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Abstract. Meshless collocation methods are often seen as a flexible alternative to overcome
difficulties that may occur with other methods. As various meshless collocation methods gain popu-
larity, finding appropriate settings becomes an important open question. Previously, we proposed a
series of sequential-greedy algorithms for selecting quasi-optimal meshless trial subspaces that guar-
antee stable solutions from meshless methods, all of which were designed to solve a more general
problem: “Let A be an M × N matrix with full rank M ; choose a large M × K submatrix formed
by K ≤ M columns of A such that it is numerically of full rank.” In this paper, we propose a
block-greedy algorithm based on a primal/dual residual criterion. Similar to all algorithms in the
series, the block-greedy algorithm can be implemented in a matrix-free fashion to reduce the storage
requirement. Most significantly, the proposed algorithm reduces the computational cost from the
previous O(K4+NK2) to at most O(NK2). Numerical examples are given to demonstrate how this
efficient and ready-to-use approach can benefit the stability and applicability of meshless collocation
methods.
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1. Introduction. Since they were first proposed, meshless collocation methods,
a.k.a. the Kansa method [19], have been used to solve many problems in science and
engineering. Consider a time-independent linear partial differential equation,

Lu = f in Ω ⊂ R
d and Bu = g on ∂Ω,

which can be formulated as a generalized interpolation problem by writing the equa-
tions as uncountably many simultaneous scalar equations λ[u] = fλ := λ[u∗] for all
λ ∈ Λ. Here, u∗ denotes the exact solution and the set of test functionals Λ is a
collection of both the differential L and boundary B operators. A functional λi ∈ Λ
corresponding to a point xi ∈ Ω is defined by the differential operator and function
evaluation, namely, λi = δxi

L; for xi ∈ ∂Ω, we have λi = δxi
B.

The unsymmetric collocation approach can then be specified by a radial basis
kernel Φ along with (XM , ΞN , cN ). The set XM ⊂ Ω specifies the M collocation
locations. The set of trial centers ΞN ⊂ R

d and a (variable [7, 8, 20]) shape parameter
vector cN ∈ R

N
+ determine the kernels’ positions and shapes to yield the set of trial

functions

{Φj = Φ(‖ · − ξj‖/cj) : ξj ∈ ΞN , cj = [cN ]j , 1 ≤ j ≤ N}. (1.1)

Selecting a set of collocation points XM is equivalent to discretizing Λ by a subset of
M functionals ΛM ⊂ Λ. Once the kernel Φ is fixed, the numerical expansion is then

u∗(x) ≈
N∑

j=1

ηj Φj(x) =

N∑

j=1

ηj Φ(‖ · − ξj‖/cj),
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in which the unknown coefficients η = (η1, . . . , ηN )T can be determined by collocating
the PDE at XM and “solving” the resultant M ×N system:

A(XM ,ΞN )η = b(XM ), (1.2)

with entries

[
A(XM ,ΞN )

]
i,j

= λi[Φj ],
[
b(XM )

]
i
= λi[u

∗], (1.3)

where xi ∈ XM for i = 1, . . . ,M and ξj ∈ ΞN for j = 1, . . . , N . The original Kansa
formulation [19] can now be seen as a special case under our generalized interpolation
settings: XM = ΞN with M = N and cN = c · 1 for some constant c > 0. If meshless
collocation methods are set up with some care, the resulting accuracy and efficiency
are usually satisfactory and promising. Moreover, researchers observed that tweaking
the Kansa method can improve accuracy and stability, for example, by collocating L
and putting more trial functions on boundary [24, 31], using variable shape parameters
[9, 20, 38], etc. Although the solvability of Kansa’s formulation was questioned by Hon
and Schaback [14], we showed that it is possible to find a proper trial space such that
the matrix in (1.2) has rank M for any linearly independent ΛM [27, 28]. Generally
speaking, the search for quasi-optimal meshless trial spaces can be categorized into
two types: the first involves determining the optimal shape parameter c by considering
ΞN fixed [4, 18, 32, 35], and the second aims to seek a suitable problem-oriented trial
subspace of a large trial space [15, 33] for the sake of stable computations. This paper
focuses on the latter.

Previously proposed trial subspace selection algorithms, a.k.a. adaptive greedy
algorithms, were iterative methods that built up non-singular subsystems of (1.2). In
each iteration, the subsystem is expanded by adding a pair comprised of a collocation
point and a trial center. First, a new collocation point associated with the largest
local residual is added to the selected set. Then, a new trial center is selected by
some other strategy, for example, by the determinant of the expanded matrix [27] or
by a primal/dual residual criterion [29]. This sequential expansion process continues
until the problem of ill-conditioning is detected. After K iterations, the algorithm
has a subsystem of (1.2) specified by collocation points XK ⊆ XM and trial centers
ΞK ⊆ ΞN . Thus, the algorithm found a K-dimensional trial subspace for K linearly
independent functionals. Using the submatrix specified by ΞK , an approximation to
the unknown solution η of (1.2) can be obtained by solving a well-conditioned M ×K
linear system A(XM ,ΞK)η = b in the least-squares sense [23] for computational
efficiency or the L∞ sense minimization [28] for convergence theory. The applications
of these algorithms include both direct problems [1] and inverse problems [39]; see
[36, 37] for problems with moving domains.

Example 1.1. This is a schematic example showing the basic idea of a sequential-
greedy algorithm. Consider the following matrix system:

Aη =




1 4 3
2 5 2
3 6 1


η =




2
4
6


 = b.

Suppose a 1× 1 subsystem with row-3 and column-2 has been selected, i.e., X1 = {3}
and Ξ1 = {2}. To expand the subsystem to 2 × 2, we first solve the subsystem
A(X1,Ξ1)η

(1) = b(X1). In this simple demonstration, we have [6]η(1) = [6] with

solution η(1) = 1. The local residual can be evaluated by µ(2) := Aη̂(1)−b = [2, 1, 0]T ,



A FAST BLOCK-GREEDY ALGORITHM 3

where η̂(1) = [0, η(1), 0] is the upsample vector from the current subspace to the whole

space such that η̂(1)(Ξ1) = η1. By a greedy criterion, we select row-1 and get a bigger
selected set X2 = {3, 1}. To complete the subsystem expansion, we have to select a
column. Let us use the intuitive determinant criterion [27] to complete the column
selection. The to-be-determined 2 × 2 matrix can be seen as a function of column
index A2×2(j) = A(X2,Ξ1 ∪ {xj}) for j = 1, 2, 3. Obviously, A2×2(2) is singular, as
column-2 has already been selected. Out of the two remaining candidates, e.g.,

[
1 4
3 6

]

︸ ︷︷ ︸
=A2×2(1)

or

[
4 3
6 1

]

︸ ︷︷ ︸
=A2×2(3)

,

we select the one with unsigned determinant closest to 1. In the actual implementa-
tion, one can use Cramer’s rule to compute A2×2(j) for all j. As |det(A2×2(1))| = 6
and |det(A2×2(3))| = 14, column-1 will be selected. The expanded 2 × 2 subsystem
now has rows X2 = {3, 1} and columns Ξ2 = {2, 1}. This completes one iteration of
a greedy algorithm. Since A2×2 is well-conditioned, the next iteration can be started.
�

The main drawback of the sequential approach is its high computational cost for
large K. Take an N × N system as an example; if a sequential-greedy algorithm
terminates in the full N steps, its complexity is O(N4). This happens if the original
linear system is well-conditioned, which is not straightforward to tell a priori without
computing all entries in (1.3). After checking the whole trial space, the greedy algo-
rithm returns the original system and all extra work spent on adaptivity is in vain. To
improve efficiency, we propose running greedy algorithms in block. In each iteration,
the algorithm attempts to double the dimension of the trial subspace. In Section 2,
we thoroughly describe the procedures in one iteration of the block-greedy algorithm
by the following four basic steps:

Step-1: Compute local residuals.
Step-2: Select rows to be added.
Step-3: Select columns to be added.
Step-4: Check condition number.

We also discribe motivations and reasons. As one can already surmise from Exam-
ple 1.1, the main challenge is to properly select multiple rows and columns in each
iteration. In Section 3, we use a pseudocode to summarize the proposed algorithm and
study its complexity and storage requirement. To better help readers utilize the pro-
posed algorithm, we demonstrate two novel applications after verifying the efficiency
and effectiveness of the block-greedy algorithm in Section 4.

