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Abstract A meshless kernel-based method is developed to solve coupled second-
order elliptic PDEs in bulk domains and surfaces, subject to Robin bound-
ary conditions. It combines a least-squares kernel collocation method with a
surface-type intrinsic approach. Therefore, we can use each pair for discrete
point sets, RBF kernels (globally and restrictedly), trial spaces, and some
essential assumptions, for the search of least-squares solutions in bulks and
on surfaces respectively. We first give error estimates for domain-type Robin-
boundary problems. Based on this and existing results for surface PDEs, we
discuss the theoretical requirements for the employed Sobolev kernels. Then,
we select the orders of smoothness for the kernels in bulks and on surfaces.
Lastly, several numerical experiments are demonstrated to test the robust-
ness of the coupled method for accuracy and convergence rates under different
settings.
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1 Introduction

In recent years, coupled surfaces (or interfaces) and bulk partial differential
equation (PDE) models have been widely used in many applications. Exam-
ples include characterization of electrospun membranes [17], proton diffusion
along biological membranes [15], bulk mediated surface diffusion [3], and a
topological insulator [9] in material science. Most of these can be reduced to a
basic problem coupling bulk and surface elliptic PDEs, subject to Robin-type
boundary conditions.

In [7], a finite element method (FEM) using two trial spaces was proposed:
a polyhedral approximation was employed in the the bulk domain, whereas
piecewise polynomial boundary faces were used on the surface. A cut finite
element method that uses continuous piecewise linear elements defined in both
the bulk domain and the surface can be found in [2]. In [1], one can find a diffuse
domain method for solving coupled bulk-surface PDEs. The method extends
the systems into a larger domain, subject to additional terms to approximate
the original boundary, in order to yield numerical solutions.

In this work, we propose a bulk-surface meshless collocation method by
combining the domain and surface-type approaches respectively in [4,6]. The
latter method is intrinsic to surface without extension to narrow domains for
embedded PDEs used in [5,11–13,18,19]. The coupled systems introduced in
Section 2. Section 3 presents two types of preliminary settings for discretiza-
tion and error measurement in terms of the bulk PDE and surface PDE re-
spectively. In Section 4, we provide convergence property of weighted least-
squares solutions for solving general second-order elliptic bulk problems with
Robin boundary conditions. Section 5 gives the implementation details of the
proposed method with oversampling for a system of bulk-surface equations.
Besides, we discuss error estimates under some theoretical requirements of ker-
nels for the coupled PDEs. In Sections 6, we run several numerical experiments
to test our methods by utilizing oversampling conditions, various smoothness
orders of kernels and discretized settings for bulks and surfaces. Lastly, we
demonstrate simulations by imposing different source terms.

2 Coupled bulk-surface elliptic PDEs

Initially, we require smoothness assumptions in the problem domain and
its boundary for error estimates being discussed in Sections 4 and 5, as below.

Assumption 1 (Smoothness of domain and boundary). We assume that the
bounded smooth domain Ω in Rd has a closed, connected and complete bound-
ary S of dimensions dS = d − 1. Let Ω be Lipschitz continuous and satisfy
an interior cone condition [6, Assumption 2.1], and S is of class Cµ+1 for
some integer µ with bounded geometry and satisfies a boundary regularity in
[4, Assumption 1].
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A second-order elliptic PDE coupled in the bounded domain Ω and on
the surface S is in the form of

−∆uB + uB = fB , in Ω, (1)

(αuB − βuS) + ∂nuB = gS , on S, (2)

−∆SuS + uS + ∂nuB = fS , on S, (3)

for some constants α, β > 0. The subscripts B and S respectively indicate the
bulk domain and the boundary used for the coupled equations. The functions
in (1)–(3) are uB : Ω → R and uS : S → R. The source terms fB and fS are
given in Ω, and gS is on S. Generally, gS = 0 is set as in [1,2,7].

In (1), ∇ and ∆ denote the standard gradient and the Laplace operator
in Rd respectively. Let n be the unit outward normal vector on S, and the
normal derivative in (2) is ∂n := n · ∇. Based on the identity matrix Id of
size d× d, the surface gradient ∇S is defined by ∇S := (Id −nnT )∇, and the
Laplace-Beltrami operator is ∆S := ∇S · ∇S .

3 Discrete settings, kernels and trial spaces

We will introduce discrete settings, kernels and trial spaces defined in Ω
and on S respectively.

3.1 Discrete settings

For some region Π ∈ {Ω,S} and given any discrete set of points Ξ ⊂ Π,
let distΩ := ‖ · ‖2 and distS be the Euclidean and geodesic measures in Ω and
on S correspondingly. The fill distance hΞ and the separation distance qΞ are
defined as

hΞ := sup
ζ∈Π

inf
η∈Ξ

distΠ(ζ, η) and qΞ :=
1

2
inf

ηi 6=ηj∈Ξ
distΠ(ηi, ηj). (4)

The mesh ratio of the set Ξ is defined as ρΞ := hΞ/qΞ .

