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Abstract. The strong-form asymmetric kernel-based collocation method, commonly referred to
as the Kansa method, is easy to implement and hence is widely used for solving engineering problems
and partial differential equations despite the lack of theoretical support. The simple least-squares
(LS) formulation, on the other hand, makes the study of its solvability and convergence rather non-
trivial. In this paper, we focus on general second order linear elliptic differential equations in Ω ⊂ R

d

under Dirichlet boundary conditions. With kernels that reproduce Hm(Ω) and some smoothness as-
sumptions on the solution, we provide conditions for a constrained least-squares method and a class of
weighted least-squares algorithms to be convergent. Theoretically, for max(2, ⌈(d + 1)/2⌉) ≤ ν ≤ m,
we identify some Hν(Ω) convergent LS formulations that have an optimal error behavior like hm−ν .
For d ≤ 3, the proposed methods are optimal in H2(Ω). We demonstrate the effects of various
collocation settings on the respective convergence rates.
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1. Introduction. Mathematical models or differential equations are meaningful
only if they can somehow mirror the overly complicated real world. Similarly, nu-
merical methods are useful only if they can produce approximations guaranteed to
converge to the outcome that the mathematical model predicts. It could take tens
of years for some good numerical strategies to mature and become a well-established
class of numerical methods with a complete and rigid theoretical framework. Take the
finite element method as an example. It waited for a quarter of a century [5] to get
its rigorous mathematical foundation. This paper aims to continue our theoretical
contributions to the unsymmetric radial basis function (RBF) collocation method,
which is also known as the Kansa method in the community and we shall use this
name throughout this paper.

To quickly overview the development of the Kansa method and its connection to
the radial basis function scattered data interpolation problem, let us look at some of
its cornerstones [7, 8, 37]. An RBF is a smooth scalar function φ : R+ → R, which
usually is induced from a kernel function Φ : Rd × R

d → R in today’s applications,
such that the interpolant of an interpolation problem is given as a linear combination

u =

nZ∑

j=1

λjφ(‖ ·−zj‖2) =
nZ∑

j=1

λjΦ(· , zj), (1.1)

of shifted RBFs in which the set Z = {z1, . . . , znZ
} contains trial centers that specify

the shifts of the kernel function in the expansion. Dealing with scaling has been
another huge topic in Kansa methods [12,18,35] for a decade, but we will ignore this
point for the sake of brevity.
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Impressed by the meshfree nature, simplicity to program, dimension indepen-
dence, and arbitrarily high convergence rates in interpolations, E.J. Kansa [16, 17]
proposed to modify the RBF interpolation method to solve partial differential equa-
tions (PDEs) in the early 90s. Using the same RBF expansion (1.1), Kansa imposed
strong-form collocation conditions instead of interpolation conditions for identifying
the unknown coefficients. Consider a PDE given by Lu = f in Ω and Bu = g on
Γ = ∂Ω. The Kansa method collocates the PDE at the trial centers Z to yield exactly
nZ conditions:

Lu(zi) =
∑

λjLφ(‖zi − zj‖), for zi ∈ Z ∩ Ω,
Bu(zi) =

∑
λjBφ(‖zi − zj‖), for zi ∈ Z ∩ Γ,

(1.2)

for identifying the unknown λj or equivalently, a numerical approximation to u from
the trial space

UZ = UZ,Ω,Φ := span{Φ(· , zj) : zj ∈ Z}. (1.3)

This approach requires no re-formulation of the PDE and no triangularization. As
long as one knows how to program for an interpolation problem, it only takes minutes
to understand and code up something for the Kansa method. Since invented, the
Kansa method has been widely used in vast numbers of applications in physics and
engineering [3, 19, 22, 31].