2. Updates in block by primal/dual residual criterion. The basic princi-
ples of the proposed block-greedy algorithm and the sequential ones are analogous.
In this section, we will describe how to complete one iteration of a greedy algorithm
in block, which can be interpreted as a combination of Householder reflections (when
we call the built-in QR function) and the Gram–Schmidt process (when we use pro-
jection matrices). Some theorems that direct the actual implementation are reviewed
or proven.

Assume there are two (potentially very large) sets XM of collocation points and
ΞN of trial centers. Let A = A(XM ,ΞN ) ∈ R

M×N and b = b(XM ) ∈ R
M with

entries defined as in (1.3) denote the full matrix and right-hand side vector of the
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original system (1.2). We will soon see that only some entries of A and b are needed
for the iteration, and they can be computed on-the-fly. After completing the (ℓ− 1)st
iteration, the algorithm has built up a determined or overdetermined m(ℓ−1)×n(ℓ−
1) subsystem and a reduced QR factorization for A(Xm(ℓ−1), Ξn(ℓ−1)). In the ℓth
iteration, we aim to expand the subsystem from

A(Xm(ℓ−1), Ξn(ℓ−1))η
(ℓ−1) = b(Xm(ℓ−1)) for η(ℓ−1) ∈ R

n(ℓ−1) (2.1)

to

A(Xm(ℓ), Ξn(ℓ))η
(ℓ) = b(Xm(ℓ)) for η(ℓ) ∈ R

n(ℓ) (2.2)

such that the expanded system has twice as many rows and columns, i.e., 2m(ℓ−1) ≈
m(ℓ) ≥ n(ℓ) ≈ 2n(ℓ− 1).

For ease of readability, let us give an overview of the notation to come. We
simply write m = m(ℓ − 1) and n = n(ℓ− 1) to denote the sizes of the pre-expanded
subsystem. We use the prime notation to indicate that the update process of the
corresponding item is completed. For simplicity, we also assume that there are enough
unselected rows and columns to be chosen from. To expand the preselected sets of
m ≤ M collocation points and n ≤ N trial centers, denoted by Xm = Xm(ℓ−1) and
Ξn = Ξn(ℓ−1) respectively, we first add p ≈ m rows and then q . p columns to expand
the subsystem by selecting some appropriate subsetsXp ⊂ XM \Xm and Ξq ⊂ ΞN \Ξn

from the unselected points. The subscripts we use to expand the (ℓ − 1)st selected
sets to the ℓth are

(m,n)→ (m+ p, n)︸ ︷︷ ︸
Add rows

→ (m+ p, n+ q)︸ ︷︷ ︸
Add columns

=: (m′, n′).

The expanded ℓ-th subsystem then uses m′ = m(ℓ) collocation points in X ′ := Xm′ =
Xm ∪Xp and n′ = n(ℓ) trial centers in Ξ′ := Ξn′ = Ξn ∪ Ξq. For the corresponding
expansion of the submatrix, we use the following notation:

A1 := A(Xm,Ξn)→
[

A1

A2

]
= A3

︸ ︷︷ ︸
Add rows

→ [A3 A4] = A′

︸ ︷︷ ︸
Add columns

,

where A2 = A(Xp,Ξn), A3 = A(X ′,Ξn), A4 = A(X ′,Ξq), and A′ = A(X ′,Ξ′).
Throughout the section, ideas are presented as points selections so that we have a
geometric point of view. If one is only interested in the selection of a good set of
columns to span the column space of matrix A ∈ R

M×N , the right-hand side vector
b can be chosen arbitrarily, say as the one vector 1 ∈ R

M . Readers can interpret Xm

as the row index and Ξn as the column index respectively; see Example 4.1.

2.1. (Step-1) Compute local residuals. To solve a general interpolation sub-
problem and its dual problem in order to evaluate the primal and dual residuals at the
unselected collocation points and trial centers respectively.

The primal and dual residuals for a linear system with a rank M matrix A ∈
R

M×N and an arbitrary vector b ∈ R
M are built upon the following constrained

minimization problem,

minimize 1
2 η

Tη

subject to Aη = b,
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and the method of Lagrange multipliers, which is given in block form as

[
IN×N AT

A 0

] [
η

ζ

]
=

[
0
b

]
. (2.3)

In our context, A = A(XM , ΞN ) and b = b(XM ) as in (1.2).

With Xm and Ξn preselected from the (ℓ − 1)st iteration, the primal and dual
subsystems to (2.1) associated with these selected points are given by

{
A(Xm, Ξn) η

(ℓ−1) = b(Xm),

A(Xm, Ξn)
T ζ(ℓ−1) = −η(ℓ−1).

(2.4)

Since we assume m ≥ n, solving (2.4) (in the least-squares sense if m > n) yields two

vectors η(ℓ−1) ∈ R
n and ζ

(ℓ−1) ∈ R
m. To get a local approximation to (2.3), define

an upsampled vector η̂
(ℓ−1) ∈ R

N to be the extension of η(ℓ−1) with zeros patched
into entries associated with unselected trial centers in ΞN \ Ξn. The upsampled

ζ̂
(ℓ−1) ∈ R

M is defined similarly using the set Xm. The primal residual for (2.4) is
defined as

µ(ℓ) = Aη̂(ℓ−1) − b = A(XM , Ξn)η
(ℓ−1) − b(XM ) ∈ R

M . (2.5)

In the case of m = n, all the entries in the primal residual corresponding to the
selected collocation points Xm are zeros. This property no longer holds when m > n.
The dual residual is defined similarly as

ν(ℓ) = η̂
(ℓ−1) +AT ζ̂

(ℓ−1)
= η̂

(ℓ−1) +A(Xm, ΞN )T ζ(ℓ−1) ∈ R
N . (2.6)

We omit the less relevant details and refer readers to the original article [29]. The
following theorem is required for justifying our point selection strategies later.

Theorem 2.1 ([29]). The ith entry of the primal residual µ(ℓ) ∈ R
M (and the

dual residual ν(ℓ) ∈ R
N ) is a scaled distance between the approximate solution and

the ith hyperplane of the affine space containing the exact solution (and the Lagrange
multiplier).

In order to implement Step-1, we use the precomputed reduced QR factorization
of A(Xm, Ξn), which is available from Step-3 of the previous iteration, to solve (2.4)

for η(ℓ−1) and ζ(ℓ−1). As we shall only select points from the unselected points, we
only need to compute the primal and dual residuals at the unselected points. We
compute the primal residuals at the unselected collocation points XM \Xm by

µ
(ℓ)
|XM\Xm

= A(XM \Xm, Ξn)η
(ℓ−1)
n − b(XM \Xm) ∈ R

M−m. (2.7)

Similarly, instead of (2.6), the dual residuals at the unselected trial centers ΞN \ Ξn

are given by

ν
(ℓ)
|ΞN\Ξn

= A(Xm, ΞN \ Ξn)
T ζ

(ℓ−1)
m ∈ R

N−n, (2.8)

since η̂
(ℓ−1)
n has zero entries at ΞN \ Ξn by construction.
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2.2. (Step-2) Select rows to be added. To select a set Xp ⊂ XM \Xm with
p ≈ m collocation points based on the primal residual in (2.7).

The following theorem shows that adding more collocation points to expand the
m× n subsystem has minimal effect on the growth of the condition number.

Theorem 2.2. Let A ∈ R
m1×n and E ∈ R

m2×n with m1 ≥ n be two arbitrary
matrices. The condition number of the R

(m1+m2)×n row-augmented matrix satisfies
the following bound

κ

([
A
E

])
≤

(
σ2
1(E) + σ2

1(A)

σ2
n(E) + σ2

n(A)

) 1

2

=

(
1 + σ2

1(E)/σ2
1(A)

1 + σ2
n(E)/σ2

n(A)

) 1

2

κ(A).

