
Chapter 1. Theory of Interest

1. The measurement of interest

1.1 Introduction

Interest may be defined as the compensation that a borrower of capital
pays to lender of capital for its use. Thus, interest can be viewed as a form of
rent that the borrower pays to the lender to compensate for the loss of use of
capital by the lender while it is loaded to the borrower. In theory, capital and
interest need not be expressed in terms of the same commodity.
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Outline

A. Effective rates of interest and discount;

B. Present value;

C. Force of interest and discount;

2



1.2. The accumulation and amount functions

Principal: The initial of money (capita) invested;

Accumulate value: The total amount received after a period

of time;

Amount of Interest: The difference between the accumulated

value and the principle.

Measurement period: The unit in which time is measured.
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Accumulation function a(t): The function gives the accumulated

value at time t ≥ 0 of an original investment of 1.

1. a(0) = 1.

2. a(t) is generally an increasing function if the interest is not

negative.

3. a(t) will be continuous if interest accrues continuously.
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Amount function A(t): The accumulated value at time t ≥ of

an original investment of k.

A(t) = k · a(t) and A(0) = k

Amount of Interest In earned during the nth period from the
date of invest:

In = A(n)−A(n− 1), n ≥ 1.
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Figure 1: Four illustrative amount functions
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1.3. The effective rate of interest

Precise definition: The effective rate of interest i is the amount

of money that one unit invested at the beginning of a period will

earning during the period, where interest is paid at the end of the

period.

This definition is equivalent to

i = a(1)− a(0) or a(1) = 1 + i.

Alternative definition:

i =
(1 + i)− 1

1
=

a(1)− a(0)
a(0)

=
A(1)−A(0)

A(0)
=

I1

A(0)
.
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Let in be the effective rate of interest during the nth period

from the date of investment. Then we have

in =
A(n)−A(n− 1)

A(n− 1)
=

In

A(n− 1)
, n ≥ 1.

• The use of the word “effective” is not intuitively clear.

• The effective rate of interest is often expressed as a percentage,

e.g. i = 8%.

• The amount of principal remains constant throughout the

period.

• The effective rate of interest is a measure in which interest is

paid at end of period.
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1.4. Simple Interest and Compound Interest

Simple Interest: The accruing of interest according to the

following patter is called simple interest.

a(t) = 1 + it for integral t ≥ 0.

Let i be the rate of simple interest and let in be the effective rate

of interest for the nth period. Then we have

in =
a(n)− a(n− 1)

a(n− 1)
=

[1 + in]− [1 + i(n− 1)]
1 + i(n− 1)

=
i

1 + i(n− 1)

for integral n ≥ 1.
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A more rigorous mathematical approach for simple interest

to the definition of a(t) for nonintegral value of t:

a(t + s) = a(t) + a(s)− 1 for t ≥ 0 and s ≥ 0.

Assuming a(t) is differentiable, we have

a′(t) = lim
s→0

a(t + s)− a(t)
s

= lim
s→0

[a(t) + a(s)− 1]− a(t)
s

= lim
s→0

a(s)− 1
s

= lim
s→0

a(s)− a(0)
s

= a′(0)
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So a′(t) is a constant, we have

a(t)− a(0) =
∫ t

0

a′(r)dr =
∫ t

0

a′(0)dr = t · a′(0)

a(t) = 1 + t · a′(0)

Remember that

a(1) = 1 + i = 1 + a′(0),

so

a(t) = 1 + it, t ≥ 0.

11



Compound Interest: The word “Compound” refers to the process

of interest being reinvested to earn additional interest. The theory

of compound interest handles the problem by assuming that interest

earned is automatically reinvested.

Accumulation function for a constant compound interest:

a(t) = (1 + i)t for integral t ≥ 0.

