location normaliza-
tion, as discussed by Yang et al. (2001), so that normalization is
completed in two separate steps. We can extend the MW–SLM
to incorporate the scale normalization by introducing a vector
of array-specific scale parameters (τ1, . . . , τn), as in

yij − fi(xij)

τi
= z′

iβ j + εij, i = 1, . . . ,n, j = 1, . . . , J,

for the TW–SLM, where τ1 ≡ 1 and the τi’s are restricted to be
strictly positive. A more general model would allow τi to also
depend on the total intensity levels.

5. INCORPORATING DATA QUALITY
MEASUREMENTS AND ROBUST ESTIMATION

In the current literature, analysis of cDNA microarray data
usually uses only a summary measure, such as the mean or me-
dian, of pixel intensities within a spot. We can use a weighted
estimation criterion to allow for incorporation of quality mea-
surements of a spot into the analysis. Let wij be the reciprocal to
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the standard deviations associated with the log-intensity ratios.
Such wij can be computed using a simple delta-method argu-
ment from the standard deviations of pixel intensities, which
are usually available from scanner output files, for example, the
GPA files from Axon’s GenePix scanner. We can use w ≡ (wij)

to downweight spots with less uniform pixels, but such spots
are usually of lower quality because of scratches, dust, and un-
even hybridization. We can also use a weight matrix to filter
out damaged spots in an array. The weighted estimation crite-
rion function for the TW–SLM is

Mw(λ,β) =
n∑

i=1

J∑

j=1

w2
ijm
(
yij − fi(xij) − z′

iβ j
)
.

Huang et al. (2003) and Huang and Zhang (2003) have studied
the theoretical properties of the estimators of β j and fi when
m(t) = t2 and wij ≡ 1. It is also of interest to consider robust
estimation approaches, for example, m(t) = |t| or m(t) = ρ(t),
where ρ is Huber’s ρ function. Ma et al. (2005) studied compu-
tation and inference when m(t) = |t| in a general location and
scale normalization model, and (Wang, Huang, Xie, Manzella,
and Soares 2005) considered the case when m(t) = ρ(t). How-
ever, theoretical properties of the estimators from such robust
criterion functions have not been studied. If control genes are
included with equal concentrations in two channels, then the
M-estimation criterion function becomes

Mc
w(β, f ) =

n∑

i=1

{
K∑

k=1

w2
ikm

(
yc

ik − fi(x
c
ik)
)

+
J∑

j=1

w2
ijm
(
yij − fi(xij) − z′

iβ j
)
}

.

6. RELATIONSHIP BETWEEN THE MW–SLM AND
THE SEMILINEAR IN–SLIDE MODEL

SLIM (Fan et al. 2004, 2005) concerns a single array with
block structure and replication of genes. In SLIM,

ykj = f (xkj) + v′
kjγ + βj + εkj (8)

for the kth replication of the jth gene, where γ is a vector of a
relatively low dimensionality for block effects and vkj are block
indicators. From our point of view, SLIM is an extension of
the model Eykj = µ + βj, with the mean effect µ replaced by
the semiparametric f (xkj) + v′

kjγ , especially when the vkj’s are
treated as iid vectors as in the theoretical results of Fan, Peng,
and Huang. In the deterministic case where each replication set
of genes is printed in a separate collection of blocks, a 3W–
SLM Eykrj = f (xkrj) + γkr + βrj is an alternative as in (6) with a
fixed array i, where r indicates blocks within the replication of
the same set of genes. Note that we use β and γ to denote gene
and block effects, whereas Fan et al. (2004), and Fan, Peng, and
Huang used α and β .

A main difference between SLIM and TW–SLM is that
SLIM has a single nonparametric component and TW–SLM has
more than one and possibly unboundedly many nonparametric
components. This remains the case when SLIM is applied to a
“super-slide” composed of many arrays as its “super-blocks,”
resulting in Eyikj = f (xikj) + v′

ikjγ + βj. The aggregated SLIM,

yikj = fi(xikj) + v′
ikjγ i + βj + εikj, (9)

for the kth replication of the jth gene in the ith array is more
closely related to TW–SLM, because (6) is an alternative to (9)
when blocks are nested within replications and (9) is identi-
cal to (2) for the two-sample direct comparison design (zi = 1)
when there is no replication or block effect.

Let x̃ikj = (xikj, vikj) and f̃i(̃xikj) = fi(xikj)+ v′
ikjγ i in (9). Sup-

pose that x̃ikj are iid as in Fan, Peng, and Huang article. The
theoretical results of Huang et al. (2003) and Huang and Zhang
(2003) are directly applicable for the estimation of f̃i and βj in
(9) with a single replication, and their proofs work for multi-
ple replications with multiple arrays by including the covariate
vectors for the block effects in the basis space for the approx-
imation of f̃i, but that does not provide separate estimates for
fi(xikj) and v′

ikjγ i within f̃i. Instead, they took a nonparametric
approach in modeling the block effects as in (4). Because the
focus of the article is the block effects in the case of (9) and
the focus of our work is the normalization and resulting estima-
tor β̂j for the gene effects in the absence of replications within
arrays, the approaches and results of these studies complement
each other well in many ways.

For the statistical theory concerning normalization of mi-
croarrays, the simple TW–SLM Eyij = fi(xij) + βj, with zi = 1
in (2), and the SLIM Eyij = f̃ (̃xij) + βj, with k ∼ i and f̃i(̃xij) =
f (xij) + v′

ijγ in (8), provide the most direct comparison. A cru-
cial element in the analysis of such models is the information
operator for the estimation of βj. Assume that linear estimators
of fi and f̃ are used with random smoothing matrices Ai and S,
depending on covariates xij and x̃ij. For the simple TW–SLM,
the information operator is approximately I − n−1∑n

i=1 Ai,
whereas for SLIM, it is approximately I − P0S, where I is the
identity matrix and P0 is a deterministic projection. Different
methods have been used to analyze these information opera-
tors, especially in the key step on their invertibility as random
matrices in the parameter spaces characterized by the respective
identifiability conditions.
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Comment
Heping ZHANG

I congratulate the authors for this excellent and timely work.
Publications in microarray data analysis to date have con-
centrated on methodological issues, including the critical step
of normalization as the authors have addressed in this arti-
cle, among many others. There are few articles that deal with
the theoretical aspect of the statistical approaches, making the
present article a welcome and novel contribution to the field.
Similar models to the authors’ model (1),

Ygi = αg + βrgi + γcgi + m(Xgi) + εgi,

have been proposed and used in the microarray data analysis.
Here αg is the treatment effect associated with the gth gene,
rgi and cgi are the row and column of print-tip block where the
gth gene of the ith replication resides, β and γ are the row and
column effects, m(·) is a smoothing function of X representing
the intensity effect, and ε is the random error.