Proof. Denote the row-augmented matrix by B. When the eigenvalues of BTB =
ATA+ETE ∈ R

n×n are ordered in a nonincreasing order, they satisfy [10, Thm 8.1.5]

λj(A
TA) + λn(E

TE) ≤ λj(B
TB) ≤ λj(A

TA) + λ1(E
TE)

for all j = 1, . . . , n, or equivalently

σ2
j (A) + σ2

n(E) ≤ σ2
j (B) ≤ σ2

j (A) + σ2
1(E),

the proposed upper bound can be derived from the inequalities associated with j = 1
and j = n. �

Theorem 2.2 can be applied to the two collocation matrices A1 := A(Xm; Ξn) and
A2 := A(Xp ,Ξn), which can be interpreted as two independent collocation processes
at Xm and Xp using the same set of trial functions centered at Ξn. We could be
dealing with collocation settings that are already ill-conditioned. As all the problem
parameters (such as the shape parameter, trial centers, etc) are identical, it can be
expected that the smallest and largest singular values of A1 and A2 are similar in
magnitude. Theorem 2.2 then suggests that the row-augmented matrix will still have
a condition number in the order of κ(A1).

Hence, Theorem 2.2 suggests that any approach for picking new collocation points
Xp at this stage is rather safe with respect to the condition number. Any bad selection
will only give us problems in later stages. Hence, we shall not work too much to select
a set of “perfect Xp” and will simply pick p ≈ m new collocation points such that
their primal residuals are well-separated.

Strategy 2.2.1. Select Xp ∈ XM \Xm such that the absolute primal residuals
corresponding to Xp are approximately floor

(
(M −m)/p

)
positions apart in the sorted

list of |µ(ℓ)|, defined as in (2.7).
Theorem 2.1 suggests that the new collocation points in Xp will not be closely

clustered. The whole set Xp of new collocation points will be added without further
checking and we have X ′ := Xm∪Xp of size m′ := |X ′| = m+p. By working with an
overdetermined subsystem, the extra rows can buffer any bad row selections. This is
a new low-cost feature that the previous sequential-greedy algorithms did not offer.
Computing a reduced QR factorization of A3 := A(X ′,Ξn) = Q3R3 completes Step-2.

2.2.1. QR update. It is not within the scope of this paper to explore QR
update algorithms, which were already studied, implemented, and tested (see, e.g.,
[11]). Nonetheless, it is possible to update the precomputed QR factorization of A1

to include the added collocation points and obtain A3 = Q3R3.
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Using the precomputed reduced QR factorization A1 = Q1R1 with Q1 ∈ R
m×n

and R1 ∈ R
n×n, the row-augmented matrix can be written as

A3 := A(X ′,Ξn) =

[
A1

A2

]
=

[
Q1

Ip×p

] [
R1

A2

]
.

By row pivoting A2 to the top, the zeros in R1 can speed up the householder QR
algorithm, i.e., due to the fact that the number of nonzero entries is constant in all
householder vectors instead of increasing in general cases. Performing another reduced
QR factorization without pivoting to the m′ × n matrix gives

[
A2

R1

]
= Q2R2 =

[
Qu

2

Ql
2

]
R2,

with the lower n × n part of Q2 denoted by Ql
2. Using a customized code to take

advantage of the sparsity can speed up this QR factorization. Combining with the
matrix decomposition above yields the desired reduced QR factorization for the row-
augmented matrix

A3 :=

[
A1

A2

]
=

[
Q1

Ip×p

] [
Ql

2

Qu
2

]
R2 =

[
Q1Q

l
2

Qu
2

]
R2 =: Q3R3. (2.9)

The orthogonal matrix Q3 should be constructed alongside R3 in the customized code;
otherwise, some extra work is needed to compute the matrix product Q1Q

l
2. When

this update procedure is implemented in MATLAB exactly as described without a
customized code, the runtime is almost identical to the time required to factor the
row-augmented matrix A3 from scratch. For this reason, we will not use QR update
in the proposed algorithm.

2.3. (Step-3) Select columns to be added. To select a set Ξc ⊂ ΞN \ Ξn of
qc > p candidates based on the dual residual in (2.8) and get a set Ξq ⊂ Ξc of q . p
trial centers by QR.

After Step-2, the expanded collocation center X ′ is kept fixed throughout the rest
of the iteration. In the pursuit more trial centers, we begin by adding an arbitrary
set Ξq to the subsystem in order to study its effect on the condition number. Let

P := Q3Q
T
3 ∈ R

m′×m′

denote the orthogonal projection matrix that projects onto the
column space of A3. Let Q4 ∈ R

m′×q and R4 ∈ R
q×q be a reduced QR factorization

of (Im′×m′ − P )A4, where A4 := A(X ′,Ξq) ∈ R
m′×q, i.e.,

(Im′×m′ − P )A4 = (Im′×m′ −Q3Q
T
3 )A4 = Q4R4. (2.10)

With Ξ′ := Ξn ∪ Ξq and n′ := n + q, the column-augmented matrix can now be
factorized as

A′ := A(X ′,Ξ′) = [A3 A4] = [Q3 Q4]

[
R3 QT

3 A4

R4

]
=: Q′R′. (2.11)

These steps are nothing but the standard (unmodified) Gram–Schmidt process in
block. The updated matrix Q′ = [Q3 Q4] ∈ R

m′×n′

has orthonormal columns by
construction. Thus, we obtain a QR decomposition for the new column-augmented
matrix A′.
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2.3.1. Growth of condition number. Finding upper bounds for condition
numbers has been an important topic for years, and there are two main types of theo-
rems based on either the Gersgorin disk [16] or arithmetic-geometric mean inequalities
[40]. Since the submatrix A3 gives us extra information about A′, we can prove tighter
bounds for column-augmented matrices within our context.

Theorem 2.3. Let A3 ∈ R
m×n3 and A4 ∈ R

m×n4 with n3 + n4 ≤ m be two
arbitrary matrices. Moreover, let Q3R3 = A3 and Q4R4 = (I − Q3Q

T
3 )A4 be a

reduced QR factorization. The condition number of the column-augmented matrix
[A3 A4] ∈ R

m×(n3+n4) satisfies the bounds (multiplicative-form)

κ([A3 A4]) ≤ max

{
1,
‖R4‖
σ1(A3)

, σn(A3)‖R−1
4 ‖

}
·
(
‖R−1

3 QT
3 A4‖+ 1

)2

κ(A3),

and (additive-form):

κ([A3 A4]) ≤
(
max

{
1,
‖R4‖
σ1(A3)

}
+
‖QT

3 A4‖
σ1(A3)

)

·
(
max

{
1, σn(A3)‖R−1

4 ‖
}
+ σn(A3)‖R−1

3 QT
3 A4R

−1
4 ‖

)
κ(A3).

Lemma 2.4. Let B and E be n× n matrices. The set of singular values of B is
{σ(B)} and similarly for E and BE. Then, for j = 1, . . . , n, we have

max{σn(B)σj(E), σj(B)σn(E)} ≤ σj(BE) ≤ min{σ1(B)σj(E), σj(B)σ1(E)}.

Proof. This lemma follows from the multiplicative property of the spectral norm
[17, Sec. 7.3, p.18]:

“IfB,CT ∈ R
m×n and k = min{m,n}, then σi+j−1(BC) ≤ σi(B)σj(C)

for i, j = 1, . . . , k and i+ j ≤ k + 1.”
By setting k = m = n and i = 1, we have

σj(BC) ≤ σ1(B)σj(C) for j = 1, . . . , n. (2.12)

The upper bound arises by combining with the inequality with i = 1, . . . , n and j = 1.
To obtain the lower bound, we can assume both σn(B) and σn(C) are strictly

positive; otherwise, the corresponding lower bound is just the trivial one. Suppose
σn(B) > 0; replacing B by B−1 and C by BC in (2.12) yields one of the lower bounds:
σj(B

−1BC) ≤ σ1(B
−1)σj(BC). The other part of the lower bound follows by argu-

ments similar to C−1. �

Proof [Theorem 2.3]. Denote R34 = QT
3 A4; then the column-augmented matrix

[A3 A4] has a reduced QR factorization:

[A3 A4] = [Q3 Q4]

[
R3 R34

R4

]
.