Effective interest

in =
a(n)− a(n− 1)

a(n− 1)
=

(1 + i)n − (1 + i)n−1

(1 + i)n−1
=

1 + i− 1
1

= i.

which is independent of n.
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Rigorous mathematical approach for compound interest to the

definition of a(t) for nonintegral value of t:

a(t + s) = a(t) · a(s) for t ≥ 0 and s ≥ 0

Assuming a(t) is differentiable, we have

a′(t) = lim
s→0

a(t + s)− a(t)
s

= lim
s→0

a(t) · a(s)− a(t)
s

= a(t) lim
s→0

a(s)− 1
s

= a(t) · a′(0).
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Thus
a′(t)
a(t)

=
d

dt
loge a(t) = a′(0).

and

loge a(t)− loge a(0) =
∫ t

0

d

dr
loge a(r)dr =

∫ t

0

a′(0)dr = t · a′(0)

Since loge a(0) = 0, if we let t = 1 and remember that a(1) = 1+i,

we have

loge a(1) = loge(1 + i) = a′(0)

and

loge a(t) = t loge(1 + i) = loge(1 + i)t or a(t) = (1 + i)t for t ≥ 0.
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Difference between simple and compound interest:

• Same results over one measurement period,. Over a longer

period, compound interest produces a larger accumulated value

than simple interest while the opposite is true over a shorter

period.

• Under simple interest, it is the absolute amount of growth that

is constant over equal periods of time, while under compound

interest, it is the relative rate of growth that is constant.

• Compound interest is used almost exclusively for financial

transaction covering a period of one year or more and is

often used for shorter term transaction as well. Simple

interest is occasionally used for short-term transaction and as an

approximation for compound interest over fractional periods.
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Example 1: Find the accumulated value of $2000 invest for

four years, if the rate of simple interest and compound rate is 8%

annum respectively.

The answer is

For simple interest: 2000[1 + (.08)(4)] = 2640.

For compound interest: 2000(1.08)4 = 2720.98.
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1.5. Present Value

• Accumulation factor: 1 + i. It accumulates the value of an

investment at the beginning of a period to its value at end of

the period.

• Discount factor: v = 1
1+i, it discounts the value of an

investment at end of a period to its value at the beginning

of the period.

• Discount function: a−1(t), since a−1(t) · a(t) = 1.

Simple interest: a−1(t) =
1

1 + it

Compound interest: a−1(t) =
1

(1 + i)t
= vt
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Accumulating and discounting are opposite processes. The term

(1 + i)t is said to be the accumulated value of 1 at the end of

t period. The term vt is said to present value of 1 to be paid at

the end of t periods.

Example 2: Find the amount which must be invested at a

rate of simple interest of 9% per annum in order to accumulate $

1000 at end of three years.

The answer is 1000
1+(.09)(3) = 1000

1.27 = $787.40.

Example 3: Rework the example above using compound interest

instead of simple interest.

The answer is 1000v3 = 1000
(1.09)3

= $772.18.
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1.6. The effective rate of discount

Numerical illustration:
If A goes to a bank and borrow $100 for one year at an effective

rate of interest of 6%, then the bank will give A $100. At the end

of the year, A will repay the bank the original loan of $100, plus

interest $6 or a total of $106.

However, if A borrows $ 100 for one year at an effective rate

of discount of 6%. then the bank will collect its interest of 6% in

advance and will give A only $94. At end of the year, A will repay

$100.

In the case of an effective rate of interest, the 6% is taken as

a percentage of the balance at the beginning of the year, while

in the case of an effective rate of discount , the 6% is taken as

percentage of the balance at the end of the year.
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Definition of the effective rate of discount: The effective

rate of discount d is the ratio of the amount of interest (sometimes

called the “amount of discount” or just “discount”) earned during

the period to the amount invested at end of the period.

• The phrases amount of discount and amount of interest can be

used interchangeably in situations involving rates of discount.

• The definition does not use the word “principal”, since the

definition of principal refers to the amount invest at the

beginning of the period and not at the end of the period.
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The key distinction between the effective rate of interest and

the effective rate of discount can be summarized as follows:

a) Interest-paid at end of the period on the balance at the beginning

of the period.

b) Discount-paid at the beginning of the period on the balance at

the end of the period.