What makes this article unique and important is the circum-
stance under which the theory is established. That is, there are
many more parameters of interest than the number of samples
in terms of the arrays. The authors have successfully built the
asymptotic theory based on the classic work of Neymann and
Scott (1948). I wish to discuss a few practical and conceptual
issues related to the forgoing model and the theory.

First, the authors point out that the α’s are the nuisance para-
meters during the phase of removing the print-tip and intensity
effects. This is insignificant from a theoretical standpoint. But
because the α’s are of ultimate scientific interest for most of the
microarray studies, it is critical for statisticians to appropriately
communicate the properties of the α estimators with scientists.
The authors cite the work of Huang and Zhang (2003), who
examined the asymptotic theory when the replication number
I tends to infinity. The question is: whether the α estimators
are still inconsistent when I is larger and the number of genes is
even greater. If the α estimators are inconsistent, does this mean
that the normalization leads to a biased correction of the data?
If so, then it would be really important to understand the mag-
nitude of the bias. For example, when we compare two groups
of samples through the α estimators, can we design microarray
experiments to minimize the bias? These are not necessarily
questions for the authors, but I would certainly welcome their
insights.

My second comment relates to the smoothing function m(X)

that represents the intensity effect, where X is the average log-
intensity of the red and green channels. I am more concerned

Heping Zhang is Professor of Biostatistics, Yale University School of Medi-
cine, New Haven, CT 06520, and Visiting Professor, Jiangxi Normal University,
Nanchang, China (E-mail: Heping.Zhang@yale.edu).

with the consequence than with the necessity of this correc-
tion. Both the response variable Y in model (1) and X are direct
transformations of the intensities of the red and green channels.
Why would m(X) not result in an overcorrection of the signal?
If this type of correction is helpful, is the average log-intensity
of the red and green channels an ideal way to define X? It is
certainly a natural choice, but the question is: Does it improve
the α estimators? Unlike in standard smoothing, where the in-
dependent variable is a fixed variable, such as time, here the in-
dependent variable is a random variable composed of the same
two variables as the dependent variable. Intuitively, the choice
of the independent variable influences the properties of the es-
timates for all parameters in model (1).

My third comment is about the implementation in the pa-
rameter estimation for model (1) as it also relates to my own
experience (Zhang 1997). Naturally, the authors propose begin-
ning the estimation process with given β , γ , and m(·), partic-
ularly by setting them to 0. There are two technical questions.
First, from numerical experiments, the algorithm “converges”
very fast, but in theory, an explanation would be great. Second,
it is useful to know whether the starting point changes the fi-
nal estimates; in other words, are there local optimizers in this
particular problem?

Finally, I enjoyed the beautiful presentation for the data
analysis, but I did notice something simpler. Figure 5(c) dis-
plays the estimated m(·). For practical purposes, the “curve” is
pretty much a straight line. Would the authors recommend refit-
ting the data after a nonparametric smoothing reveals a simpler
model? If a linear relationship is indeed considered, then, re-
turning to my second comment, model (1) would fit a difference
of two variables against the sum of the same two variables. I am
still uncertain as to whether one would really want to make this
adjustment.

In conclusion, the authors should be congratulated for their
masterpiece of work and for shedding light on the theoretical
aspects of this overwhelmingly data-analytic–driven area. Ob-
viously many open questions remain, and this important work
will stimulate much more to come.
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Comment
Michael R. KOSOROK and Shuangge MA

We congratulate Fan, Peng, and Huang (FPH hereafter) on
their interesting, innovative, and important contribution on mi-
croarray normalization. In addition to proposing new method-
ology that addresses several important open problems, FPH
also present new asymptotic theory that both validates their
approach and provides insight into the normalization process.
Such theoretical work has been sparse in the microarray liter-
ature, probably because of the nonstandard way in which the
number of parameters is large relative to the number of ob-
servations. We appreciate the opportunity to comment on this
article.

Normalization is the process of removing systematic back-
ground noises of gene expression measurements in microar-
ray experiments. Typically, this is done slide-by-slide before
conducting a significance analysis of individual gene effects.
However, some authors advocate combining normalization and
significance analysis to account for the variability of estimators
used in the normalization process (Huang, Wang, and Zhang
2003; Huang and Zhang 2003). We revisit this issue later on
in this comment. For now, we note that techniques for normal-
ization and significance analysis share a number of similarities
for both cDNA and oligonucleotide microarrays. Hence some
of the concepts in FPH on cDNA arrays are also applicable
to oligonucleotide arrays. However, there are sufficient struc-
tural differences between the two kinds of arrays that signifi-
cant work is needed before these concepts can be applied to the
oligonucleotide setting. Thus we restrict our comments primar-
ily to cDNA arrays.

We first briefly outline the key contributions of FPH, then dis-
cuss a few useful extensions. We briefly discuss a connection
to marginal asymptotics for controlling false discovery rates
(FDR) in significance analysis, then give a few comments on
computational issues before presenting our closing comments.

1. THE MAIN CONTRIBUTIONS

FPHs main methodological contribution is a nonparametric
method of normalizing cDNA microarrays that takes into ac-
count intensity and print-tip block effects without limiting the
proportion of up-regulated or down-regulated genes. This repre-
sents a significant improvement in flexibility over the methods
of both Dudoit et al. (2002) and Tseng, Oh, Rohlin, Liao, and
Wong (2001). Moreover, the new methods permit the variabil-
ity of the residual error to depend nonparametrically on the log-
intensity of the red and green channels. The fact that estimation
is applied in-slide makes it possible to obtain slide-specific gene
effects. The proven partial consistency of the procedure makes
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it possible to proceed directly to significance analysis, after nor-
malization, without requiring adjustments for uncertainty in the
in-slide parameter estimates. In addition, the flexibility of the
underlying model allows one to combine information across ar-
rays when such combining may be helpful for estimating cer-
tain parameters.

The essential theoretical contribution is that, under realistic
assumptions, the proposed estimation procedure works when
the number of replicated genes G goes to infinity, even though
the number of replicates I of replicated genes is fixed. This
occurs in the presence of both location and scale nonparamet-
ric intensity effects. This is in contrast with the asymptotics of
Huang and Zhang (2003), in which the number of replicates I is
assumed to go to infinity. Moreover, whereas the total number
of print-tip block effects d is assumed fixed in FPH, a different
effect is permitted for each gene, resulting in the total number
of parameters going to infinity. Thus FPHs asymptotic theory
is somewhat nonstandard and represents a significant contribu-
tion to the scarce research on large-sample theory for microar-
rays (see also van der Laan and Bryan 2001; Huang and Zhang
2003). We discuss asymptotic issues in greater detail later.