3.2 Kernels

In this work, we require two kinds of kernels: bulk (or global) kernels
ΦµB : Rd × Rd → R of smoothness order µB used in bulks, and surface (or
restricted) kernels ΨµS : S × S → R of order µS on surfaces S.

The bulk kernel ΦµB needs to be symmetric positive definite and its Fourier

transform Φ̂µB satisfies the following decay condition:

Φ̂µB (ω) ∼ (1 + ‖ω‖22)−µB , (5)

for all ω ∈ Rd. In this case, ΦµB can reproduce the standard Hilbert space
HµB (Ω) provided that Ω is smooth enough if µB > d/2. Two examples are the
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standard Whittle-Matérn-Sobolev kernels [14] and the Wendland compactly
supported kernels [21].

We can suppose that the surface kernels ΨµS , by restricting ΦµB satisfying
(5) on S, take the form of

ΨµS ( · , · ) := ΦµB ( · , · )|S×S , (6)

which reproduces HµS (S) with µB = µS+codim(S)/2 > d/2, see [4, Assump-
tion 4] and [8,16].

3.3 Bulk and surface trial spaces

To derive some collocation methods for (1)–(3), we respectively distribute
scattered points, namely trial centers and collocation points, both in the do-
main and on the boundary. With subscripts Ω and S indicating regions, we
employ two sets of centers: ZΩ ⊂ Ω and ZS ⊂ S, and another three sets of
collocations: XΩ ⊂ Ω and YS ⊂ S for the boundary condition (2), and XS
for the surface equation (3). The points in sets X and Y are used to provide
collocation conditions in the numerical least-squares solutions in (17). The
centers in set Z are for defining some RBF finite-dimensional spaces, in which
we seek for solutions in (9) and (10). Together, we yield resultant matrices of
size (nX + nY )× nZ .

We usually set ZS = YS . Besides, we also need some assumptions for all
these point sets as below.

Assumption 2 For any region Π ∈ {Ω,S}, let X = {x1, . . . ,xnX} ⊂ Π
and Y = {y1, . . . ,ynY } ⊂ S be two sets of collocation points, and Z =
{z1, . . . ,znZ} ⊂ Π be the set of trial centers, respectively. We assume all
of them are quasi-uniform, that is, they satisfy

qΞ ≤ hΞ ≤ ρΞqΞ , Ξ ∈ {X,Y, Z} (7)

for some constants ρΞ ≥ 1, and

hZ ≤ γΞ′hΞ′ , Ξ ′ ∈ {X,Y } ⊂ Π, (8)

with Z ⊂ Ω for some γΞ′ > 1 so that Z is denser than Ξ ′.

The original Kansa method only requires one set of centers, i.e., γΞ′ = 1.
In this work, we focus on oversampling conditions, i.e., γΞ′ > 1, that yield
overdetermined resultant matrices. The quasi-uniform property is needed for
all scattered points both in our theoretical analysis and in numerical simula-
tions.

Based on trial centers in ZΩ or ZS and smooth kernels ΦµB or ΨµS defined
in Section 3.2 for bulk domains and surfaces, we can give the following trial
spaces correspondingly for interpolation theories to apply.

Firstly, if we solely solve the second-order elliptic problem (1)–(2) in the
bulk domain, we can seek numerical approximations from the bulk trial space of
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translation-invariant kernels ΦµB centered at some set of trial centers ZΩ ⊂ Ω
given by

UZΩ ,Ω,ΦµB := span{ΦµB
(
· − zj

)
| zj ∈ ZΩ}. (9)

Secondly, when just looking for a numerical solution to the surface PDE (3),
we will analyze it in the surface trial space

UZS ,S,ΨµS := span{ΨµS
(
· − zj

)
| zj ∈ ZS}. (10)

for ZS ⊂ S by using surface-restricted kernels ΨµS in (6).

4 Convergence result for bulk PDEs with Robin boundary
conditions

In this section, we will consider

LuB = fB , in Ω,

BuB = gS , on S, (11)

where L is a general second-order strongly elliptic operator in Ω, and B is
a Robin boundary operator. The subscript of uB indicates that the function
corresponds to the bulk PDE (11), and subscript B in fB or S in gS infers the
correspondence to the bulk or the surface in the PDE.

Assumption 3 Assume that L in (11) is second-order strongly elliptic with
coefficients in WµB−2

∞ (Ω), and coefficients of the Robin boundary operator B
belongs to WµB−1

∞ (S) on S of class CµB . Also, we assume that functions fB
and gS are smooth enough to admit a classical solution u∗B ∈ HµB (Ω) to (11)
for some µB ≥ 2.