Since the differential and boundary operators of a PDE are independently applied
to yield different rows of the final linear system of equations, it is easy to see why any
Kansa system matrix is unsymmetric. While this has some implications for the choice
of linear solvers, the unsymmetric matrix places the Kansa method far away from the
approximation theories from which RBFs interpolation theories were built. Though
the technique introduced by Kansa is very successful in a large variety of applications
in Engineerings and Science, there were no proven results about it for over 10 years.
After many unsuccessful attempts to establish such a foundation, Hon and Schaback
[14] showed in 2001 that there are extremely rare cases where the original approach
can fail because the underlying linear system can be singular. This puts an end to
all attempts to prove stability of the Kansa method in general. One workaround is to
apply symmetric collocation [6,9] that mimics scattered Hermite interpolation. While
the Kansa trial space basis in (1.1) is independent of the collocation, the symmetric
method takes a basis that is itself dependent on the collocation. This approach yields
positive definite symmetric system matrices [39] at the expense of higher smoothness
requirements and less stability. On the positive side, symmetric collocation can be
proven [33] to be error-optimal, because it is a pointwise optimal recovery of the
solution from discrete input data.

The lack of theory for the Kansa method remained the same until 2006, when
we provided the first solvability results for an extended Kansa method. In order to
ensure solvability, overtesting is applied. Keeping the trial space (1.3) based on a set
Z of trial centers, the standard Kansa system (1.2) is modified by taking another,
but usually larger discrete set X of collocation points that is sufficiently fine relative
to the set Z of trial centers. Readers are referred to the original articles [26] and
an extension [32] to the corresponding weak problems for details. In 2008, we had a
partial answer to the convergence of an overdetermined Kansa formulation [27]. Our
analysis was carried out based on the continuous and discrete maximum norms. We
showed that the ℓ∞-minimizer of a residual functional converges to the exact solution
at the optimal speed, i.e. with the same convergence rate as the interpolant converges
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to the exact solution. From then on, we attempted to extend the theories to the least-
squares (LS) minimizer [20] and numerically verified in extended precision arithmetic
that the LS-minimizer also converges at the optimal rate [21]. Recently, in [34], we
gave an L∞ convergence rate of m− 2− d/2 for an overdetermined Kansa method in
Hm for m > 2 + d/2. In this study, we continue to work on the overdetermined Kansa
method and concentrate on the popular LS solution. In Section 2, we will provide all
the necessary assumptions and prove error estimates for a constrained least-squares
(CLS) and a class of weighted least-squares (WLS) formulations. The convergence for
the CLS formulation will then be given in Section 3. In Sections 4 and 5, the theory
for WLS formulations in two trial spaces will be given. Lastly, we will numerically
verify the accuracy and convergence rates of some proven convergent formulations in
Section 6.

2. Notations, assumptions and main theorems. Throughout the paper,
the notation C will be reserved for generic constants whose subscripts indicate the
dependencies of the constant.

We consider a general second order elliptic differential equation in some bounded
domain Ω ⊂ R

d subject to the Dirichlet boundary condition on Γ = ∂Ω:

Lu = f in Ω and u = g on Γ, (2.1)

where

Lu(x) :=

d∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi
u(x)

)
+

d∑

j=1

∂

∂xj

(
bj(x)u(x)

)

+

d∑

i=1

ci(x)
∂

∂xi
u(x) + d(x)u(x).

(2.2)

The Sobolev regularity of the true solution will be denoted by m, and we will work
in Hilbert spaces Hk(Ω) and Hk−1/2(Γ) with standard Sobolev norms ‖u‖2k,Ω =∑

|α|≤k ‖D
αu‖2L2(Ω) and ‖u‖k−1/2,Γ defined via atlas [13] respectively, for k ≤ m.

Assumption 2.1 (Smoothness of domain). We assume that the bounded domain

Ω has a piecewise Cm–boundary Γ so that Ω is Lipschitz continuous and satisfies an

interior cone condition. �

Now the trace theorem [38] can be applied and we can define a trace operator:

T : Hm(Ω) → Hm−1/2(Γ) such that T u = u|Γ for all u ∈ Cm(Ω̄),

for m > 1/2, with a continuous right-inverse linear extension operator E such that

T ◦ Eg = g for all g ∈ Hm−1/2(Γ).