Effective rates dn of discount over any particular measurement
period:

dn =
A(n)−A(n− 1)

A(n)
=

In

An
for integral n ≥ 1.
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Compound discount: If we have compound interest, in which

case the effective rate of interest is constant, then the effective

rate of discount is also constant. This situations are referred to as

compound discount.

Relationship between effective rates of interest and effective
rates of discount
Concept of equivalency: Two rates of interest or discount are

said to be equivalent if a given amount of principal invested for

the same length of time at each of the rates produces the same

accumulated value.

Assume that a person borrows 1 at an effective rate of discount d.

Then the effective rate of interest is

i =
d

1− d
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By simple algebra, we also get

d =
i

1 + i
,

d = iv, d = 1− v, and i− d = id

• Simple discount: a−1(t) = 1− dt.

• Compound discount: a−1(t) = vt = (1− d)t.

• A constant rate of simple discount implies an increasing effective

rate of discount(and interest).
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• Simple and compound discount produce the same result over

one measument period. Over a longer period, simple discount

produce a smaller present value than compound discount, while

the opposite is true over a shorter period.

• Simple discount is used only for short-term transactions and as

an approximation for compound discount over fractional periods.

Example 4 Rework Example 2 and Example 3 using simple and

compound discount instead of simple and compound interest.

The answer is

For simple discount: 1000[1− (0.9)(3)] = $730.

For compound discount: 1000(0.91)3 = $753.57.
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1.7. Nominal Rates of Interest and Discount

Effective: used for the rates of interest and discount in which

interest is paid once per measurement period.

Nominal: Rates of interest and discount in which interest is paid

more frequently than once per measurement period.
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Nominal rate of interest i(m): payable m times per period. The

effective rate of interest is i(m)/m for each mth of a period.

Relationship between the nominal rate and effective rate of
interest

1 + i =

[
1 +

i(m)

m

]m

i =

[
1 +

i(m)

m

]m

− 1 and i(m) = m[(1 + i)
1
m − 1].
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Nominal rate of discount d(m): payable m times per period.

The effective rate of discount is d(m)/m for each mth of a period.

Relationship between the nominal rate and effective rate of
discount

1− d =

[
1− d(m)

m

]m

d = 1−

[
1− d(m)

m

]m

and i(m) = m[1−(1−d)
1
m] = m[1−v

1
m].
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Relationship between nominal rates of interest and nominal
rates of discount[

1 +
i(m)

m

]m

=

[
1− d(p)

p

]−p

,

i(m)

m
− d(m)

m
=

i(m)

m
· d

(m)

m
.

Example 5 Find the accumulated value of $500 invested for five

years at 8% annum convertible quarterly

The answer is
500

[
1 +

.08
4

]4·5
= 500(1.02)20

It should be noted that this situation is equivalent to one in which

$500 is invested at a rate of interest of 2% for 20 years.
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Example 6 Find the present value of $1000 to be paid at end

of six years at 6% per annum payable in advance and convertible

semiannually.

The answer is

1000
[
1− .06

2

]2·6
= 1000(.97)12

It should be noted that this situation is equivalent to one in which

the present value of $1000 to be paid at the end of 12 years is

calculated at a rate of discount of 3%.
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Example 7 Find the nominal rate of interest convertible quarterly

which is equivalent to a nominal rate of discount of 6% per annum

convertible monthly.

The answer is [
1 +

i(4)

4

]4

=
[
1− .06

12

]−12

1 +
i(4)

4
= (.995)−3, i(4) = 4[(.995)−3 − 1].
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1.8. Forces of Interest and Discount

Force of interest The measure of interest at individual moments

of time. The force of interest at time t, denoted by δt is defined as

δt =
A′(t)
A(t)

=
a′(t)
a(t)

• δt is measure of the intensity of interest at exact time t,

independent of the amount in the fund.