Since these two operators are bounded, see Assumption 3, we have

‖LuB‖Hν−2(Ω) ≤ CΩ,L‖uB‖Hν(Ω), (12)

and
‖BuB‖Hν−3/2(S) ≤ CS,B‖uB‖Hν−1/2(S), (13)

for all uB ∈ Hν with an integer ν ≥ 2 by [10]. For all uB ∈ HµB (Ω), the
following Robin-type boundary regularity estimate holds [20]:

‖uB‖Hν(Ω) ≤ CΩ,L,ν(‖LuB‖Hν−2(Ω) + ‖BuB‖Hν−3/2(S)), 2 ≤ ν ≤ µB , (14)

for some constant CΩ,L,ν depending only on Ω, L and ν.
The analysis of error estimates for the Robin-type problem (11) is similar

to [6] for Dirichlet PDEs. We can propose the following convergence theorem
for this weighted least squares (WLS) solution

UB = UWLS
B

:= arg inf
uB∈UZΩ,Ω,ΦµB

(
‖L(uB − u∗B)‖2`2(XΩ) +Wθ‖B(uB − u∗B)‖2`2(YS)

)1/2
(15)
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in the bulk trial space UZΩ ,Ω,ΦµB in (9), related to a weighting Wθ defined as

Wθ = (hYS/hXΩ )θ(d/2−ν+2)h−θYS ,

for hXΩ ≤ hYS < 1 and any 0 ≤ θ ≤ 2.

Theorem 1 (WLS estimate). Let µB − d/2− 1 ≥ ν ≥ max{2, dd+ 1e/2} and
u∗B ∈ HµB (Ω) denote the classical solution to the bulk PDE (11). We assume
that all Assumptions 1–3 hold and a kernel ΦµB satisfies (5). The discrete sets
XΩ , YS and ZΩ also yield the condition (16) and hXΩ ≤ hYS < 1. Then the
error estimate of the WLS solution UB ∈ UZΩ ,Ω,ΦµB

‖UB−u∗B‖Hν(Ω) ≤ CΩ,S,L,B,ΦµB ,ν,ρXΩ ,ρYS ,γXΩ ,γYS (h
θ/2−1
ZΩ

+1)hµB−νZΩ
‖u∗B‖HµB (Ω),

holds for 0 ≤ θ ≤ 2, and a positive constant C depending on Ω,S,L,B, ΦµB , ν,
ρXΩ , ρYS , γXΩ and γYS , provided that the sets of trial centers ZΩ ⊂ Ω and
collocation points XΩ ⊂ Ω and YS ⊂ S satisfy the oversampling condition

CΩ,S,L,B,ΦµB ,ν(hµB−νXΩ
+ hµB−νYS

)q−µB+ν
ZΩ

<
1

2
, (16)

to ensure stability for some constant CΩ,S,L,B,ΦµB ,ν > 0 independent of XΩ.

Proof. Based on the regularity inequality in (14) for Robin boundary con-
ditions, we can follow the same proof of the convergence theorem for the
least-squares solutions to Dirichlet problems in [6]. �

We remark that, in theory, both hXΩ ∼ hZΩ/4 and hYS ∼ hZΩ/4 are
required for (16) to hold for the problem in (11). To identify the practical
requirement, we will verify this oversampling condition both in Ω and on S in
Example 6.1.1.

5 Meshless collocation methods for coupled bulk-surface PDEs

We will solve the coupled problem in (1)–(3) for the solutions (uB , uS) by
a domain-type meshless collocation method in [6] and an intrinsic surface-type
approach in [4]. Our method is based on the coupled trial space UZΩ ,Ω,ΦµB ×
UZS ,S,ΨµS in (9) and (10). For simplicity, we will use the simplest version
of the WLS estimate in Theorem 1 without weightings. We will identify our
least-squares solutions (UB , US), defined by

arg inf
uB∈UZΩ,Ω,ΦµB
uS∈UZS ,S,ΨµS

(
‖LuB − fB‖2`2(XΩ) + ‖BuB − βuS − gS‖2`2(YS) (17)

+‖LSuS + ∂nuB − fS‖2`2(XS)
)
,

where L := −∆ + Id and B := α + ∂n, and the strongly second-order elliptic
operator LS := −∆S + Id is imposed on the boundary, as well as ZΩ ⊂ Ω,
XΩ ⊂ Ω, and {ZS , YS , XS} ⊂ S.
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5.1 Implementation

Before introducing how to implement our meshless collocation methods for
the coupled bulk-surface PDEs (1)–(3), we will give a general linear expansion
of trial functions either in the domain or on the surface by

IZu =

nZ∑
i=1

λiΘ
(
· , zi

)
, zi ∈ Z, (18)

where Z = ZΩ ⊂ Ω, λ = λB and Θ = ΦµB for u = uB in the bulk, and
Z = ZS ⊂ S, λ = λS and Θ = ΨµS for u = uS on the boundary. For numerical
stability, nX > nZ is required for Ω and S and we give an example in Figure 1.
Note that all surface points are quasi-uniform expect those in the unit ball that
indeed uniform.

ZS
ZΩ

(a) Trial centers

nZS = 88, nZΩ = 56

YS = XS
XΩ

(b) Collocation points

nXS = nYS = 150, nXΩ = 136

Fig. 1 The quasi-uniform distribution of trial centers and collocations in the unit ball and
on its boundary.