Not only does the proposed methodology address an impor-
tant practical problem in a useful way, but the validity of the
procedure is verified both specifically and in general. The spe-
cific level of verification is accomplished in two ways. First, the
usefulness of the method is clearly demonstrated in the neurob-
lastoma cell example. Second, the validity of the procedure is
verified under several important—but very specific—settings in
the simulations studies. The general level of verification is ac-
complished through a careful large-sample theoretical analysis
that validates the procedure for countless realistic settings be-
yond the specified numerical scenarios. We again congratulate
the authors on this important and well-rounded contribution.

2. SOME USEFUL EXTENSIONS

We now point out a few possibly useful extensions of FPHs
results. The first extension is a modification of the model to ad-
dress array-specific “warping” effects; the remaining extensions
involve asymptotic issues.

2.1 Array-Specific Warping

One concern with proceeding directly to significance analy-
sis after the proposed normalization is that there may be array-
specific warping of the gene effects. One way to model this
is with array-specific monotone transformations that apply to
all genes after normalization. This is essentially what happens
with quantile normalization for oligonucleotide arrays (Bolstad,
Irizarry, Åstrand, and Speed 2003). Unfortunately, it is unclear
how to apply this meaningfully to the present context. Perhaps
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a more fruitful approach is to use array-specific location-scale
transformations. Such transformations are easy to interpret, be-
cause the array-specific additive models proposed by FPH are
invariant to whether the transformation is applied before or after
adding the residual errors.

To fix ideas, apply FPHs model (1) to j = 1, . . . , J arrays to
obtain

Ygij = αgj + βrgijj + γcgijj + mj(Xgij) + εgij, (1)

where we also assume that

αgij = τj(νgj + ηj), (2)

under the constraints
∑J

j=1 ηj = 0, J−1∑J
j=1 τj = 1, τj > 0, for

1 ≤ j ≤ J, and the sums of the row, column, and intensity ef-
fects are 0 for each array. In (2), νgj is the unwarped gene effect
for array j, whereas τj and ηj are the array-specific multiplica-
tive and additive warps. Following FPH, we assume that εgij is
random error with mean 0 and standard deviation σj(Xgij). Note
that model (1)–(2) is essentially equivalent to

Ygij = τj
(
ηj + νgj + βrgijj + γcgijj + mj(Xgij) + εgij

)
, (3)

under the same constraints.
This modified model allows each array to have its own lo-

cation and scale adjustment without otherwise modifying FPHs
model. One key difference between (3) here and FPHs (1) is
that an additional phase of estimation is required before obtain-
ing the normalized gene effects,

ν∗
gj = Ygj/τ̂j − η̂j − β̂rgjj − γ̂cgjj − m̂j(Xgj)

(for the genes without replication). But this does not appear to
add substantially to the computationally difficulty. Moreover, it
also appears that the essential asymptotic result—that the nor-
malized gene effects are partially consistent—will still hold.

2.2 Asymptotic Extensions

In the current setup, FPH requires that the number of slides
J be fixed. This is reasonable if exact methods such as permu-
tation tests are to be used for significance analysis. For the neu-
roblastoma cell example, the normalized gene effects appear to
be Gaussian, and thus slightly modified t-tests could be used
instead of permutation tests. In some cases, as we discuss later,
it may be worthwhile to use marginal asymptotics for signif-
icance analysis. For such asymptotics, we need to allow J to
go to infinity slowly with G. This would require some modifi-
cation of FPHs asymptotic theory, but it seems feasible that at
least uniform consistency of all fixed effects for all arrays can
be obtained so that partial consistency will still follow.

It is also worth pointing out that there are restrictions on how
many genes can be printed in one block. Thus G/d probably
should increase slowly with G. Hence the structure of the slides
will probably force d = r + c to go to infinity slowly. This will
require a significant modification of FPHs asymptotic theory,
because the dimension of β will now be increasing with G (al-
beit slowly); but it should still be possible to establish uniform
consistency of β̂ despite this. Provided that this uniform con-
sistency of the “fixed” effects occurs at a reasonable rate, valid
significance analysis of the normalized gene effects can still be
done.

3. MARGINAL ASYMPTOTICS

The main goal in significance analysis is to reliably deter-
mine which genes are significantly up- or down-regulated. Typ-
ically, this is achieved through computing marginal p values
with procedures that hopefully control the FDR, such as that
proposed by Benjamini and Hochberg (1995) or the more re-
fined q value approach of Storey (2002). A somewhat related
goal is consistent estimation of the mean gene effects. The first
goal appears to be feasible for fixed number J of arrays if per-
mutation tests or other exact test procedures are used. But re-
quiring that J be fixed restricts the range of test procedures that
can be used and also makes consistent estimation of the mean
gene effects impossible.

As mentioned in the previous section, it appears possible to
allow J to increase to infinity slowly with G and still obtain nor-
malized gene effects Y∗

gj that are uniformly “consistent” for the
randomly perturbed array-specific gene effects ρgj = νgj + εgj,
where νgj and εgj are as defined in Section 2.1. It is now reason-
able to assume that ρgj are iid across arrays (1 ≤ j ≤ J) for each
gene 1 ≤ g ≤ G. Thus for any reasonable significance analyses,
we can ignore the variability of the estimators used in the nor-
malization phase. Thus, without loss of practical generality, we
hereafter assume that the νgj’s are observed directly. Let Fg be
the marginal distribution function of νgj, and assume that the
Fg’s are continuous so that there are no ties in the data.

An alternative to permutation tests for testing the null hy-
potheses {H0g : Fg is symmetric about 0}, 1 ≤ g ≤ G, is the
marginal signed-rank test. Let Tg be the marginal rank test for
gene g based on J arrays; that is, it is the sum of the ranks of
|ρg1|, . . . , |ρgJ| that correspond to the positive ρgj’s. Now define

Vg = Tg − (J2 + J)/4
√

(3J3 + 2J2 + J)/24
.