• δt expresses this measurement as a rate of per measurement

period.
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Expressions for the value of A(t) and a(t) in terms of the
function δt

δt =
d

dt
loge A(t) =

d

dt
loge a(t).∫ t

0

δrdr =
∫ t

0

d

dr
loge A(r)dr = loge

A(t)
A(0)

e
R t
0 δrdr =

A(t)
A(0)

=
a(t)
a(0)

= a(t)∫ n

0

A(t)δtdt =
∫ n

0

A′(t)dt = A(n)−A(0).

32



Force of discount δ′t

δ′t = −
d
dta

−1(t)
a−1(t)

.

The force of discount bears a relationship to nominal and

effective rates of discount similar to the relationship that force

of itnerest bears to norminal and effective rate interest. By simple

computation, We have

δ′t = −
d
dta

−1(t)
a−1(t)

=
a−2(t) d

dta(t)
a−1(t)

=
a−2(t)a′(t)

a−1(t)
= δt.
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When force of interest is constant δ over an interval of
time, we have

• The effective rate of interest will also be constant over that

interval for compound interest,

e
R n
0 δtdt = enδ = a(n) = (1+ i)n, i = eδ−1 and δ = loge(1+ i).

• For simple interest, we have

δt =
d
dt(1 + it)

1 + it
=

i

1 + it
, t ≥ 0.

and

δt = δ′t = −
d
dt(1− dt)

1− dt
=

d

1− dt
, 0 ≤ t < 1/d.
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[
1 +

i(m)

m

]m

= 1 + i = v−1 = (1− d)−1 =

[
1− d(p)

p

]−p

= eδ

i(m) = m(e
δ
m − 1).

By series expansion

i(m) = m

[
δ

m
+

1
2!

[
δ

m

]2

+
1
3!

[
δ

m

]3

+ · · ·

]

and let m →∞ we have

lim
m→∞

i(m) = δ.

Similarly, we also have

lim
m→∞

d(m) = δ.
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Example 8 Find the accumulated value of $1000 invested for ten

years if the force of interest is 5%.

The answer is

1000e(.05)(10) = 1000e.5.
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1.9. Varying Interest

• Continuously varying force of interest.

a(t) = e
R t
0 δrdr.

• Changes in the effective rate of interest over a period of time.

Let itn be the effective rate of interest during the nth period

from the date of investment. Then we have

a(t) = (1 + i1)(1 + i2) · · · (1 + it) =
t∏

k=1

(1 + ik),

a−1(t) = (1+i1)−1(1+i2)−1 · · · (1+it)−1 =
t∏

k=1

(1+ik)−1 =
t∏

k=1

vk.
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Example 9 Find the accumulated value of 1 at the end of n years

if δt = 1
1+t.

The answer is

e
R n
0 δtdt = e

R n
0

1
1+tdt = eloge(1+t)|n0 = 1 + n.

Example 10 Find the accumulated value of $1000 at the end of

15 years if the effective rate of interest is 5% for first 5 year, 4

1/2% for the second 5 years, and 4% for the third 5 years.

The answer is 1000(1.05)5(1.045)5(1.04)5.
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Table 1: Summary of Relationships in Chapter 1

Rate of interest or

discount

The accumulated value

of 1 at time t, a(t)
The present value of 1

at time t, a−1(t)
Compound interest

i (1 + i)t vt = (1 + i)−t

i(m)
[
1 + i(m)

m

]mt [
1 + i(m)

m

]−mt

d (1− d)−t (1− d)t

d(m)
[
1− d(m)

m

]−mt [
1− d(m)

m

]mt

δ eδt e−δt

Simple interest

i 1 + it (1 + it)−1

Simple discount

d (1− dt)−1 (1− dt)
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2. Solution of problems in interest

2.1. Introduction

This Chapter discusses general principles to be followed in the solution
of problem interest. The purpose of this chapter is to develop a systematic
approach by which the basic principles from Chapter 1 can be applied to more
complex financial transaction.
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2.2. Obtaining Numerical Results

Naturally , in practice work, actual numerical answers are usually

desired, and the purpose of this section is to discuss the various

the various possible methods of obtains such answer.

Direct calculation by Personal computers, inexpensive pocket

calculators with exponential and logarithmic functions.