Decompose the upper triangular matrix by the following products:

R :=

[
R3 R34

R4

]
=

[
R3

R4

]

︸ ︷︷ ︸
=B

[
In3×n3

R−1
3 R34

In4×n4

]

︸ ︷︷ ︸
=C

. (2.13)
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Applying Lemma 2.4 (with j = 1), we have σ1(R) ≤ σ1(B)σ1(C). Since B is block
diagonal, we have σ1(B) = max{σ1(R3), σ1(R4)}. To complete proving a bound for
σ1(R), it remains to estimate the norm of

C :=

[
In3×n3

R−1
3 R34

In4×n4

]
=

[
In3×n3

In4×n4

]

︸ ︷︷ ︸
=B̃

+

[
0 R−1

3 R34

0

]

︸ ︷︷ ︸
=C̃

.

We use an SVD perturbation theory [10, Cor. 8.6.2]:
“If B̃ and B̃ + C̃ are in R

m×n with m ≥ n, then for j = 1, . . . , n

|σj(B̃ + C̃)− σj(B̃)| ≤ σ1(C̃) = ‖C̃‖2.”

By doing so, we know that |σ1(C) − 1| ≤ ‖R−1
3 R34‖. Together with the fact that

‖C‖ ≥ 1, we have a multiplicative upper bound for σ1(R),

σ1(R) ≤ max{‖R3‖, ‖R4‖} ·
(
‖R−1

3 R34‖+ 1
)
. (2.14)

By applying similar techniques [17, Sec. 7.3, p.16] on decomposition

R =

[
R3 R34

R4

]
=

[
R3

R4

]
+

[
0 R34

0

]
,

an additive upper bound can be found,

σ1(R) ≤ max{‖R3‖, ‖R4‖}+ ‖R34‖. (2.15)

Since both (2.14) and (2.15) hold in the 2-norm, these upper bounds for σ1(R) remain
valid with the weaker Frobenius norm.

By inverting (2.13) as

R−1 =

[
R−1

3 −R−1
3 R34R

−1
4

R−1
4

]
(2.16)

the following lower bounds for the minimum singular value of R hold in both the 2-
and the Frobenius norms:

σn(R) ≥
(
max{‖R−1

3 ‖, ‖R−1
4 ‖} ·

(
‖R−1

3 R34‖+ 1
))−1

,

σn(R) ≥
(
max{‖R−1

3 ‖, ‖R−1
4 ‖}+ ‖R−1

3 R34R
−1
4 ‖

)−1

.

The bounds for condition numbers in the theorem result directly from these bounds
on singular values. �

Example 2.1. Figure 2.1 gives two demonstrations for the bounds in Theo-
rem 2.3. The matrices used in (a) and (b) result from a Kansa discretization of,
respectively, a Poisson problem (by the multiquadric kernel) and an interpolation
problem (by the Gaussian kernel) in the unit square. Using a set of 10 × 10 reg-
ular data points, we denote both R

100×100 matrices as A′. The employed constant
shape parameters are fine-tuned so that the condition numbers of A′ fall to around
1.00(+16) := 1.00 × 1016. The matrices A3 ∈ R

100×50 are formed by 50 randomly
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Fig. 2.1. Comparisons of the bounds for condition numbers in Theorem 2.3 when column-
augmenting two matrices of sizes 100 × 50 and 100 × q arise from the meshless discretization of
(a) a Poisson problem and (b) an interpolation problem

chosen columns of A′. The matrices A4 ∈ R
100×q for q = 1, . . . , 50 are formed by ran-

domly chosen q columns out of the remaining 50 in A′. Figure 2.1 shows the condition
numbers of [A3 A4] ∈ R

100×(50+q) for various q. In both cases, the additive-form gives
a tighter estimate. �

The close agreement between the additive bound and the exact condition number
is promising, but it also reveals the potential risk when we attempt to select trial
centers in block. The bounds in Theorem 2.3 suggest that the growth of condition
numbers is proportional to a factor involving ‖R−1

4 ‖. Furthermore, evaluating these
bounds requires repeated computations of matrix-matrix products and norms, which
are too computationally intensive. We need to select new trial centers by some other
means.

2.3.2. Partition by dual residual. One of the benefits of using the dual resid-
ual is that it provides a cheap way to shortlist some potential candidates for new
trial centers. Furthermore, we can avoid using the geometry of ΞN and allow the
proposed algorithm to work on linear systems resulting from other utilizations. By
Theorem 2.1, spreading the candidates with respect to their corresponding dual resid-
uals ensures certain separating distances in between. Recall that p collocation points
were added in Step-2. By shortlisting a (modest sized) set of qc > p trial candidates,
we can employ more expensive algorithms to select the q . p finalists without hurting
the efficiency. We adopt the following strategy to select new trial centers.

Strategy 2.3.1. Select Ξc ⊂ ΞN \ Ξn such that the absolute dual residuals
corresponding to Ξc are approximately round

(
(N−n)/qc

)
positions apart in the sorted

list of |ν(ℓ)|, defined as in (2.8). Then, select a set Ξq ⊂ Ξc of q . p new trial centers
by a permuted QR factorization.

Example 2.2. We run a greedy algorithm on a linear system resulting from
applying the Kansa method with multiquadric kernels to solve a Poisson problem.
After solving the n = 1024 subproblems, the full set ΞN is partitioned according to
the dual residuals. The resulting partitions are shown in Figure 2.2. In any sequential-
greedy algorithm, a trial center associated with the largest dual residual in absolute
value will be selected and the algorithm can move on to the next iteration. In block
form, we attempt to select 1024 centers for the next iteration. It is obvious that
choosing those only from the high end will make the selection clustered in a small
region. �
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Top 25% 25%−50% 50%−75% Bottom 25%

Fig. 2.2. Schematic demonstration of partitioning trial centers by dual residuals.

Selecting Ξq ⊂ Ξc is now equivalent to selecting q columns out ofAc := A(X ′,Ξc) ∈
R

m′×qc . To do so, we first compute a permuted QR factorization:

(Im′×m′ − P )Ac = QcRcE
T
c , (2.17)

where P := Q3Q
T
3 is the same orthogonal projection used in (2.10). Now, pick the

set Ξq ⊂ Ξc to be the first q candidates according to the ordering in Ec. In matrix
notation, A4 consists of the first q columns of AcEc, e.g., A4 = AcEc [Iq×q 0]T , and
we can modify (2.17) to obtain a reduced QR factorization for

(Im′×m′ − P )A4 = (Im′×m′ − P )AcEc [Iq×q 0]T

= (QcRcE
T
c )Ec [Iq×q 0]T

= (Qc[Iq×q 0]T )([Iq×q 0]Rc [Iq×q 0]T ).

Hence, Q4 and R4 in (2.10) consist of the first q columns of Qc and the upper-left
q × q submatrix of Rc respectively. This brings us back on track, and we can get
A′ = Q′R′ by (2.11) to complete Step-3.

2.4. (Step-4) Check condition number. To check whether the extended sub-
matrix A′ is well-conditioned to allow further expansion.

After expanding the subsystem in both rows and columns, we need to check the
condition number of A′ = A(X ′,Ξ′). If A′ is ill-conditioned, we simply stop and return
Ξ′ in a sequential-greedy algorithm. The situation is more complicated in block form,
especially when q is large. Returning the whole selected set Ξ′ = Ξn ∪ Ξq could be
q − 1 too many trial centers in the worst case.

Suppose we aim to have κ(A′) ≤ 1/ε for some user-defined parameter ε, which
is usually set to the machine epsilon εmach. In this final step, we have to achieve two
objectives:

Objective 1: To estimate the condition number κ(A′) efficiently.
Objective 2: To select a large set ΞK ⊂ Ξ′ such that κ(A(X ′,ΞK)) ≤ 1/ε if

κ(A′) > 1/ε.
The block-greedy algorithm terminates based on the value of κ(A′), which should be
estimated somehow. A practical estimator does not always have to be more accurate
than the others. When the subsystem is well-conditioned, the algorithm will still go
on running even with an inaccurate estimate; say, a lousy estimate to κ(A′) = 100
with an error to a factor of thousands is still far below the tolerance. Accuracy
is required only when we need to terminate the algorithm. The upper bounds in
Theorem 2.3 are good estimators. However, they cost O(q3) to compute. To make
the proposed algorithm more efficient than its sequential predecessors, we want to
keep the monitoring cost down to O(q2) at most whenever we add q trial centers.
Remark: Step-3 is a numerically unstable Gram–Schmidt process, and if we use
QR updates in Step-2, it will gradually make κ(R′) < κ(A′). Recomputing QR
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from scratch in Step-2 can reintroduce orthogonality into the factorization and keep
κ(R′) ≈ κ(A′). Having said that, QR updates need not to be avoided completely. If
one tries to choose a basis out of a well-conditioned underdetermined matrix, then
the inaccurate R′ results from QR updates will work as well. If the matrix is ill-
conditioned, our numerical evidence suggests that the two condition numbers will
be off by about three orders of magnitude. For example, if one wants to stop the
algorithm when the condition number of A′ is around 1.00(+15), the tolerance for
κ(R′) should be about three orders of magnitude smaller.