In matrix form, based on the expressions IZΩuB and IZSuS in (18), we re-
spectively impose collocation conditions in the bulk and on the surface elliptic
operators: L in (1) and LS in (3), as well as the Robin boundary operator B
in (2). Thus, we have



[L]ij = LΦµB (xi, zj) xi ∈ XΩ , z
j ∈ ZΩ ,

[LS ]ij = LSΨµS (xi, zj) xi ∈ XS , zj ∈ ZS ,

[Bn]ij =
d∑
k=1

nk(xi)
(
∂xkΦµB (xi, zj)

)
xi ∈ {YS , XS}, zj ∈ ZΩ

[KB ]ij = ΦµB (xi, zj) xi ∈ {XΩ , YS}, zj ∈ ZΩ ,
[KS ]ij = ΨµS (xi, zj) xi ∈ {YS , XS}, zj ∈ ZS .

(19)
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As a result, we can assemble all matrices in (19) into the following system of
equations for the PDEs (1)–(3):

ZΩ ZS = YS[ ]
XΩ L 0
YS αKB +Bn −βKS
XS Bn LS

[
λB
λS

]
=

fB |XΩgS|YS
fS|XS

 , (20)

and then solve it for the unknown coefficients λB and λS to interpolate the
corresponding least-squares approximations UB and US to (17).

5.2 Some discussions on convergence

Based on the theoretical analyses of the bulk and the surface-type collo-
cation methods respectively, we can split the system (1)–(3) into a bulk PDE
with a Robin boundary condition by replacing gS in (11) with (gS + βu∗S):

LuB = fB , in Ω,
BuB = gS + βu∗S , on S, (21)

and an elliptic PDE on the surface:

LSuS = fS − ∂nu∗B , on S, (22)

where LS satisfies the boundedness as follows.

Assumption 4 Assume that LS is second-order strongly elliptic on S whose
coefficients are in WµS−2

∞ (S), and fS is smooth enough to admit a classical
solution u∗S ∈ HµS (S) to (22) for some µS ≥ 2.

Since we now have two PDEs in the domain and on the boundary respec-
tively, we consider them together from two aspects. On the one hand, we can
mainly research on the bulk estimate for (21), and take the surface error as a
perturbation of u∗S on the boundary. On the other hand, the surface solution
to (22) reversely is regarded as our primary consideration with a right hand
side perturbation from u∗B .

5.2.1 Theoretical requirements for smoothness of kernels

For approximations in the bulk and on the surface, there are different
theoretical conditions of smoothness orders µB for the global kernel ΦµB and
µS for the restricted one ΨµS .

We firstly focus on the bulk-domain problem (21), provided that a known
least-square numerical approximation u∗S ≈ US obtained by (22) with the exact
right hand side. The bulk estimate of an error (UB − u∗B) is in the Sobolev
norm up to the order ν ≤ µB , as well as an extra perturbation εS = US − u∗S
in the Hν−3/2(S) norm from the boundary regularity term in (14). By using
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Theorem 1 solely for the bulk PDE (21), we require µB − d/2 − 1 ≥ ν ≥
max{2, dd+1e/2}. Further, µS ≥ dν+dS/2−1/2e and ν ≥ 3.5 are essential in
terms of the Hν−3/2(S) error only for the surface PDE (22), see [4]. Therefore,
in this case, we need{

µB ≥ ν + d/2 + 1,
µS ≥ dν + dS/2− 1/2e, for ν ≥ 3.5. (23)

Reversely, the error (US −u∗S) in the Hk(S) norm is primarily considered,
then µS ≥ dk + dS/2 + 1e is needed for all k ≥ 2. Besides, we assume that
the right hand side in (22) is obtained by u∗B ≈ UB , so that the error εB =
∂n(UB − u∗B) is approximately in Hk−2(S) according to the regularity in [4,
Lemma 3.1]. Because of the bounded ∂n and the trace theorem [22], we have

‖εB‖Hk−2(S) ≤ Cn‖(UB − u∗B)|S‖Hk−1(S) ≤ Cn‖UB − u∗B‖Hk−1/2(Ω), (24)

for µB ≥ k + d/2 + 1/2 and k ≥ 2.5 theoretically. As a result,{
µB ≥ k + d/2 + 1/2,
µS ≥ dk + dS/2 + 1e, for k ≥ 2.5. (25)

By a comparison between (23) and (25), the latter one has lower requirements
for the orders of both kernels in theory.

5.2.2 Selections of bulk and surface orders of smoothness

In the coming part, we will discuss convergence also from two aspects un-
der the basic smoothness conditions (23) and (25) based on existing theoretical
error outcomes respectively.