Compound interest tables Use of the compound interest tables

is a convenient approach if required values appear in the tables.

41



Direct calculation by hand. This may require the us e of series

expansions. Here are two examples: One example wound be to

evaluate (1 + i)k using the binomial expansion theorem.

(1 + i)k = 1 + ki +
k(k − 1)

2!
i2 +

k(k − 1)(k − 2)
3!

i3 + · · · ,

A second example would be to evaluate ekδ as

ekδ = 1 + kδ +
(kδ)2

2!
+

(kδ)3

3!
i3 + · · ·

It should be emphasized that using series expansions for calculation

purposes is cumbersome and should be unnecessary except in

unusual circumstances.
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One method of crediting interest

• Using compound interest for integral periods of time .

• Using simple interest for any fractional period.

• Using first two terms of the binomial expansion assuming 0 <

k < 1.

• Such method is commonly encountered in practice.
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Simple interest for a final fractional period is equivalent to

performing a linear interpolation between (1 + i)n and (1 + i)n+1

(1 + i)n+k ≈ (1− k)(1 + i)n + k(1 + i)n+1

= (1 + i)n(1 + ki)

Analogous fashion for simple discount over the final fractional
period by linear interpolation

vn+k = (1− d)n+k ≈ (1− k)(1− d)n + k(1− d)n+1

= (1− d)n(1− kd).
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Example 2.1 Find the accumulated value of $5000 at the end of

30 years and 4 months at 6% er annum convertible semiannually:

(1) assuming compound interest throughout, and (2) assuming

simple interest during the final fractional period.

1. Assuming compound interest throughout, the answer is

5000(1.03)60
2
3 = $30, 044.27

by direct calculation.

2. Assuming simple interest during the final fractional period, the

answer is

5000(1.03)60(1.02) = $30, 047.18.

The answer to 2 is larger that 1, illustrating that simple interest

produces larger accumulated values over fractional periods than

compound interest does, although the difference is quite small.
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2.3. Determining Time periods

Although there would appear to be no ambiguity in this process,

different methods of counting the days in a period of investment

have arisen in practice.
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Three methods are commonly encountered.

1. Using exact number of days for the period of investment and to

use 365 days in a year.

2. Assuming each calendar month has 30 days and the entire

calendar year has 360 days. Formula for computing the number

of days between two given days is

360(Y2 − Y1) + 30(M2 −M1) + (D2 −D1)

3. A hybrid method, uses exact number of days for period of

investment, but uses 360 days in a year.

47



For simple interest, those method are called

1. Exact simple interest, “actal/actal”.

2. Ordinary simple interest, “30/360”

3. Banker’s rule, “actual/360”
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• Banker’s Rule is more favorable to a lender than is ordinary

interest.

• A further complication arises in a leap year. In most cases, Feb.

29 is counted a day and the year has 366 days.

• The three commonly encountered calculation bases also are used

for calculations on a compound interest basis.

• It is assumed, unless stated otherwise, that in counting days

interest is not credited for both the date of deposit and the date

of withdrawal, but for only one of these two dates.

• Many financial transaction are handled on a monthly , quarterly,

semiannual or annual basis.
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Example 2. Find the amount of interest that $2000 deposited

on June 17 will earn, if the money is withdrawn on September 10

in the same year and if the rate of interest is 8%, on the following

bases: (1) exact simple interest, (2) ordinary simple interest, (3)

the Banker’s Rule.

1. September 10 is day 253 and June 17 is day 168. The actual

number of days in the period of investment is 253 − 168 = 85.

Thus the answer is

2000(0.08)(85/365) = $37.26

. Assuming that the year in question is not a leap year.
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2. Using the formula above to compute the number of days is

360(0) + 30(9− 6) + (10− 17) = 83.

Thus, the answer is

2000(0.08)(83/360) = $36.89.

3. The answer is

2000(0.08)(85/360) = $37.78.

Not surprising, the answer using the Banker’s Rule is greater than

using either exact simple interest or ordinary simple interest.
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2.4∗. The Basic Problem

• The principal originally invested.