2.4.1. Condition number estimators. The condition number of A′ in (2.11)
can be monitored by two norm estimators. To estimate κ(A′), we use a forward
algorithm to compute ‖R′‖ = ‖A′‖ and a backward algorithm for ‖R′−1‖ = ‖A′−1‖.

First, we modify the forward algorithm found in [13] to continuously record the
2-norms of all the principal minors of the triangular matrix R′. The algorithm runs
SVDs incrementally among all upper-left submatrices of R′ to approximate the norms
of all principal minors and the corresponding singular vector of R′. Despite their
high complexity, all SVDs are applied to small matrices with two columns only. For
R′ ∈ R

n′×n′

, we need n′ − 1 SVDs of 2 × j matrices, j = 2, . . . , n′. The forward
algorithm can also estimate ‖R′−1‖ if R′−1 is computed. Even with the inverse update,
e.g., (2.16), using R′−1 in the algorithm will lead to an extra O(n3+q3) overhead. We
will then end up with the same cost as using the upper bounds in Theorem 2.3. The
solution is to give up having the norms of all principal minors of R′−1. A backward
algorithm in [30], without modification, allows us to approximate ‖R′−1‖ using entries
of R′ with a cost of O(n′2). The idea of this algorithm is similar to the forward one
but was built upon backward substitutions. For this reason, we cannot collect any
information on the principal minors of R−1.

Combining these norm estimators, we can estimate κ(A′) = κ(R′) = ‖R′‖ ‖R′−1‖
after each subsystem expansion. This addresses the first objective. These norm
estimators can also help achieve the second objective. We know that κ(R3) < 1/ε,
and, therefore, the algorithm continued to the current iteration. If κ(R′) > 1/ε, we
are already in the right setting to start a root finding search:

• Let Tk be the first k × k block of R′. Define F (k) := ‖Tk‖‖T−1
k ‖ − 1/ε.

• Find K ∈ (n, n′) such that F (K) < 0 and F (K + 1) > 0, provided that
F (n) < 0 and F (n′) > 0.

We already have the values of all ‖Tk‖ in the memory. Evaluating F (k) for any
k ∈ (n, n′) is only subject to the estimation of ‖T−1

k ‖. Since the bisection search
must terminate after log2(n

′ − n) = log2 q steps, the cost for finding K is at most
O(q2 log2 q). Estimating the condition number has been a topic of interest for a long
time; see [12] for a survey. New algorithms are still appearing in the literature; see
[34] for an example. Readers can employ any new estimator into the block-greedy
algorithm to further improve its efficiency.

3. Implementation, complexity, and storage. We summarize a matrix-free
block-greedy algorithm with the pseudocode in Algorithm 1, in which only the neces-
sary entries in the matrix A are computed and stored. The stopping criteria include

• the largest absolute primal residual of the m′ × n′ subsystem (stop if < τ),
• the size of subsystem (stop if m′ = M or n′ = N), or
• the condition number of A′ (stop if κ(R′) > 1/ε and return the first K indices
of Ξ′ such that κ(A(X ′,ΞK)) ≤ 1/ε)

for some user-defined parameters τ, ε ≪ 1. MATLAB syntax is used for submatrix
operations in the pseudocode. Some extra conditions (in lines–14, 18, 21) were in-
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Decomposition/Operation Operation counts

Matrix-matrix product AB 2mnp

AT mn2

Inverse of triangular matrix T−1 n3/3

Full QR with pivoting QR = AE 3m2n+m3/3 (m ≤ n)

4m2n−mn2 + n3/3 (m ≥ n)

Reduced QR factorization QR = A 4mn2 − 4n3/3 (m ≥ n)

QR = AE 5mn2 − 5n3/3 (m ≥ n)

Reduced SVD factorization UΣV T = A 14mn2 + 8n3 (m ≥ n)

Add rows to A = QR Q̃R̃ = [AT BT ]T 4n2p+mn2

Table 3.1
Operation counts for some matrix decompositions and operations. A ∈ R

m×n, B ∈ R
n×p are

arbitrary, and T ∈ R
n×n is triangular.

cluded to keep track of the number of added rows, p, and columns, q, in order to
keep the subsystems’ dimensions within the size range of the input matrix A. The
implementation for estimating κ(R) (lines–25, 26) and the search for K (line–28) were
implemented as in Section 2.4.1.

Assume m,n, p, q are of the same order of magnitude, which we denote by k. The
ideas in Section 2 cover most of the lines inside the while-loop in Algorithm 1:

Step-1: Lines–11 to 12 work on A1 of size ∼ k × k.
Step-2: Lines–14 to 17 work on A3 of size ∼ 2k × k.
Step-3: Lines–18 to 23 work on Ac of size ∼ 2k × qc.
Step-4: Lines–25 to 31 work on A′ of size ∼ 2k × 2k.

Complexity counts in each line are performed carefully (with leading constant) ac-
cording to those listed in Table 3.1 and listed on the right-hand side of Algorithm 1. In
line–20, we assume that Ac is underdetermined to allow shortlisting of all unselected
trial centers. Altogether, the cost per iteration is

∼ 20k2qc + 28k3/3 +O(k2 +Mk +Nk),

in which M and N only appear in the lower-order terms.
Suppose that the block-greedy algorithm ceases to expand after selecting n′

columns and n′ is some power of 2. Once we choose a way to determine the number
of shortlisted columns qc, the total cost for the block-greedy algorithm to build up
subsystems of size k × k for k = 1, . . . , 2j , . . . , n′/2 can be obtained easily by the
following equalities:

log
2
(n′/2)∑

j=1

2j = n′ − 2,

log
2
(n′/2)∑

j=1

(
2j
)2

=
n′2

3
− 4

3
,

log
2
(n′/2)∑

j=1

(
2j
)3

=
n′3

7
− 8

7
.

First, if all unselected columns are included in the shortlist of each iteration, then the
total cost of running the block-greedy algorithm to select the final set Ξn′ is

∼ 20

3
Nn′2 − 32

21
n′3 +O(Mn′ +Nn′) for qc = N − k. (3.1)
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Algorithm 1 Block-greedy algorithm

1: function BlockGreedy(A, b, τ, ε)
2: Inputs: A ∈ R

M×N or entry-generator (x(i), ξ(j))→ [A]i,j , b ∈ R
M , τ, ε > 0

3: Initialize: k = 1
4: µ = b, find an index x(1) by the largest magnitude
5: Compute and store all entries of the row A(x(1), :)
6: ν = A(x(1), :), find an index ξ(1) by the largest magnitude
7: Compute and store all entries of the column A(:, ξ(1))
8: k = 1, Xsel = {x(1)}, Ξsel = {ξ(1)} ⊲ User can select starting Xsel,Ξsel

9: [Q,R] = qr( A(Xsel,Ξsel), 0)
10: while k < min(M,N) do
11: Solve dual linear system (2.4) by Q, R in memory ⊲ O(k2)
12: Compute µ and ν by (2.7)–(2.8) ⊲ O(Mk +Nk)
13: if max(|µ|) < τ then Break

14: Select Xp by Strategy 2.2.1
15: Compute and store all new entries of the rows A(Xp, :) ⊲ O(Nk)
16: Xsel ← Xsel ∪Xp