For the bulk PDE (21) with a perturbation of u∗S , we can consider two
parts. The first part ‖UB − u∗B‖Hν(Ω) converges to

hµB−νZΩ
‖u∗B‖HµB (Ω),

by using Theorem 1 for θ = 2, if using u∗S for (21). In terms of the second
perturbation part ‖εS‖Hν−3/2(S), we can ignore the error from UB in (22) to
approximately obtain by [4, Theorem 1.1]:

‖εS‖Hν−3/2(S) . CS,LS ,ΨµS ,ν,ρYS ,γYS h
µS−ν−dS/2+3/2
ZS

‖u∗S‖HµS (S). (26)

To avoid being affected by εS for the bulk convergence estimate, we require
that the rate of in (26) is not less than (µB − ν):

µS ≥ µB + dS/2− 3/2, (27)

for µB ≥ ν + d/2 + 1 with ν ≥ 3.5, see (23).
For the surface PDE (22) with a perturbation of u∗B , the upper bound of

‖US − u∗S‖Hk(S) is obtained by (26):

h
µS−k−dS/2
ZS

‖u∗S‖HµS (S). (28)
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In addition, the convergence rate for the bulk perturbation ‖εB‖Hk−2(S) (or
‖UB − u∗B‖Hk−1/2(Ω) from (24)) is (µB − k + 1/2) via Theorem 1 with θ = 2.
In order to reach the convergence rate in (28), it is essential to set

µB ≥ µS − dS/2− 1/2. (29)

Since µB ≥ k + d/2 + 1/2 by (25), µS − dS/2− 1/2 ≥ k + d/2 + 1/2, that is,
µS ≥ k + (d+ dS)/2 + 1 with k ≥ 2.5.

Note that requirements for smoothness orders µB and µS , under (27)
and (29), are stronger than those in (23) and (25) respectively. But (29) is
better, due to the high-order convergence performance of the intrinsic surface
approach in [4]. Later, we will confirm this numerically in Section 6.1.

6 Numerical experiments

We implement the proposed meshless collocation method in Section 5.1
with the Whittle-Matérn-Sobolev kernels of various smoothness orders µB
for bulk approximation and the restricted ones of order µS on surfaces. For
discretization, trial centers and collocation points are usually different but are
uniformly scattered in domains and on surfaces. Here, we use the same sets of
points for collocations YS and XS on boundaries. For brevity, we give some
simplified notations with subscripts for fill distances h of these points in the
following cases:{

hΠ = hXΠ = hZΠ for XΠ = XΠ , and Π ∈ {Ω,S},
hΞ = hΞΩ = hΞS for ΞΩ = ΞS , and Ξ ∈ {X,Z}.

The number n of points in any set is subscripted in the same way.
Section 6.1 presents two studies of effects of smoothness orders of kernels

on the accuracy and convergence. In the first example, we set different fill
distances for two classes of points in X and Z. The second test also compares
our proposed method with two FEMs. The cut FEM approximated both the
embedded domain and numerical solutions to the coupled bulk-surface prob-
lems [2]. Another FEM used piece-wise polynomial finite element functions on
a polyhedral approximation of the domain [7]. In Section 6.2, we show the re-
sulting estimates via discretizing the domain and its boundary under different
denseness of point sets. Lastly in Section 6.3, we impose three distinct types
of source terms to (1)–(3) in two domains.

6.1 Smoothness orders of kernels for accuracy and convergence

As discussed in Section 5.2, from the aspects for the bulk and the sur-
face convergence, the theoretical requirements and the relationships between
smoothness orders µB and µS of kernels are different. Here, we seek how to
balance these two orders numerically in the following experiments.
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y

x

(a) Numerical solutions (b) Error functions

Fig. 2 Example 6.1.1: The numerical solutions and error functions (color) in the unit disk
and on its boundary, obtained by the surface kernel of order µS = 4.5 and the bulk kernel
of µB = 5, using the same X = Z for bulk and boundary respectively, and nΩ = 104 points
inside and nS = 36 on the boundary with hΩ = hS = 0.0304.

We let the classical solutions to (1)–(3) with α = β = 1 be

u∗B = e−x(x−1)−y(y−1),

u∗S = (1 + x(1− 2x) + y(1− 2y))e−x(x−1)−y(y−1). (30)

All source terms of the right hand sides in (1)–(3) can be analytically derived.
Particularly, we have gS = 0 in the unit disk and the unit ball for (30).

Example 6.1.1 In the unit disk in R2. We firstly apply our coupled method
to solve the problem (1)–(3) in the unit disk with µB = 5 and µS = 4.5. The
trial centers and collocations are identically distributed in Ω and on S with
the same fill distance h = 0.0304. In Figure 2, the corresponding numerical
solutions and their error functions are plotted.

Table 1(a)–(b) lists the L2 errors of the bulk and surface solutions with
varieties of smoothness orders µB and µS . In the part (a) of Table 1, with
increasing µS associated with a minimum µB = 5.5 required by (27) in theory,
the bulk solutions are almost as accurate as those on the surface. Reversely,
under a lowest condition µS = 5 by (29), Table 1(b) shows that raising µB
can obviously decrease both L2(Ω) and L2(S) errors. We use µS = 3.5 in (a)
and µB = 3.5 in (b) that are even smaller than basically theoretical require-
ments in (23) and (25) respectively. The corresponding L2 accuracies are still
high in comparison with others using higher-order kernels. The results here
suggest that kernels with lower than theoretical required smoothness can still
be practical despite the lack of error bounds. We also find that errors on the
circle are smaller than those inside under the same point densities for all set
points.