For each value of J, the exact distribution of Vg is known under
the null hypothesis, and thus exact p values for each gene can
be obtained. But we can simplify this process by using the well-
known result that Vg is asymptotically normal under H0g, as we
now argue. Let 	J be the exact cumulative distribution function
for Vg under H0g, and let 	 be the standard normal cumulative
distribution function. It is easy to verify that 	J converges uni-
formly to 	. Thus, if we let K ⊂ {1, . . . ,G} denote the genes for
which H0g holds, then we can now show that there exists a ran-
dom vector U1, . . . ,UG such that Ug is (marginally) uniformly
distributed for all g ∈ K and supg∈K |	J(Vg) − Ug| goes to 0
in probability, as J → ∞, whether or not G also goes to infin-
ity. Under reasonable conditions, 	J(Vg) should be asymptot-
ically nonuniform for all g /∈ K. This now enables application
of the q value methodology under fairly general dependence
structures in the gene effects (see thm. 5 of Storey, Tayler, and
Siegmund 2004).

It is worth exploring more general inference procedures in
this context, including, for example, median-based procedures
that are robust to large and asymmetric errors. Uniformly con-
sistent estimation of parameters of Fg is also of interest and also
appears to be feasible, as was demonstrated by van der Laan and
Bryan (2001), although their assumption that Fg has uniformly
bounded support is somewhat unrealistic. We believe that “mar-
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ginal asymptotic” issues such as these are potentially very im-
portant and should receive more attention in the future. In this
context, partial consistency will probably play a very impor-
tant role, because it effectively enables statisticians to ignore
the uncertainty in the normalization process when conducting
inference on the marginal gene effects.

4. COMPUTATIONAL ISSUES

As FPH point out, one key advantage of the proposed ap-
proach is its computational simplicity. The estimation can be
achieved with simple iterations shown in FPHs sections 2 and 3.
Moreover, the proposed approach estimates the block effects
and the intensity effects with replicated genes within one slide
only. Because the number of genes with replicates tends to be
small, the proposed approach further simplifies the computa-
tions. One missing step in the proposed procedure is the process
for selecting the bandwidth h. For density estimation, we have
found that twice the interquartile range times n−1/5 works quite
well (Kosorok 1999), and a similar bandwidth based on the in-
terquartile range of the intensities Xgi would probably work in
the present setup.

Another issue that we would like to raise is that the com-
ments on the computational cost of the approach of Huang et al.
(2003) are not completely fair. Although, in the Huang et al. ar-
ticle the least squares estimators are expressed in a matrix form,
the solutions can be obtained by iterations similar to those de-
scribed by FPH. The gene effects can be estimated one by one
according to the special structure of the least squares estimators.
In contrast, estimation of the block effects and the nonpara-
metric normalization curves (which are supposed to be splines)
do involve inverting matrices. However, the dimensions of the
block effects (d of FPH) and the normalization curves (low-
dimensional subspaces of Sobolev spaces) are usually much
lower than the dimension of the gene effects. It is therefore ex-
pected that the computational cost of the Huang et al. (2003)
approach will be close to that of the proposed approach.

5. CLOSING WORDS

Overall, FPHs article provides a significant step forward in
the statistical analysis of microarrays. Athough semiparametric
models have previously been introduced into microarray analy-
ses (see, e.g., Newton, Noueiry, Sarkar, and Ahlquist 2004), rig-
orous frequentist theory for such approaches has been slow in
developing. FPHs asymptotic theory is an important step for-
ward in this direction. We also anticipate that the role of partial
consistency for the normalization step will become increasingly
important because of the clean manner in which the uncertainty
in the normalization process is separated from the significance
analysis phase, at least asymptotically. We also believe that
marginal asymptotics, in combination with partial consistency,
has a potentially crucial role to play in future formal justifica-
tions of microarray methodology. As mentioned earlier, formal
theoretical justification is critical for ensuring the validity of
statistical procedures in broad generality. We again acknowl-
edge the importance of the contributions of this article—both
theoretically and methodologically—and are grateful to have
had the opportunity to comment on it.
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Comment
Robert TIBSHIRANI

Fan, Peng, and Huang present an interesting method for nor-
malizing data from cDNA microarrays. The method uses semi-
parametric models and leads to some challenging mathematical
questions concerning their asymptotic performance.

Focusing on the practical aspects, their method seems novel
in its adjustment of print-tip effects and its use of replication
to borrow strength. The latter seems to crucial to the technique;
they need either within-array replicates or replications of the en-
tire array. In the latter case, they need to assume that the “treat-

Robert Tibshirani is Professor, Departments of Health Research and
Policy, and Statistics, Stanford University, Stanford, CA 94305 (E-mail:
tibs@stat.stanford.edu).

ment effect” of each genes is the same across different arrays.
I wonder about the robustness of such an assumption.

To play devil’s advocate, I find plots like the Q–Q-plot in
figure 5 to be unconvincing. The more that we model data, the
more the residuals tend to look normal. But has our model al-
lowed us to extract more reliable biological information from
the data? To answer this question, the method should be applied
to data from spiking experiments, in which known quantities of
known RNAs are hybrized to an array and the measurement
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signal can be compared with the true (expected) signal. More-
over, with real data, one can plot the number of genes called
significant versus the expected number of false-positive genes,
as the cutoff for a given method is varied. If a method A (such
as that proposed by the authors) is better than a more standard
method B, then the curve for A should lie mostly above that
for B. Such an analysis, for example, was done in the “SAM”
work of Tusher, Tibshirani, and Chu (2001).

It would be important to carry out these kinds of studies to
determine the practical utility of the proposed methods.
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Rejoinder
Jianqing FAN, Heng PENG, Tao HUANG, and Yi REN

We thank the editor Francisco Samaniego and an associate
editor for organizing this stimulating discussion, with a con-
scientious effort to invite outstanding researchers from diverse
backgrounds that make the discussion more thought-provoking.
We are also very grateful to all discussants for their insightful
and stimulating comments, touching on practical, methodologi-
cal, and theoretical aspects of microarray designs, experiments,
normalization, analysis, and applications, offering some origi-
nal insights and outlooks. Their contributions are very timely
and helpful.