The smoothness assumption also allows a partition of unity of the boundary [38], each
part of which can be mapped to the unit ball in R

d−1 by a Cm–diffeomorphism. This
allows us to define Sobolev norms on Γ and apply some Sobolev inequalities (i.e.,
kernel independent ones).

Assumption 2.2 (Differential operator and solution). Assume that L as in

(2.2) is a strongly elliptic operator with coefficients belonging to Wm
∞(Ω). Also, we

assume that the functions f and g are smooth enough to admit a classical solution
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u∗ ∈ Hm(Ω). �

By results in [11], L is a bounded operator from Hm(Ω) to Hm−2(Ω) with

‖Lu‖m−k−2,Ω ≤ CΩ,L‖u‖m−k,Ω, 0 ≤ k ≤ m− 2, k ∈ N, (2.3)

for all u ∈ Hm(Ω). Moreover, the following boundary regularity estimate [15] holds:

‖u‖k+2,Ω ≤ CΩ,L,k

(
‖Lu‖k,Ω + ‖u‖k+1+1/2,Γ

)
, 0 ≤ k ≤ m− 2, (2.4)

for all u ∈ Hm(Ω) with CΩ,L,k depending on Ω, the ellipticity constant of L, and
k ≥ 0.

Assumption 2.3 (Kernel). Assume Φm is a reproducing kernel of Hm(Ω) for

some integer m > max(2, ⌈(d + 1)/2⌉) + d/2. More precisely, we use a symmetric

positive definite kernel Φm on R
d with smoothness m that satisfies

cΦm
(1 + ‖ω‖22)

−m ≤ Φ̂m(ω) ≤ CΦm
(1 + ‖ω‖22)

−m for all ω ∈ R
d, (2.5)

for two constants 0 < cΦm
≤ CΦm

. �

For any m > d/2, its native space NΩ,Φm
on R

d [2, 37] is norm-equivalent
to Hm(Rd). This includes the standard Whittle-Matérn-Sobolev kernel with exact
Fourier transform (1 + ‖ω‖22)

−m that takes the form

Φm(x) := ‖x‖
m−d/2
2 Km−d/2(‖x‖2) for all x ∈ R

d, (2.6)

where Kν is the Bessel functions of the second kind. The compactly supported piece-
wise polynomial Wendland functions [36] are another examples of kernels satisfying
(2.5).

Let S be any discrete set of nS points in Ω. For describing the denseness of S ⊂ Ω,
its fill distance for fixed Ω and separation distance are defined as

hS := sup
ζ∈Ω

min
z∈S

‖z − ζ‖ℓ2(Rd) and qS :=
1

2
min

zi, zj ∈ S
zi 6= zj

‖zi − zj‖ℓ2(Rd),

respectively, and the quantity hS/qS =: ρS is commonly referred as its mesh ratio.
For any u ∈ Hm(Ω), we define discrete norms on S by ‖u‖S = ‖u‖0,S= ‖u‖ℓ2(S), for
0 ≤ k < m− d/2. The same notations will also be used to denote discrete norms on
boundary for any discrete set S ⊂ Γ.

Assumption 2.4 (Data points and trial space). Let Z = {z1, . . . , znZ
} be a

discrete set of trial centers in Ω. Let X = {x1, . . . , xnX
} be a discrete set of PDE

collocation points in Ω and Y = {y1, . . . , ynY
} be a set of boundary collocation points

on Γ. We assume the set Z of trial centers is sufficiently dense with respect to Ω, Φ,
and L but independent of the solution. In analogy to (1.3), but now with translation-

invariance, we define the finite-dimensional trial space as

UZ = UZ,Ω,Φm
:= span{Φm(·− zj) : zj ∈ Z} ⊂ NΩ,Φm

.