(Oversampling settings) Next, we test how much denser collocation
points in X have to be with respect to the centers in Z, respectively in the bulk
and on the circle. We fix kernels of orders µB = µS = 5, and hZ = hZΩ = hZS
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Table 1 Example 6.1.1: The L2 errors in a unit disk and on its boundary, obtained by (a) a
fixed µB with various µS and (b) a fixed µS with various µB , using the same setting: X = Z
for the bulk and the boundary and nΩ = 104 in Ω and nS = 36 on S (hΩ = hS = 0.0304).

(a) Bulk µS
µB = 5.5 3.5 4.5 5 5.5 6
L2(Ω) 4.28344E-05 4.29578E-05 4.29582E-05 4.29583E-05 4.29583E-05
L2(S) 1.52230E-05 1.57156E-05 1.57175E-05 1.57176E-05 1.57176E-05

(b) Surface µB
µS = 5 3.5 4 4.5 5 6
L2(Ω) 1.46683E-03 2.97756E-04 1.92086E-04 8.18739E-05 2.38069E-05
L2(S) 7.40532E-04 1.26852E-04 1.01760E-04 4.11273E-05 7.43383E-06

L
2
e
rr
o
r

hZ

1.69

X = Z

(a)

1.73

XΩ = ZΩ

hXS = hZS /1.2

(b)

2.35

hXΩ = hZΩ /1.2

XS = ZS

(c)

2.38

hX = hZ/1.2

(d)

Fig. 3 Example 6.1.1: The convergence profiles of L2 errors both in the unit disk and on
the boundary, obtained by fixing µB = µS = 5 for two kernels, using different oversampling
settings: (a) X = Z; (b) only denser XS with hXS = hZS /1.2 on S; (c) only denser XΩ
with hXΩ = hZΩ/1.2 in Ω; (d) hX = hZ/1.2 for all points.

for two sets of centers. In Figure 3, by employing X = Z and three over-
sampling settings, we show the corresponding L2 convergence profiles. More
collocation points with the ratio hZ/hX = 1.2 in Ω can increase convergence
rate from 1.7 to 2.4. When higher oversampling ratio hZ/hX = 1.5 is applied,
see Figure 4(a), we find no clear benefits in terms of both accuracy and con-
vergence rate. By increasing smoothness orders of the kernels to µB = µS = 6,
Figure 4(b) illustrates better L2 convergence behavior with the rate 3.1. Using
higher µS with µB fixed does not yield further improvement and we omit the
numerical results.

Then we turn to apply different µB = 4, 6 and 6.5 for the bulk kernels
with a fixed µS = 5 and the oversampling condition hX = hZ/1.2. Their L2

errors are respectively profiled in Figure 5. The corresponding convergence
rates between L2(Ω) and L2(S) are similar for each tested µB . Besides, the
bulk kernels with higher smoothness orders can improve convergence (rates
from 1.3 to 2.4 roughly). But solutions via µB = 6.5 become less accurate
when using the smallest hZ = 0.004, and even worse than results by µB = 6.

Therefore, either from accuracy or from convergence, our method run bet-
ter on surfaces than in domains. That is to say, via (29), it is more effective
to vary bulk kernels with surface ones fixed.
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2.17
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3.12

µB = µS = 6

(b)

Fig. 4 Example 6.1.1: Under the same oversampling condition hX = hZ/1.5 for all points,
the convergence profiles of L2 errors both in the unit disk and on the boundary, obtained
by respectively fixing (a) µB = µS = 5 and (b) µB = µS = 6 for two kernels.

E
rr
o
r

µB = 4

6
6.5

(a) Boundary

hZ

1.27

2.38

L2(S) norm

(b) Bulk

1.32

2.32

L2(Ω) norm

Fig. 5 Example 6.1.1: The convergence profiles of L2 errors (a) on the boundary and (b)
in the unit disk, obtained by fixing boundary kernels of order µS = 5 with various µB for
bulk kernels, using hX = hZ/1.2 both in the bulk and on the boundary.

Example 6.1.2 In the unit ball in R3. We consider an example in the unit
ball for comparison with the results in [2,7]. Our proposed approach is em-
ployed to yield approximated solutions in Figure 6(a) and the error functions
in Figure 6(b) with µS = 6 and µB = 6.

Table 2 shows the L2 and H1 errors in the domain and on the boundary
when utilizing a minimum requirement µB = 6 from (27) with different µS
respectively. Another test uses a lowest µS = 6 via (29) and various µB . The
results are listed in Table 3. It is observed that increasing the bulk order µB
in Table 3 is more effective than changing µS in Table 2 in terms of accuracy.
Although µS = 3.5 used in Table 2 is smaller than the essentially theoretical
minimum 4, and µS = 4 in Table 3 is also less than 5, see (23) and (25).
Their outcomes are respectively close to those obtained by higher smoothness



14 Meng Chen, Leevan Ling

S

Ω

(a) Numerical solutions (b) Error functions

Fig. 6 Example 6.1.2: The numerical solutions and error functions (color) in a ball and on
its boundary, obtained by boundary kernels of µS = 6 and bulk kernel µB = 6.5, using the
same X = Z for bulk and boundary respectively, and nΩ = 657 points inside and nS = 409
on the boundary with hΩ = hS = 0.0341.