The last couple of years have brought an explosion of sta-
tistical techniques for the design and analysis of microarray
data. They range from the design of microarray experiments
(Kerr and Churchill 2001; Yang and Speed 2002), normaliza-
tion of microarray data (Tseng, Oh, Rohlin, Liao, and Wong
2001; Dudoit et al. 2002; Fan, Tam, Vande Woude, and Ren
2004; Huang, Wang, and Zhang 2003), the expression indices of
Affymetrix oligonucleotide arrays (Li and Wong 2001; Irizarry
et al. 2003a), significant analysis of gene expressions (Tseng
et al. 2001; Tusher, Tibshirani, and Chu 2001; Lönnstedt and
Speed 2002; Fan et al. 2004), classification and clustering
(Tibshirani, Hastie, Narasimhan, and Chu 2003; Zhang, Yu,
and Singer 2003), and time-course experiments for the expres-
sion pathways (Svrakic, Nesic, Dasu, Herndon, and Perez-Polo
2003), among others. (For an overview on the subject, see
Sebastiani, Gussoni, Kohane, and Ramoni 2003; Speed 2003;
Parmigiani, Garrett, Irizarry, and Zeger 2003.) They revived
a surge interest in multiple testing problems (Dudoit, Shaffer,
and Boldrick 2003; Storey 2003; Donoho and Jin 2004; Storey,
Taylor, and Siegmund 2004; Efron 2004). They exemplify the
interactions between statistics and the sciences, tackling prob-
lems of high societal impact. All of the discussants call for
more statistical understanding of various procedures in use. We
agree wholeheartedly with this and contribute the article under
discussion in the hope that it will stimulate more statisticians
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to work on this area. The discipline of statistics should grow
stronger when it provides methodologies that address issues of
the highest societal importance while at the same time offer-
ing foundational understanding of the methodologies that push
theory, methods, and applications forward.

1. REPLICATIONS OF cDNA GENES

Normalization is a critical step in removing possible sys-
tematic biases in the process of microarray experiments. The
process is usually complicated, and the biases are hard to quan-
tify. The ideal situation for assessing the systematic biases is
to use within-array replications; all experimental conditions are
the same except for the locations of replicated genes. Hence the
observed differences of expression for two identical clones in
the same array are due to random noises and possible biases.
The genesis of our approach is to extract the biases from those
duplicated pairs of genes.

We are very grateful to Professor Craig for his careful de-
scription on the process of fabrication of slides and to Professor
Sabatti for her convincing arguments on the needs of within-
slide replications. Sabatti is correct that detected distortion (bi-
ases) in cDNA microarrays should be taken more seriously.
Greater understanding of the basis of biases should facilitate
technological improvements. The degree of distortion can be
better understood when two identical tissues are compared us-
ing the cDNA microarray experiments. We discuss this issue
further in Section 3 of this rejoinder. Sabatti also raised the
question of how many replicates are needed at the stage of de-
signing cDNA microarrays. The answer depends on the com-
plexity of models that statisticians would like to use and on
the expense of appropriately replicating some of the genes. She
is right that a natural model that takes care of print-tip effects
would include one extra parameter per print tip due to the tech-
nological process used in spotting microarrays. Our asymptotic
theory continues to apply, and our asymptotic formulas provide
useful guidance for choosing the number of replicated genes.
Because the number of print tips is usually large, aggregating
information from other arrays is needed and makes it possible
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to obtain reasonable estimates of the print-tip effect. Valida-
tion tests in the next section should also be useful for check-
ing whether systematic biases have been successfully removed.
Statistical techniques should also be calibrated with biological
experiments to achieve better approximations and understand-
ing.

Craig is right that duplicated spots are very helpful for nor-
malizing expressions of multiple arrays and assessing the ef-
fectiveness of a normalization procedure. He expresses some
concerns about the costs of duplication unless the benefits out-
weigh the costs. We agree with such a careful attitude but are far
more optimistic on the feasibility of within-array duplications.

First, printing a couple hundred duplicated spots in an ar-
ray of 20,000 spots does not take up a large percentage of
space. For a wide class of biological and biomedical problems,
many genes are of little biological interest. Replacing them with
duplicated spots enables biologists and statisticians to reduce
biases in multiple-array comparisons and to verify certain bi-
ological claims. Second, the cost of printing duplicated spots
should not be excessive. Once a template is designed, cDNA
microarrays can be manufactured, and the same microarrays
can be applied to a wide range of biomedical problems. Third,
although Craig rightly points out that well-by-well duplica-
tion is time-consuming and that choosing the duplicated genes
with a wide range of intensity requires some effort, we are far
more optimistic. With so many studies using cDNA microar-
rays, we have already had a good idea of the relative intensity
levels of different genes. This issue is eased further if a para-
metric model is used for modeling the intensity effect. Further,
based on our own experience and communication with others,
we surmise that randomly placing duplicated genes is feasible.
The arrays that we used were designed in 2001 and already
contained 111 “randomly” printed duplications. We can eas-
ily imagine that this should be easier today, thanks to advances
in biotechnology. Finally, with the increased popularity of cus-
tomized micorarray chips, which print only a couple hundred
relevant genes for a specific biomedical problem to increase
their specificity and sensitivity, there is plenty of room for du-
plicated spots. Sabatti gives very eloquent arguments that such
customized arrays will benefit the most from our suggested
technology.

Craig has made a useful suggestion: Understand the bene-
fit of the SLIM normalization via simulations. We followed his
suggestion and compared our SLIM with the loess normaliza-
tion at each block. That is, we simulated data from model (3)
of our article (FPH hereafter), and took the rest of parameters
from example 2. To show the biases of the loess normalization
method, we considered the treatment effects αn on 100 genes as
realizations from the asymmetric exponential distribution with
density

f (x) = .7 exp(−x)I(x ≥ 0) + .3 exp(x)I(x < 0),

and the rest as 0. Table 1 reports the mean squared errors for
estimating the intensity and treatment effects. Because there are
only 100 genes with an asymmetric treatment effect, the model
violation of the loess normalization becomes less severe when
G is large. Hence when G = 200, the performance of the loess
normalization is quite poor, and the performance of the loess
normalization gets closer to the SLIM when G is large. This
demonstrates the genuine need for the SLIM type of technique
even when the model is slightly violated.

Table 1. MSEs for SLIM and Loess Normalization, n = 200

SLIM normalization Loess normalization

I G = 200 G = 400 G = 800 G = 200 G = 400 G = 800

m 2 .0190 .0095 .0049 .0784 .0227 .0063
4 .0079 .0039 .0020 .0584 .0168 .0048

α 2 .1028 .0974 .0955 .1494 .1070 .0958
4 .0502 .0484 .0474 .0914 .0588 .0492

2. VALIDATION TEST

Craig raised the question of whether the duplicated spots
should always be used. Our view is that one should always
use them when available. They contain the most valuable in-
formation about possible systematic biases in microarray ex-
periments. In addition, duplicated spots allow us to verify the
validity of scientific conclusions; if many duplicated spots have
very different results, then the validity of the analysis and con-
clusions becomes questionable. Thus duplicated genes should
not be limited to the housekeeping genes. Furthermore, the du-
plicated spots allow statisticians to validate statistical models;
for example, they can be used to test whether the loess normal-
ization has effectively removed the intensity effect and whether
the aggregation method is applicable to a specific problem. If
the systematic biases have been removed by a normalization
approach, then the normalized log-ratios should approximately
follow the model

Ygi = αg + εgi, i = 1,2, g = 1, . . . ,G,

for replicated genes. Hence the difference Yg2 −Yg1 should have
mean 0 or be symmetrically distributed around 0. One can apply
a χ2-test or a sign test to this kind of problem.