• The length of the investment period.

• The rate of interest.

• The accumulated value of the principle at the end of the

investment period.

IF any three of these quantites are known, then the fourth quantity

can be determined.
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The following observations may prove helpful in the solution of

problems interest

• Assessing the tools that will be available in performing the

financial calculations, such as interest tables, pocket calculators,

personal computers.

• The length of the investment period is measured in time units.

• An interest problem can be viewed from two perspectives, from

borrower and lender.

• In practice applications involving interest the terminology can

become confusing.
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Equations of Value

Fundamental Principle, Recognition of the Time value of

money: The value of an amount of money at any given point

in time depends upon the time elapsed since the money was paid

in the past or upon time which will elapse in the future before it

paid.

Recognition of the time value of money reflects the effect of

interest, but not the effect of inflation which reduces the purchasing

power of money over time.
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Two or more amount of money payable at a different points in

time cannot be compared until all the amount are accumulated

or discounted to a common date (Comparison Date), and the

equation which accumulates or discounts each payment to the

comparison date is called the equation of value.

Example 4 In return for a promise to receive $600 at the end of

8 years, a person agrees to pay $100 at once, $200 at end of 5

years and to make a further payment at end of 10 years. Find the

payment at end of 10 years if the nominal rate of interest is 8%

convertible semiannually.
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Since interest is convertible semiannually, we will count time

period in half-years. There are two equation from different

comparison date.

100 + 200v10 + Xv20 = 600v16 at 4%

100(1.04)20 + 200(1.04)10 + X = 600(1.04)4.

Same answer is obtained by these two equations, X = 186.76.
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Unknown Time

Let amount s1, s2, . . . , sn be paid at times t1, t2, . . . , tn
respectively. The problem is to find time t such that s1+s2+· · ·+sn

paid at time t is equivalent to the payments of s1, s2, . . . , sn made

separately.

The fundamental equation of value is

(s1 + s2 + · · ·+ sn)vt = s1v
t1 + s2v

t2 + · · ·+ snvtn

A first approximation, the method of equated time

t̄ =
s1t1 + s2t2 + . . . + sntn

s1 + s2 + · · ·+ sn

It is possible to prove that the value of t̄ is always great than the

true value of t.
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Another interesting question often asked is how long it takes

money to double at a given rate of interest.

(1 + i)n = 2 or n loge(1 + i) = loge 2.

Then we have

n =
loge 2

loge(1 + i)
=

.6931
i

· i

loge(1 + i)
.

Rule of 72
The last factor above equation evaluated for i = 8% is 1.0395.

Thus we have

n ≈ .6831
i

(1.0395) =
.72
i

.
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Table 2: Length of Time It Takes Money Double

Rate of interest Rule of 72 Exact value

4 % 18 17.67

6 12 11.90

8 9 9.01

10 7.2 7.27

12 6 6.12

18 4 4.19
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Example 5 Find the length of time necessary for $1000 to

accumulate to $1500 if invested at 6% per annum compounded

semiannually: (1) by use of logarithms, and (2) by interpolating in

the interest tables.

1. loge 1000(1.03)n = loge 1500 ⇒ n =
loge 1.5
loge 1.03

= 13.717.

Thus, the number of years is 6.859.

2. From the interest tables, (1.03)13 = 1.46853 and (1.03)14 =
1.51259. so 13 < n < 14. Then by a linear interpolation

n = 13 +
1.5− 1.46853

1.51259− 1.46853
= 13.714.

Thus, the number of years is 6.857. This method is equivalent to

the assumption of simple interest during the final fraction of an

interest conversion period.
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Example 6 Payments of $100, $200, and $500 are due at the

ends of years 2,3 and 8, respectively. Assuming an effective rate

of interest of 5% per annum, find the point in time at which

a payment of $800 would be equivalent: (1) by the method of

equated time, and (2) by an exact method.

1. By the method of equated time,

t̄ =
100 · 2 + 200 · 3 + +500 · 8

100 + 200 + 500
= 6 years.