Table 2 Example 6.1.2: The L2 and H1 errors in the unit ball and on the sphere, obtained
by fixing orders µB = 6 for bulk with various µS for boundary, using the same X = Z for
bulk and boundary respectively, and nΩ = 136 points inside and nS = 147 on the boundary
with hΩ = hS = 0.0988.

µB = 6
µS

3.5 5.5 6 6.5 7

Ω
L2 5.8829E-04 6.0051E-04 5.9917E-04 5.9843E-04 5.9800E-04
H1 1.9285E-03 2.0039E-03 2.0056E-03 2.0066E-03 2.0071E-03

S L2 5.3431E-04 2.2611E-04 2.2282E-04 2.2099E-04 2.1990E-04
H1 2.9622E-03 2.7699E-04 2.4271E-04 2.2636E-04 2.1865E-04

Table 3 Example 6.1.2: The L2 and H1 errors in the unit ball and on the sphere, obtained
by fixing orders µS = 6 for boundary with various µB for bulk, using the same setting as
in Table 2.

µS = 6
µB

4 4.5 5.5 6.5 7.5

Ω
L2 3.89082E-03 1.98549E-03 1.04391E-03 2.68917E-04 5.96153E-04
H1 1.60029E-02 8.09519E-03 3.13674E-03 1.14387E-03 7.03852E-04

S L2 1.00351E-03 5.57316E-04 4.21405E-04 7.48756E-05 2.93475E-04
H1 1.59783E-03 7.90789E-04 3.26253E-04 1.85107E-04 1.68095E-04

orders. Our method produces the results comparable to those in [2, Figure 4]
and [7, Tables 1–2] in terms of L2 and H1 errors.

In Figure 7(a)–(d), we give four profiles of L2(S), L2(Ω),H1(S) andH1(Ω)
errors. They are obtained by employing µS = 5 with several µB = 4, 5, 7 and
7.5 under the oversampling setting nX > nZ . We achieve the higher L2 and H1

convergence rates when µB goes up. It is enough to use µB = 7.5 for µS = 5,
due to the descend of accuracy with the smallest hZ in all the sub-figures.
Figure 7(c)–(d) show good performance in the H1 convergence. Consistent
with Example 6.1.1 for 2D, the 3D test also verifies that higher µB than µS is
beneficial to numerical performance. Moreover, our numerical results converge
faster with the bulk kernel with the high order µB = 7.5 in comparison with
those shown in [2] and [7, Tables 3–4].
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Fig. 7 Example 6.1.1: The least-squares convergence profiles of L2 and H1 errors on the
boundary and in the unit ball (a)–(d), obtained by fixing boundary kernels of order µS = 5
with various µB for bulk kernels, using nXS ≈ 200%nZS and nXΩ > nZΩ with hXΩ = hXS
and hZΩ = hZS .

6.2 Point settings for bulk and surface in a torus

Example 6.2.1 We set the exact solutions as in (30) in a domain surrounded
by a torus1 so that gS 6= 0. Figure 8 shows the numerical solutions and error
functions obtained via oversampling nX > nZ and kernels with smoothness
orders µB = 5.5 and µS = 5 .

For studying how to impose point settings for the bulk and the boundary,
we void oversampling collocation points and use X = Z for all discretizations.
We respectively use the same fill distance hS = 0.1831 of surface points for four
bulk settings hΩ = hS/{1, 2, 4, 6}, and fix hΩ = 0.0511 (nΩ = 76) with various
numbers nS = {76, 160, 324, 448} of points on the boundary. The resulting L2

andH1 errors are listed in Tables 4 and 5 correspondingly. It can be found that
having denser points on the surface instead of bulk points can more effectively
improve the L2 and H1 accuracy both inside and on the torus. Table 5 shows

1 (x2 + y2 + z2 + 12 − (1/3)2)2 − 4(x2 + y2) = 0.
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S

Ω

(a) Numerical solutions (b) Error functions

Fig. 8 Example 6.2.1: The numerical solutions and error functions (color) in a Torus and
on its boundary, obtained by the boundary kernel with µS = 5 and the bulk kernel with
µB = 5.5, using (nXΩ , nZΩ , nXS , nZS ) = (246, 236, 448, 352) with hX = 0.0444 and hZ =
0.04.