It is unfortunate that many cDNA microarrays are designed
without repeated genes and without careful consultation with
statisticians. One must create the synthetic duplications or ag-
gregate information from other arrays. These impose extra sta-
tistical assumptions that we now discuss.

3. AGGREGATION AND NORMALIZATION

Aggregation is a powerful tool that enables us to pool in-
formation from multiple arrays. Through statistical modeling,
we can extract information from other arrays. This allows more
flexible models and/or better estimates. Using the aggregated
SLIM (12) from FPH, and with more careful use of available
data, the estimation of the intensity and block effects can be
further improved.

To appreciate this, let us recall that nonreplicated genes con-
tributed the data with the following model:

Ygj = αg + βj,rg + γj,cg + mj(Xgj) + εgj, j = 1, . . . , J. (1)

Let N be the number of nonduplicated genes. Unlike the case
without aggregation (J = 1), model (1) contains a tremen-
dous amount of information about the unknown parameters,
because N is very large. From theorem 5, it is known that
βj,r and γj,c can be estimated at root-n consistency from ag-
gregated SLIM (12), where n = IG is the number of replicated
spots. Substituting this into (1), we have

Ygj − β̂j,rg − γ̂j,cg = αg + mj(Xgj) + εgj. (2)
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If the β’s and γ ’s were known, then model (2) allows us to es-
timate mj at rate O(N−2/5), which is much faster than n−2/5.
Due to the errors in estimating the β’s and γ ’s, the accuracy for
estimating the intensity effect mj is O(n−1/2 + N−2/5). A more
elegant and more efficient method is to directly modify the al-
gorithm in section 3 of FPH to accommodate all available data.
The theoretical results of such a method have not been investi-
gated. Because the number of nonreplicated data N is far larger
than n, we would expect this modification to increase the ac-
curacy by an order of magnitude. Even in a situation where
aggregation is permissible, within-slide replications are still im-
portant, because they can also be used to validate the effective-
ness of normalization (see sec. 2).

Aggregation does not come without a cost. We have to as-
sume that the gene effects are the same across the arrays. In
other words, in model (12) of FPH and (1), αg does not depend
on j. When there are individual variations, such as different
arrays representing genetic materials from different subjects,
aggregation can possibly create biases. The robustness of ag-
gregration is discussed in Section 5 here. In contrast, the within-
array replications can still be used to normalize multiple arrays
even in such a situation.

We are grateful to Professors Huang and Zhang for making
connections among SLIM, aggregated SLIM, and TW–SLM,
and welcome their efforts in expanding these models to accom-
modate various designs of microarrays. We agree with them
that these three models share some common characteristics and
have their own distinct personalities. Our technical results com-
plement each other and enrich the theory of normalization.

In their discussion, Huang and Zhang suggested incorporat-
ing a weighting scheme using the standard deviation associated
with the measurements in the pixels within a spot. This proposal
is welcome, and it will behave better when the raw standard de-
viations are smoothed against the log-intensity to increase the
accuracy of the weights and reduce the fluctuations of the raw
weights. The resulting weights can be also combined with the
weights estimated from the log-ratios conditioning on the log-
intensities, as illustrated by Fan et al. (2004). We also welcome
the efforts of Huang, Zhang, Korosok, and Ma for introducing
array-specific location and scale parameters that take into ac-
count individual array variations.

4. THEORETICAL ISSUES

The essential ingredient of our model is its estimability,
which relies heavily on the model structure. In general, when
the number of nuisance parameters is proportional to sample
size, even low-dimensional parameters β and γ cannot be con-
sistently estimated. We have exploited the orthogonality of the
model, which turns the “curse of dimensionality” into a “bless-
ing.” In the notation (4) of FPH, the matrices Bn and Zn are
nearly orthogonal. This allows us to carry out the asymptotic
theory even with the number of arrays fixed. This is in contrast
with the asymptotic theory of Huang et al. (2003), in which
J → ∞ and G → ∞ are required. The implication is that the
number of arrays must be large, which is not very elegant for
microarray applications, although it is hoped that the method
works even when I is not too small.

To appreciate why parameters can be estimated consistently
without assuming J → ∞, the following argument, due to Fan,

Chen, Chan, Tam, and Ren (2005), provides insights into the
high-dimensional semilinear model. Suppose that we have two
arrays (J = 2), and that the log-ratios for each array follow the
model

Ygj = αg + βT
j Ugj + mj(Xgj) + εgj, (3)

where εgj ∼ N(0, σ 2(Xgj)), independent of the log-intensity Xgj

and covariate Ugj. This is a slight extension of model (11) of
FPH and an important specific case of TW–SLM. Here β j can
be considered as some array-specific effect with suitable iden-
tifiability conditions. This model has similar theoretical com-
ponents as model (1). Let Y∗

g = Yg2 − Yg1 and ε∗
g = εg2 − εg1.

Then, by taking the difference of (3), we have

Y∗
g = βT

2 Ug2 − βT
1 Ug1 + m2(Xg2) − m1(Xg1) + ε∗

g . (4)

This is now a usual semiparametric additive model. Fan,
Härdle, and Mammen (1998) have shown that β1 and β2 can be
estimated at a root-G rate and that m1 and m2 can be estimated
at a nonparametric rate. They have further demonstrated some
oracle properties of m̂1 and m̂2. In summary, with a special
structure, low-dimensional parameters in a high-dimensional
semilinear model are estimable. Huang et al. (2003) focused
on more general structures of high-dimensional nuisance pa-
rameters and hence needed to assume that J → ∞ to estimate
parameters consistently.