17: [Q,R] = qr( A(Xsel,Ξsel), 0 ) ⊲ ∼ 20k3/3
18: Select Ξc by Strategies 2.3.1 and 3.0.1
19: R12 = QT ∗A(Xsel,Ξc) and B = A(Xsel,Ξc)−Q ∗R12 ⊲ ∼ 2× 4k2qc
20: [Qc, Rc, E] = qr( B, 0 ) ⊲ ∼ 12k2qc + 8k3/3
21: q = min(min(M,N)− k, k)
22: Q← [Q, Qc(:, 1 : q)] and R← [R, R12(:, 1 : q) ; 0, Rc(1 : q, 1 : q)]
23: Ξsel ← Ξsel ∪ Ξq according to the permutation E
24: Compute and store all new entries of the columns A(:,Ξq) ⊲ O(Mk)
25: Estimate and store ‖R(1 : ℓ, 1 : ℓ)‖, 1 < ℓ ≤ q ⊲ O(k2)
26: Estimate ‖R−1‖ and κ(R) ≈ ‖R(1 : q, 1 : q)‖‖R−1‖ ⊲ O(k2)
27: if κ(R) > 1/ε then
28: Bisection to find K by computing ‖R−1(1 : ℓ, 1 : ℓ)‖, k < ℓ < q
29: Ξsel ← Ξsel(1 : K)
30: Break
31: k ← 2k
32: return Ξsel

If we pick qc = ρk for some constant ρ > 1, the overall cost must not exceed (3.1).
For small n′, the cost of the block-greedy algorithm is ∼ (4/3+20ρ/7)n′3+O(Mn′+
Nn′), which is an overestimate for large n′, as the number of unselected columns will
eventually be smaller than qc. Therefore, we can conclude that the overall complexity
of selecting Ξn′ is

∼ min

{
20

3
N − 32

21
n′,

(4
3
+

20ρ

7

)
n′

}
n′2 +O(Mn′ +Nn′) for qc = ρk. (3.2)

Last but not least, the bisection search for determining K ≤ n′ could cost up to
O(n′2 logn′) in the most unfortunate situation. The search for K will be slow when
A′ is ill-conditioned (K < M) and K is large (K ≈ M). In such a scenario, the
block-greedy algorithm has an O(M3) complexity and the search for K costs at most
O(M2 log2 M) operations, which does not affect the leading cost of the algorithm.
Therefore, by n′ < 2K, we can conclude that the cost of running Algorithm 1 is at
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most

∼ min

{
20

3
N − 64

21
K,

(8
3
+

40ρ

7

)
K

}
4K2 +O(MK +NK) for qc = ρk, (3.3)

or, by K ≤M ≤ N , simply O(NK2) as in the abstract.
Example 3.1. Let us analyze the worst case scenario that motivates the devel-

opment of the block-greedy algorithm. Suppose one begins with a well-conditioned
square N ×N system Aη = b. Without any a priori knowledge of the conditioning
of the linear system, solving it by the regularized-QR approach costs ∼ 10N3/3 for
a QR = AE factorization. In contrast to the sequential approach, which takes a
very large O(N4) work to select all N trial centers, the block-greedy algorithm takes
∼ (20/3 − 32/21)N3 ≈ 5N3 works to complete the same task. Here, we use the
complexity in (3.2) with n′ = N because there is no need to search for K. In other
words, the cost of adaptivity is reduced to just a fraction of the cost of finding a QR
factorization. �

Empirical evidence suggests that ρ ≥ 2 is sufficient to ensure the robustness
of Algorithm 1. By balancing the O(NK2) and O(K3) terms in (3.2) along with
the O(M2 log2 M) cost in the bisection search, we adopt the following strategy for
selecting the search size qc in each iteration.

Strategy 3.0.1. Select qc = N−k to search all unselected columns if M < 7N/9,
or otherwise qc = max(2, log10 M) k.

The total storage requirement of the block-greedy algorithm is slightly higher than
the sequential version in [29], which requires ∼ K(M +N) for storing the necessary
matrix entries (in lines–15 and 24) and an approximated matrix inverse, i.e., A′−1 in
our notation. Algorithm 1 needs the same storage for the entries of A and Q′. On
top of that, it needs extra storage for the K × K upper triangular matrix R′. The
memory needed to run the block-greedy algorithm is therefore

∼ K(M +N) +
1

2
K2 (storage).

A MATLAB script for the block-greedy algorithm is available for download.1 To
make use of the matrix-free feature, readers can modify the script according to the
comments within to generate matrix entries on-the-fly.

4. Numerical demonstrations. In this section, we will illustrate the efficiency,
quasi optimality, accuracy, and possible applications of the proposed block-greedy
algorithm. We present five examples, in all of which the block-greedy algorithm is
run with stopping tolerances τ = ε = εmach. The first example aims to compare the
performance and efficiency of the proposed algorithm and a permuted QR algorithm
in the problem basis selection for linear dependency. The other four examples focus
on the applications of the block-greedy algorithm to the original Kansa method. In
these examples, we do not apply any scaling to the collocation conditions for accuracy
improvement [26] and solve linear systems as in (1.2). The trial functions in (1.1) are
generated either by the multiquadric (MQ) or the Gaussian (GA) kernels. To avoid
confusion by using either one of the common RBF notations,

Φj = Φ(‖ · − ξj‖/c) = Φ(ǫ‖ · − ξj‖),

1See http://www.mathworks.com/matlabcentral/fileexchange/55342 or www.math.hkbu.edu.

hk/~lling/blockgreedy.m



16 L. LING

0 5 10 15 20
N (in 1000')

103

104

105

106
C

on
di

tio
n 

nu
m

be
r

Block-greedy
QR=AE
1st P.M.

(a)

0 5 10 15 20
N (in 1000')

0

2

4

6

8

10

12

R
un

tim
e 

(in
 s

ec
)

Block-greedy
QR=AE

(b)

Fig. 4.1. Example 4.1: (a) Condition numbers of various M × M matrices B formed by the
selected M columns out of A ∈ R

M×N with M = 1500 and 2000 ≤ N ≤ 20000 using the block-greedy
algorithm and a permuted QR factorization and (b) the respective computational times.
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Fig. 4.2. Example 4.1: Entries of B−1A with absolute values greater than 1, where B is

the M × M submatrix formed by the selected M columns out of A ∈ R
M×N with M = 1500 and

N = 10000, using (a) the block-greedy algorithm and (b) a permuted QR factorization.

we use a constant shape parameter c := 1/ǫ = 1, unless otherwise specified. Note
that these unscaled kernels are not optimized for any of our test problems. It is
consistently observed in both two and three dimensions that more unscaled MQ than
GA trial functions are needed in the presented examples; however, this is not numerical
evidence for comparing the performance of the MQ and GA kernels.

For all PDEs in two dimensions, the corresponding right-hand side functions and
boundary data are generated by either of the following exact solutions:

• Full peaks : peaks(3x,3y) from MATLAB.
• Zoom-in peaks : peaks(x,y) from MATLAB.

All scattered data are generated by the Halton sequences; see Figure 2.2. In all of
the examples, we report numerical errors in the L∞ norm, which are estimated by
sufficiently dense sets of evaluation points.

Example 4.1. To give readers a glimpse of the efficiency, we first consider the
standard problem of basis selection for linear dependency. This test is all about the
column selection strategies, and the norm estimators in Section 2.4.1 have no role to
play. Reported runtime in MATLAB is obtained from an Intel-i7 desktop computer.

The experiment is set up as follows: a sequence of matrices A ∈ R
M×N with a

fixed number of rows M = 1500 and various number of columns 2000 ≤ N ≤ 20000 is
generated by the MATLABfunction rand with the random number generator reset,
i.e., rng(0) to be specific. The goal is to select M columns out of A and we denote
the selected submatrix by B ∈ R

M×M . Without any selection, if we take the first
M ×M block of A as B, which is fixed by construction, the condition number of
B is 4.7513(+5). For any good selection, the condition number of B is expected
to be small. Figure 4.1(a) compares condition numbers of the selections, κ(B), for
two different matrices B selected by the proposed block-greedy algorithm and by the
MATLABcommand qr command respectively. As seen, the selection qualities of the
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block-greedy algorithm are highly competitive with the results from QR. With M
being fixed, the block-greedy algorithm requires a constant O(M3) time, whereas the
QR factorization of an underdetermined matrix requires an O(M2N) linear time in
N ; see the actual run times in Figure 4.1(b).