2. The exact equation of value is

800vt = 100v2 + 200v3 + 500v8 ⇒ vt = .75236

which can be solved for t

t = −loge .75236
loge 1.05

= −−.28454
.04879

= 5.832 years
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Unknown rate of Interest

Four method to use in determining an unknown rate of interest

• Solve equation of value for i directly using a calculator with

exponential and logarithmic function.

• Solve equation of value for i by algebraic techniques.

• Use linear interpolation in the interest tables.

• Successive approximation or iteration.
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Example 7 At what interest rate convertible quarterly would $1000

accumulate to $1600 in six years.

Let j = i(4)/4 so that the equation of value becomes

1000(1 + j)24 = 1600 or j = (1.6)1/24 − 1 ⇒ j = .019776.

The answer is i(4) = 4j = .0791 or 7.91%.
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Example 8 At what effective rate of interest rate will the present

value of $2000 at the end of two years and $3000 at the end of

four years be equal to $4000.

An equation value is 4000 = 2000v2 + 3000v4 which can be

rewritten as

3v4 + 2v2 − 4 = 0.

So we have

v2 =
−2±

√
4 + 4 · 3 · 4
2 · 3

.

since v > 0, so v2 = −2+
√

52
6 = .868517 or

(1 + i)2 = 1.151388 and i = 0.0730 or 7.3%.
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Example 9 At what interest rate convertible semiannually would

an investment of $1000 immediately and $2000 3 years from now

accumulate to $5000 10 years from now.

Let j = i(2)/2 so that the equation of value becomes 1000(1 +
j)20 + 2000(1 + j)14 = 5000. Here we use linear interpolation in

the interest tables. Define

f(j) = 1000(1 + j)20 + 2000(1 + j)14 − 5000.

From the interest table, we found that f(.0300) =
−168.71 and f(0.035) = 227.17. Then performing a linear

interpolation

j = .0300 + 0.005
0 + 168.71

227.17 + 168.71
= .0321.

which gives i(2) = 2(.0321) = .0642 or 6.42%.
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Example 10 Obtain the answer to Example 9 to a higher level of

accuracy using iteration

From Example 9 we have

f(j) = 1000(1 + j)20 + 2000(1 + j)14 − 5000.

and the first approximation j = 0.0321. Note f(j) is an increasing

function of j > 0. We have f(.0321) = −6.114 and f(.0322) =
1.759.

We use a higher value than .0321 in order a sign change for f(j).
Performing another linear interpolation

j = .0321 + 0.001
0 + 6.114

1.759 + 6.114
= .03218.
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Cycling again with one more decimal place f(.03218) =
.18346 and f(.03217) = −.60420. Performing another linear

interpolating

j = .03217 + 0.0001
0 + .60420

.18346 + .60420
= .32178

Cycling again with one more decimal place f(.032178) =
.025919 and f(.032177) = −.052851. Thus.j = .032178,

which is accurate to six decimal places. So the more accurate

answer is

i(2) = 2(.032178) = 0.6436 or 6.436%.

The above procedure can be repeated as many times as necessary.
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Practical Examples

• Advertisement frequently seen in the newspapers quotes two

different rates on deposits, such as“7.91% rate/8.15% yield”

(i(4) = 0.0791 is equivalent i = 0.0815) and “8.00% interest

rate/8.30% annual yield” (i(12) = 0.0800 is equivalent i =
0.083)

• Mix of 360 day and 365 day years. Credits 6% compounded

daily which produces a yield of 6.27%.[
1 +

0.06
360

]365

− 1 = 0.0627.
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• It is important to distinguish between rates of interest and rates

of discount. The rate of “T-bills” (United States Treasury issues

Treasury bill ) are computed as rate of discount, on the other

hand longer-term Treasury securities are computed as rates of

interest.

• Rates of discount are encountered in short-term commercial

transactions. They are often computed by on a simple discount

basis.

• Credit cards have an interesting way of charging interest.

• Investors need to be careful to consider is a penalty for early

withdrawal.
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