We thank Professor Zhang for raising a number of chal-
lenging questions and Professors Korosok and Ma for their
comments on asymptotic extensions. All raise the issues on
the asymptotics that the number of arrays J grows to infinity
slowly with G. In this case, all parameters can be estimated
more accurately. The row and column effects can still be esti-
mated with root-n rate, and the intensity effect can be estimated
at rate n−2/5. The treatment effect on genes can be estimated
with rate J−1/2 for model (12) in FPH. Usually n = IG is much
larger than J. Hence the estimation errors for the intensity and
block effects are asymptotically an order of magnitude faster
than J−1/2 and are negligible when J grows slowly. Conse-
quently, the treatment effects αn can be estimated at rate J−1/2,
because they are the average of J arrays. But the block effect β

does not improve much, and neither does the intensity effect. To
examine the impact of the number of arrays on the estimation
of parameters, we have repeated the simulation experiments in
Example 1 of FPH with the different number of arrays J (with
I taken as 2). The MSEs for estimating the intensity, block, and
treatment effects are summarized in Table 2. Figure 1 gives the
graphic presentation of the results. These results are clearly in
line with our asymptotic theory. In particular, the slopes for the
treatment effects are nearly 1.

Table 2. MSEs for Aggregated Estimator for Different Number of
Arrays J (I = 2, n = 240/J)

G J = 1 J = 2 J = 4 J = 8 J = 16

m 200 .0774 .0498 .0407 .0355 .0322
400 .0362 .0232 .0227 .0193 .0201

β 200 .0333 .0203 .0178 .0158 .0156
400 .0152 .0098 .0082 .0081 .0075

α 200 .5797 .2776 .1368 .0686 .0331
400 .5388 .2617 .1336 .0670 .0350
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(a) (b) (c)

Figure 1. The Plot log2 (J) Against log2 (MSE): (a) Intensity Effect, (b) Block Effect, and (c) Treatment Effect. G = 200, solid lines; G = 400,
dashed lines.

The parameters αg, although becoming a nuisance for nor-
malization purposes, are the key parameters of scientific in-
terest. Their consistency requires that the number of arrays J
tends to infinity. Fortunately, the microarray techniques are of-
ten used for the preliminary selection of significantly differ-
ently expressed genes. Hence the scientific question becomes
whether the parameters αg are statistically significantly differ-
ent from 0 at certain significant levels (say .1%). This is an eas-
ier statistical problem than consistently estimating parameter
values themselves.

Zhang raised an excellent point that log-ratios (Y = log R/G)
and log-intensities [X = .5 log(RG)] are both created from the
intensity outputs of “green” (G) and “red” (R) channels, which
might create some kind of spurious relation. In other words,
even in the absence of the block effects and treatments [namely,
Y ∼ N(0, σ 2)], there might be a spurious relationship,

Y = m(X) + ε, (5)

for a nonzero function m. This concern is quite relevant. It can
be eased if we assume that R and G are independently lognor-
mally distributed. In this case, X and Y are independent, and the
spurious relation m must be 0. In addition, if log(R) and log(G)

are uncorrelated, then so are X and Y . Zhang’s question can also
be biologically tested. If the treatment and control arrays con-
tain the identical biological materials, then there is no treatment
effect. One can then smooth the (X,Y) pairs to see whether m(·)
is statistically significant from 0.

Zhang, Kosorok, and Ma raise some computational issues as-
sociated with our methods. The speed of convergence depends
on the implementation of a statistical estimate. Unlike opti-
mizations in numerical analysis, the convergence in statistical
computation has a somewhat different meaning. Because para-
meters are estimated with errors, optimization can be conducted
somewhat crudely. This is why we use the word “implementa-
tion” instead of “algorithm.” Our current implementation uses
the local linear smoother, which is not a projection type of es-
timator. The algorithm will converge under some conditions on
the smoothing matrix similar to those of Opsomer and Ruppert

(1997). If the local linear estimator in the smoothing step in sec-
tion 3 of FPH is replaced by smoothing splines, then the algo-
rithm is truly a Gaussian–Sidel one, and it will converge under
some mild conditions (Buja, Hastie, and Tibshirani 1989). Both
algorithms should have about the same speed of convergence.
But if the local linear fit is replaced by the polynomial splines,
then the computation cost can be higher, depending on how it is
implemented. The implementation of Huang et al. (2003) uses
polynomial splines and can be more computationally intensive.
It depends on whether they directly invert large matrices and
whether they carefully exploit the sparsity of matrices created
by B-splines (Eubank 1999).

5. INCORPORATING SIDE INFORMATION

Side information can be incorporated into the normaliza-
tion and analysis of microarray data. Several discussants have
touched on several aspects of these. For example, Zhang men-
tioned the possibility of using a parametric model to estimate
the intensity effect, Huang and Zhang augmented the TW–SLM
analysis using expressions from control genes, and Fan et al.
(2004) advocated using duplicated genes. The side information
should be incorporated into the design and analysis whenever
possible.

The sparsity is vague but informative in the analysis of mi-
croarray data. For most studies, it is expected that only a frac-
tion of the genes are significantly differently expressed across
different tissues or samples; in other words, most of the αg’s are
approximately 0, using the notation of (3). This information is
vague but informative, because the number of genes such that
αg ≈ 0 is potentially large. This should be incorporated into the
process of normalization and significant analysis of genes. We
will pursue some problems in this direction in the future.

Aggregation can also be considered as a method of incorpo-
rating side information. Professor Tibshirani raised an excel-
lent question on how robust such a method is. Suppose that the
treatment effects on the genes vary somewhat across the arrays
due to experimental conditions or individual variations. In other
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Table 3. Robustness of Aggregrated Estimator; MSEs for
I = 2, n = 50, and J = 4

σ G = 100 G = 200 G = 400 G = 800

m 0 .0219 .0102 .0049 .0027
.05 .0205 .0106 .0052 .0027
.1 .0199 .0102 .0052 .0027
.2 .0224 .0111 .0051 .0025

β 0 .0073 .0034 .0017 .0008
.05 .0066 .0032 .0016 .0008
.1 .0066 .0033 .0015 .0008
.2 .0071 .0034 .0017 .0008

α 0 .0302 .0256 .0247 .0241
.05 .0279 .0257 .0247 .0241
.1 .0312 .0270 .0251 .0242
.2 .0449 .0333 .0281 .0255

words, model (1) becomes

Ygj = βj,rg + γj,cg + mj(Xgj) + αg + ηgj + εgj,

j = 1, . . . , J, (6)

where ηgj are the (unobservable) individual variations on the
treatment effect. If the individual variations ηgj behave like ran-
dom noises, then the term can be absorbed into the noise term
in (6). Hence the foregoing techniques continue to apply. In this
sense, the aggregation is robust. To demonstrate this numeri-
cally, we consider the simulation example 2 of FPH and add
the random noise ηgj ∼ N(0, σ 2) to reflect individual variation
on the genes. Note that the variance of the double exponential
is 2, whereas the individual variations between two arrays are
N(0,2σ 2). In particular, when σ = 0, the results are taken from
table 4 of FPH. Table 3 shows that the results are fairly stable.