In [22], it is shown that, for any θ > 1, it is possible to select M columns of A to
form a submatrix B, such that the absolute values of all entries of B−1A are less than
or equal to θ, in polynomial time in M and N . Any entry in B−1A that is greater
than 1 in absolute value indicates the corresponding column is lying outside the par-
allelepiped formed by the columns of B. What we show in Figure 4.2 is the sparsity
pattern of such entries with the submatrix B selected by the block-greedy algorithm
and the MATLABcommand qr. The maximum magnitudes of these entries are 1.266
and 1.148 in the block-greedy and QR algorithms respectively. For comparison, the
maximum is 67.31 if we simply pick B by the first M ×M block of A. For these
measures, the QR algorithm yields a slightly better column selection (i.e., a bigger
parallelepiped) but bears a higher computational cost. If we allow the block-greedy
algorithm to search over all unselected columns to find new columns, the resulting
maximum entry in B−1A will drop to 1.059 in absolute value with a trade-off of higher
computational cost. �

Example 4.2. This experiment aims to demonstrate that the greedy algorithms
with primal and dual residuals (2.5)–(2.6) are more robust when run in block as
proposed than sequentially as in [29]. The improvement in robustness is due to the
error buffer for bad collocation point selections; i.e., the block-greedy algorithm uses
more rows than columns in its construction of subsystems. To study the difference
in convergence and accuracy, we solve the Poisson equation with Dirichlet boundary
conditions in Ω = [−1, 1]2 by the original Kansa method with the MQ kernel. To
keep our numerical results easily reproducible, the tests are run with M = N =
62, 112, . . . , 1012 regular grids.

Figure 4.3 shows the observed results for two different exact solutions: the zoom-in
peaks (top) and the full peaks (bottom). In Figures 4.3(a)–(b), we show the numerical
errors against increasing

√
N . For each N , the matrix in the collocation system (1.2)

are identical for both exact solutions. Yet, the observed convergence rates are rather
different. Figures 4.3(c)–(d) show the numbers of trial centers, K, being selected, and
Figures 4.3(e)–(f) show the two numerical solutions for N = 312 and the selected trial
centers by the block-greedy algorithm.

As both the block- and the sequential-greedy algorithms are built upon the same
greedy criterion, their performances are identical for small N when the linear systems
are still well-conditioned. As N increases, with a fixed shape parameter c = 1, the
linear systems soon suffer from the problem of ill-conditioning. Greedy algorithms are
designed to deal with such situations by selecting a subspace from a given trial space
to yield a well-conditioned subsystem. In this sense, the block-greedy algorithm is
doing a better job by selecting more trial centers and, hence, a larger trial subspace.

Also note that the number of selected columns K is due to the properties of
the given trial spaces. The fact that the growth of K stagnates for large N in Fig-
ures 4.3(c)–(d) can be interpreted as follows: the maximum dimension of a “well-
conditioned” trial space is around K = 880 for the unscaled MQ kernel centered on
a set of quasi-uniform trial centers in the unit square domain (repeating the same
test with the GA kernel, we will see that the numbers of selected GA trial functions
stagnate at around K = 160). The convergence profiles with respect to

√
N in Fig-
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Fig. 4.3. Example 4.2: (a)–(b) Convergence profiles, (c)–(d) the numbers of selected trial
centers of the block- and sequential-greedy algorithms, and (e)–(f) selected trial centers by the block-
greedy algorithm on numerical solutions.

ures 4.3(a)–(b) are no longer purposeful after the fill distances of the selected trial
centers ΞK stop reducing with increasing N . More importantly, by using the block-
greedy algorithm, the numerical approximations can be obtained in O(NK2) works
instead of O(N3). Computational cost only increases in linear time with respect to
the original problem size. �

Example 4.3. It has long been known that the performance of meshless meth-
ods, particularly those using global kernels, depends heavily on the choice of the
shape parameter. For quite some time, researchers have been trying to overcome this
problem by finding either the optimal shape parameter or the data/geometry-driven
variable shape parameter. Even though our approaches are very different in nature,
our block-greedy algorithm is similar to various stable evaluations of GA kernel sys-
tems [2, 3, 5, 6] in the sense that all methods try to safeguard the solution of severely
ill-conditioned linear systems from being numerical garbage if one picks a “bad” shape
parameter.
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Kernel c K, out of 961 L∞ error

MQ 2 251 8.6928(-5)

1 813 5.4408(-5)

0.5 961 0.0039

GA 2 77 0.2747

1 163 1.6022(-8)

0.5 413 1.7666(-5)
Table 4.1

Example 4.3: Accuracy of adaptive meshless collocation methods with constant shape parameters.

Kernel c K, out of 961 L∞ error

MQ (1/2, 2) 859 7.3448(-7)

(1/3, 3) 894 5.6504(-7)

(1/4, 4) 920 1.4412(-6)

GA (1/2, 2) 385 2.0364(-11)

(1/3, 3) 574 2.5763(-10)

(1/4, 4) 673 7.6422(-10)
Table 4.2

Example 4.3: Accuracy of adaptive meshless collocation methods with uniformly random shape
parameters.

Let us see what happens if we employ the Kansa method to the following problem:

△u+ [1, 1]T · ▽u+ 5u= f in Ω = [−1, 1]2,
∂nu= g1 on Γ = {(x, y) : x ∈ [−1, 1], y = 1} ,

u= g0 on ∂Ω \ Γ .

(4.1)

Let the zoom-in peaks be the exact solution to (4.1). Using a set of M = N = 961
scattered data and different shape parameters c = 0.5, 1, 2, the resulting errors are
shown in Table 4.1. Both kernels have the potential to yield highly accurate results
whenever they are fed with some appropriate shape parameters. More than that,
a just-right parameter can also achieve high accuracy with a small number of trial
functions. However, a bad one (e.g. the peaky MQ kernel with c = 0.5) uses up all
provided trial centers and yields a less accurate numerical approximation.

One may try to pick a good shape parameter based on the errors in Table 4.1; say,
the optimal c are around 1.5 and 0.8 for the MQ and GA kernels respectively. Just how
hard is it to find the optimal shape parameter, which literally depends on everything
in the problem? Even with all of the work from collecting the data, we say it is
impossible. Using elementary statistical arguments, if we can use an interval estimate
instead of a point estimate, then we can start talking about confidence interval and so
on. Besides empirical evidence and luck, we now have a reliable adaptive block-greedy
algorithm. Suppose we make an empirical guess that both optimal parameters are
inside an interval (1/c, c). Without using the geometry of the scattered data, we take
an even more controversial approach and assign shape parameters randomly. This is
more or less like a variable shape parameter approach, in which different trial centers
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Fig. 4.4. Example 4.3: Selected trial centers and shape parameters in meshless collocations
with random shape parameters.

use kernels with different scales. Such settings immediately destroy the reproducing
kernel Hilbert space of the kernel and send us away from all theoretical support.
Hopefully, the block-greedy algorithm can deal with this.

Table 4.2 shows the results of using the MQ and GA kernels with uniformly
random shape parameters. The random shape parameter approach results in good
approximations that are even more accurate than those obtained by any constant
shape parameter in the range. Figures 4.4(a)–(b) show the numerical solutions ob-
tained by the MQ and GA kernels with random shape parameters in [0.5, 2]. The
selected MQ and GA trial centers and the corresponding shape parameters (in the z-
axis) are shown in Figures 4.4(c)–(d). Apparently, the block-greedy algorithm prefers
peaky trial functions (small c) in general. From Figures 4.4(e)–(f), which are the
projections of Figures 4.4(c)–(d) onto the xy-plane, we can also see that flatter trial
functions (large c) are more favorable near the boundary.