Table 4 Example 6.2.1: The L2 and H1 errors in a torus and on its boundary, obtained
by fixing hS = 0.1831 (nS = 76) for surface with various fill distance rates c = hS/hΩ for
bulk, using kernels of smoothness orders: (µB , µS) = (5.5, 5) and the same X = Z for bulk
and boundary respectively.

c nΩ
Bulk Boundary

L2(Ω) H1(Ω) L2(S) H1(S)
1 24 5.0308E-03 1.5472E-02 7.6386E-03 4.1945E-02
2 77 2.5891E-03 1.0398E-02 7.5352E-03 4.1843E-02
4 235 2.1726E-03 8.2467E-03 7.7691E-03 4.1872E-02
6 434 2.6163E-03 8.9547E-03 7.8436E-03 4.1890E-02

Table 5 Example 6.2.1: The L2 and H1 errors in a Torus and on its boundary, obtained by
fixing hΩ = 0.0511 (nΩ = 193) for bulk with various hS for surface, using the same settings
as in Table 4.

hS nS
Bulk Boundary

L2(Ω) H1(Ω) L2(S) H1(S)
0.1831 76 2.2288E-03 1.0056E-02 7.7578E-03 4.1873E-02
0.0954 160 3.4022E-04 1.2263E-03 5.5797E-04 5.9758E-03
0.0511 324 3.4849E-04 1.0508E-03 1.3521E-04 3.0401E-04
0.0356 448 3.5855E-04 9.3826E-04 1.2515E-04 1.2414E-04

that the use of hS = 0.0954 can reach the same orders of accuracy in the
domain as those by smaller hS = hΩ = 0.0511.

6.3 Simulations on other surfaces

We run further simulations under different source terms on two more
complicated geometries. They are surrounded by a constant distance prod-
uct (CPD) surface2 and an orthocircle3.

2
√

(x− 1)2 + y2 + z2
√

(x+ 1)2 + y2 + z2
√
x2 + (y − 1)2 + z2

√
x2 + (y + 1)2 + z2 −

1.1 = 0.
3 [(x2+y2−1)2+z2][(y2+z2−1)2+x2][(x2+z2−1)2+y2]−0.0752[1+3(x2+y2+z2)] = 0.
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Bulk

(a) Numerical solutions in Ω

Surface

(b) Numerical solutions on S

(c) Error functions in Ω (d) Error functions on S

Fig. 9 Example 6.3.1: The numerical solutions (a-b) and error functions (c-d) in a CPD and
on its boundary respectively, obtained by the boundary kernel of smoothness order µS = 6
and the bulk kernel of µB = 6.5, using (nXΩ , nZΩ , nXS , nZS ) = (612, 566, 842, 614) with
hX = 0.0147 and hZ = 0.014.

Example 6.3.1 With exact source terms. The first experiment is to ap-
ply the proposed oversampled approach in a domain surrounded by the CPD
surface. The classical solutions u∗B and u∗S are selected as in (30). Figure 9(a)–
(b) present our numerical results in Ω and on S respectively, and (c)–(d) are
the corresponding error functions with detailed settings as follows: the bound-
ary kernel of smoothness order µS = 6 and the bulk kernel of µB = 6.5,
and (nXΩ , nZΩ , nXS , nZS ) = (612, 566, 842, 614) with hX = 0.0147 and hZ =
0.014.. They show that the accuracy on the boundary is higher than that in
the bulk at least one order of magnitude.

Example 6.3.2 Two different settings for source terms without exact
solutions. Finally, we employ kernels of smoothness orders µS = 6 and µB =
6.5. In two different cases of (fB , fS , gS) = (0, 1, 0) and (fB , fS , gS) = (1, 0, 0),
our oversampled method solves the two problems inside and on the CPD and
the orthocircle surfaces respectively. The numerical outcomes are plotted on
two surfaces in (a) and (c) of Figures 10 and 11, as well as in both S and
Ω in (b) and (d) of each figure for comparison. In Figures 10, solutions on
boundaries are larger than those in bulk domains, but both of them follow the
similar and symmetric distributions. On the contrary, results in Figures 11 tend
to the reverse distributions, corresponding to the same domain in Figures 10.
The values on the surfaces are smaller.
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Fig. 10 Example 6.3.2: The numerical solutions by setting (fB , fS , gS) = (0, 1, 0) inside
and on a CPD and an orthocircle respectively, obtained by using µS = 6 and µB = 6.5 and
oversampling nX > nZ .
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Fig. 11 Example 6.3.2: The numerical solutions by setting (fB , fS , gS) = (1, 0, 0) inside
and on a CPD and an orthocircle respectively, obtained by using µS = 6 and µB = 6.5 and
oversampling nX > nZ .
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7 Conclusion

This work was devoted to solve coupled bulk-surface PDE systems that
model interactions in the bulk domains and on the surfaces, typically, con-
nected through Robin boundary conditions. We modified convergence of least-
squares RBF methods for solving elliptic PDEs with Dirichlet boundary con-
ditions to a more general Robin type. Based on two kernel-based trial spaces
for the two computational domains, we then decoupled the bulk-surface PDEs
by assuming one of the solutions is available in order to study the connections
between the bulk and surface kernels. A set of simulations was used to verify
accuracy and convergence properties, as well as feasibility, of the proposed
method on various domains and surfaces.

Overall, improvement in approximation power can be achieved in three
ways. Using bulk kernels with higher orders than those of the surfaces is rec-
ommended. We also recommend using finer discretization on surfaces than in
bulks, i.e., hS < hΩ . Oversampling in bulks is essential to convergence rate
and sufficiently dense collocation points should be used.
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