6. EXPANDING SCOPES OF APPLICABILITY

We thank Professor Sabatti for outlining a few examples in
which the curse of dimensionality can be turned into a “bless-
ing.” This is indeed a very interesting concept. The inverse type
of model that she mentioned can possibly be consistently es-
timated with increased precision as G gets larger. The model
is very important and warrants a more thorough investigation.
Here we offer some heuristics to demonstrate that with some
structures on pjt or aij, it is potentially feasible to consistently
estimate their values. For simplicity, we take L = 1 and M = 2.
Then the observed data follow,

Yi1 = aip1 + εi1, Yi2 = aip2 + εi2. (7)

For identifiability, let us assume that p2 = 1. For each given p1,
by the least squares method, we have

âi = p1Yi1 + Yi2

p2
1 + 1

. (8)

Eliminating the nuisance parameters ai by the profile least
squares technique [i.e., substituting (8) into (7)], we obtain the
synthetic nonlinear model parameterized by p1,

Yi1 = âip1 + εi1, Yi2 = âi + εi2.

The least squares estimator of this synthetic nonlinear model is
the solution to (by considering âi as given)

p̂1 =
G∑

i=1

âiYi1

/ G∑

i=1

â2
i . (9)

This is indeed the iterative estimator of model (7), which iter-
ates (8) and (9). Substituting (8) into (9) and using the central
limit theorem, we can show heuristically that p1 can be esti-
mated at rate G−1/2 under some regularity conditions.

Sabatti also discussed an example where the blessing of di-
mensionality cannot be materialized unless further constraints
are imposed. Her example is the Li and Wong (2001) model for
summarizing probe intensities in Affymetrix oligonucleotide
arrays. We agree with her intuition.

We would like to mention that SLIM has also been applied
to normalize Affymetrix arrays by synthetically creating inten-
sities from “green” and “red” channels. By treating the aver-
age intensity of the control arrays as the outputs of the green
channel and regarding the intensities from treatment arrays as
the outputs of the red channel, Fan et al. (2005) created “syn-
thetic” arrays and applied a refined SLIM technique to nor-
malize the Affymetrix arrays. These authors demonstrated that
among the 12 genes picked by their methods for biological con-
firmations, all are biologically confirmed. In addition, among
those 12 genes known to be differently expressed biologically
between the treatment and control samples, without using any
normalization, 2 genes are not identified in the significance
analysis, yielding a missed discovery rate of 2/12 ≈ 17%. Us-
ing the Affymetrix MAS 5.0 software directly, 29% of genes are
misdiscovered. The efficacy of SLIM has clearly been demon-
strated.

7. SIGNIFICANCE ANALYSIS

We appreciate the comments of Kosorok and Ma on the sig-
nificant analysis of genes using marginal asymptotics. Clearly,
a nice idea has been outlined. An interesting component of their
model is that the individual variations on the treatment effect
are allowed, namely,

Y∗
gj = αgj + εgj, (10)

where {Y∗
gj} are the normalized log-ratios and αgj is the treat-

ment effect on gene g, which may depend on the subject j. The
balanced permutation technique (Tusher et al. 2001; Fan et al.
2004) can be used to empirically determine the distribution of a
test statistic Vg (including the one outlined by Kosorok and Ma)
and estimate its associated false discovery rate. The method
was further improved by Fan et al. (2005) with a fuller use
of the sample. The basic idea is as follows. Restrict the genes
to the set G = {g : |Vg| ≤ 2}, for example. This set of genes is
unlikely to have large sample mean αg·. For each subset J in
{1, . . . , J}, multiplying the log-ratios Y∗

gj for arrays j ∈ J by −1
(i.e., swapping the “treatment” with “control”), we obtain a new
set of arrays consisting of modified and unmodified ones. Com-
pute the test statistics for the new set of arrays, resulting in
{V∗

g,J : g ∈ G} for each given J . Pull together all of the fore-
going test statistics {V∗

g,J } for all subset J and g ∈ G, and use
the empirical distribution of all such test statistics as an esti-
mate of the null distribution of Vg. With this null distribution,
one can empirically compute the p values for all test statistics
{Vg,g = 1, . . . ,G}. This avoids computing extreme tail prob-
abilities entirely based on mathematical assumptions and ap-
proximations.
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It is worthwhile to briefly discuss the modified t-statistic used
by Tusher et al. (2001) and Fan et al. (2004), which is given by

tg = Ȳg·
SDg/J + s0

, (11)

where Ȳg· and SDg are the mean and the standard deviation of
the normalized data in (10) for each given g. Here s0 is a posi-
tive constant that plays dual roles. Because the number of genes
is large and the number of arrays is usually small, by chance
alone, some of SDg’s will be close to 0. The constant s0 bounds
the denominators away from 0 and prevents us from selecting
too many spuriously significant genes. Moreover, when a gene
is called significant, say |tg| > 3, it requires the expression ratio

|Ȳg·| ≥ 3(SDg/J + s0) ≥ 3s0.

In other words, the expression ratio must be large enough to be
called significant. This is also biologically meaningful, because
biological functions require certain amounts of different expres-
sions. Furthermore, when selected genes to be confirmed using
a different biological technique, such as reverse-transcription
potymerase chain reaction, the expressions need to be suffi-
ciently different. In other words, the constant s0 trades-off be-
tween the statistical significance and biological functionality.
A large s0 makes a gene less likely to be called “significant” by
the t-statistic, but makes biological functionality and confirma-
tion more feasible.

Tibshirani gave a good guideline for choosing a test. We
agree with his basic principle. The number of significant genes
is related to missed discovery rates. For two testing proce-
dures with the same control of false discovery rate, the one that
picks more significant genes tends to have less missed discov-
ery rates. The former is related to the level of significance, and
the latter is related to the power of a test. Missed discovery rates
are important for scientific investigation. Once important genes
fail to be discovered, the main goal of biological experiments
can be defeated.

Tibshirani mentioned that the effectiveness of normalization
method should also be compared with the true expected signals
from spiking experiments. The validation tests outlined in Sec-
tion 2 are also very useful for validating the effectiveness of
normalization. Finally, we would like to mention that figure 5
in FHP merely shows that the conditional heteroscedasticity has
been successfully removed and that the marginal data are nor-
mally distributed.
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