To ensure that this is not a coincidence, Figure 4.5 demonstrates the accuracy of
the same test on increasing numbers of scattered data. For each set of scattered data,
we run the test for 10 sets of random shape parameters generated by different seeds,
i.e. rng(SD) with SD = 0, . . . , 9. The convergence behavior and the trend in numbers
of selected trial centers are indeed very similar to the constant shape parameter case
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Fig. 4.5. Example 4.3: Convergence profiles and the numbers of selected trial centers for mesh-
less collocations using multiquadric (MQ) and Gaussian (GA) kernels with random shape parameters
in [0.5, 2].
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Fig. 4.6. Example 4.4: Adaptively generated data points within the block-greedy algorithm by
Voronoi diagram.

when compared with Figure 4.3(a)–(b). Again, we can see an improvement in accu-
racy by a few orders of magnitude. We hope that these observations will open up a
new research direction2 but we shall not proceed further in this work. �

Example 4.4. In this example, we want to demonstrate some possibilities for
how one can tweak the block-greedy algorithm to yield a system-free algorithm; i.e.
we run the block-greedy algorithm without prefixing the linear system (1.2). Instead
of starting the block-greedy algorithm with fixed sets of collocation points and trial
centers, we start Algorithm 1 with small sized XM and ΞN (i.e., a small original linear
system) but generate more points whenever we need more unselected points.

To expand XM and ΞN on-the-fly, we need to generate new distinct points that
are not too close to the existing point sets. Voronoi diagrams are designed to have
this desired property. We can consider the points in Figure 4.6(a) as either set of
the preselected points and then compute the Voronoi diagram as in Figure 4.6(b).
Finally, we add in all the vertices of the diagram to form a new data set. As seen in
Figure 4.6(c), some new points are clustered and we will let the block-greedy algorithm
deal with the problem.

As a demonstration, we employ the GA kernel to solve the PDE in (4.1) with
Dirichlet boundary conditions in an amoeba shape domain whose boundary is given
in polar form by

r(θ) = exp(sin θ) sin2 2θ + exp(cos θ) cos2 2θ.

We take the zoom-in peaks to generate the boundary data. Figure 4.7 shows the

2For readers’ information, the MQ kernel with random shape parameter can achieve high accuracy
with many fewer trial functions if the parameter range is in the form of (ǫ, c) with 1 ≈ ǫ ≪ c.
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expansion process of the sets of all collocation points XM (left) and trial centers
ΞN (right). In the first row, we show the identical set of 53 points that is used to
start the block-greedy algorithm. At first, the algorithm runs exactly as described
in Algorithm 1. After a few iterations, when the block-greedy algorithm attempts to
add in a majority of the unselected points, two Voronoi diagrams are drawn based
on the selected collocation points and trial centers respectively. By adding in the
vertices of these diagrams, both sets of unselected points are expanded; see the second
row in Figure 4.7 for the results of one such expansion, in which all the selected
points are labelled black. Since the block-greedy algorithm builds up overdetermined
subsystems, we see more points in XM than in ΞN after expansion. The process goes
on until ill-conditioning is detected as in Algorithm 1. The resulting numerical solution
uses 203 selected GA trial functions and has an error of 1.1733(-7). Figure 4.8(a)
shows the resulting error profile. For comparison, running the system-free block-
greedy algorithm with the MQ kernel in the same setting generates a final set of
1122 trial centers ΞN . Figure 4.8(b) shows the error profile of the resulting numerical
solution using 495 selected MQ trial functions.

Although the system-free approach is very preliminary, this extra level of adap-
tivity will be beneficial to problems in complicated domains and higher dimensions
[21, 25] by generating points wherever necessary and by further reducing the compu-
tational cost. �

Example 4.5. Our last example will illustrate how meshless collocation methods
can benefit from the block-greedy algorithm. We solve the three-dimensional modified
Helmholtz problem with unit wave number subject to Neumann boundary conditions
in the Dupin cyclide defined by the implicit representation of

(x2 + y2 + z2 + b2 − d2)2 − 4(ax− cd)2 − 4b2y2 = 0,

with a = 2, b = 1.9, c =
√
a2 − b2 and d = 1. We use z*peaks(x,y) as the exact

solution to generate the Neumann data. Data points on the surface were simply
generated by some parametric formulas [x, y, z](θ, φ) with regular data in the (θ, φ)-
space; that is, [x, y, z] is non-uniform on the surface. Using the GA kernel and the
standard setup procedures for the Kansa method, we get linear systems as in (1.2).
The unknown coefficient η is solved by mldivide of MATLAB(without adaptivity)
and by the block-greedy algorithm. In Figure 4.9, we show a sequence of error profiles
with a selected number of trial functions, N . In each row of Figure 4.9, the colors of
both surfaces are scaled to range from 0 to the maximum error of the non-adaptive
numerical solution. The maximum error of the numerical solution obtained from a
smaller trial subspace selected by the block-greedy algorithm is labelled in the color
bar. Generally speaking, numerical approximations are more accurate with the block-
greedy algorithm in place.

The convergence rate of the non-adaptive solutions is monotonous. Ignoring the
non-uniformity of data locations, the errors reduce at the rate of N−3.5. In contrast,
the adaptive solutions converge in a staircase pattern. As N increases from 1318
to 4237, the errors reduce at the rate of N−4.5. But the numbers of selected trial
functions do not always go up with N . For N = 6156, the block-greedy algorithm
selects fewer trial functions, but the resulting accuracy remains similar. Nonetheless,
the convergence pattern resumes as the trial space enlarges; see N = 9365. What
happens within this convergence test is not trivial. We believe that the non-uniform
data distribution has some influence on the approximation powers of the trial spaces.
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Fig. 4.7. Example 4.4: Schematic demonstration of generating the sets of (left) collocation
points and (right) trial centers on-the-fly.
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(a) (b)

Fig. 4.8. Example 4.4: Error profiles of numerical approximations obtained by a system-free
Kansa method with (a) the unscaled GA kernels and (b) the unscaled MQ kernels.

Note that it is more appropriate to measure the convergence of the adaptive solutions
with K instead of N . Using the complexity count in (3.3), it costs O(NK2) to select
K out of N trial functions. So, the cost of selecting “1947 out of 6156” is indeed
slightly lower than “3359 out of 4237.” In terms of the complexity, the convergence
of this example of an adaptive-Kansa method is monotonous. �

5. Conclusion. We proposed a block-greedy algorithm to select a large set of
K columns out of any given M ×N matrix, which is of full rank, but potentially ill-
conditioned, so that the resulting M ×K submatrix formed by the selected columns
is well-conditioned. The main improvements over the previously proposed algorithms
are the great reduction in computational cost and the consistent selection power. The
complexity of the block-greedy algorithm is at most O(NK2); see (3.2) and (3.3) for
detailed estimates. The cost of adaptivity is now comparable to the costs of direct
methods. When N ≫M , the cost of the proposed algorithm becomes O(M3), making
it an attractive alternative to the problem of basis selection out of a huge spanning set.
The most expensive subroutines in the block-greedy algorithm are QR factorizations
and matrix-matrix multiplications, both of which can be carried out in parallel. Thus,
the block-greedy algorithm is already parallelizable to some extent, but an adequate
version for large scale applications remains unexplored.

We have five numerical examples in this paper. Besides verifying the robust-
ness and numerical performance of the block-greedy algorithm, a three-dimensional
demonstration is included to show the benefit of employing the proposed algorithm
with meshless collocation methods. It also ensures readers that the block-greedy al-
gorithm works in regular domains as well as complicated ones in three dimensions.
We hope that our numerical demonstrations can open new research discussions and
possible applications. In particular, we show how the block-greedy algorithm can suc-
cessfully deal with meshless collocation systems with random shape parameters and
yield great improvements in accuracy. In addition, we demonstrate that another level
of adaptivity can be added to create a system-free algorithm, in which linear systems
are generated on-the-fly. Despite being presented separately, it is straightforward to
use random shape parameters in a system-free algorithm. However, such an ad hoc
combination does not yield further improvement in accuracy and, hence, is omitted
from this paper. It is our future research topic to properly incorporate these concepts.
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Without adaptivity By block-greedy algorithm

Using 1295 out of 1318 trial functions

Using 3097 out of 3456 trial functions

Using 3359 out of 4237 trial functions

Using 1947 out of 6156 trial functions

Using 3613 out of 9365 trial functions

Fig. 4.9. Example 4.5: Numerical errors in solving a modified Helmholtz problem with Neu-
mann boundary with various numbers of GA trial function: (Left) Using all the trial functions and
(Right) Using a subset selected by the block-greedy algorithm.
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