For any u in the native space NΩ,Φm
of Φm, we denote IZu = IZ,Φm

u to be the unique

interpolant of u on Z from the trial space UZ . We assume all point sets are quasi-
uniform and maintain linear ratios of oversampling as they were refined. That is,

there exist constants ρS ≥ 1 such that

qS ≤ hS ≤ ρSqS for S ∈ {X,Y, Z} (2.7)
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and ratios of oversampling γS ≥ 1 such that

hZ ≤ γShS for S ∈ {X,Y } (2.8)

holds for all admissible sets of data points. �

Note that the sets X and Y of collocation points together have to be as dense
as the trial centers in Z to ensure stability. This paper will provide rigid sufficient
conditions for this.

Imposing strong testing on (2.1) at collocation points inX and Y yields nX+nY >
nZ conditions, from which one can hopefully identify a numerical approximation from
some trial spaces. The following theorems summarize our convergence results for three
possible least-squares alternatives. The first concerns the case where we enlarge the
set Z of trial points by adding the set Y of boundary collocation points to it. Then,
we can keep the numerical solution to be exact on Y , and we add this as a constraint.

Theorem 2.5 (Constrained least squares (CLS)). Suppose the Assumptions 2.1

to 2.4 hold. Let u∗ ∈ Hm(Ω) denote the exact solution of the elliptic PDE (2.1),
and let an integer ν with max(2, ⌈(d+ 1)/2⌉) ≤ ν < m− d/2 be given. In addition,

suppose the sets X, Y and Z ∪Y satisfy conditions (2.8) with Z ∪Y instead of Z and

(3.2). Let uCLS
X,Y ∈ UZ∪Y be the CLS solution defined as

uCLS
X,Y := arg inf

u∈UZ∪Y

‖Lu− f‖2X subject to u|Y = g|Y . (2.9)

Then, the error estimates

‖uCLS
X,Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX ,γX

h
m−d/2−ν
Z∪Y ‖u∗‖m,Ω for m > ν + d

2 ,

and

‖uCLS
X,Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX ,γX

hm−ν
Z∪Y ‖u

∗‖m,Ω for m > ν + 1 + d
2 ,

hold for some constants that depend only on Ω, Φm, L, ν, mesh ratio ρX and ratio of

oversampling γX .

The next case does not require exactness on Y but still keeps Z ∪ Y as the set of
trial centers.

Theorem 2.6 (Weighted least squares (WLS)). Suppose all the assumptions in

Theorem 2.5 hold. We further assume that hX ≤ hY < 1. For any θ ≥ 0 and integer

ν with max(2, ⌈(d+ 1)/2⌉) ≤ ν < m− d/2, let uWLS,θ
X,Y,Z∪Y ∈ UZ∪Y be the WLS solution

defined as

uWLS,θ
X,Y,Z∪Y := arg inf

u∈UZ∪Y

‖Lu− f‖2X +

(
hY

hX

)(d/2+2−ν)θ

h−2θ
Y ‖u− g‖2Y . (2.10)

Then, the error estimates

‖uWLS,θ
X,Y,Z∪Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX ,γX ,γY

h
m−d/2−ν−(2−θ)+
Z∪Y ‖u∗‖m,Ω for m > ν + d

2 ,

and

‖uWLS,θ
X,Y,Z∪Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX ,γX ,γY

h
m−ν−(2−θ)+
Z∪Y ‖u∗‖m,Ω for m > ν + 1 + d

2 ,
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hold for some constants that depend only on Ω, Φm, L, ν, ρX , and ratios of oversam-

pling γX and γY .

Due to the presence of hY and qZ∪Y , condition (3.2) in Theorems 2.5 and 2.6
is satisfiable only when the generic constant there, which depends on the domain,
differential operator, kernel and the value of ν, is small. Since there is very little
known about the magnitude of such a constant, it is not straightforward to verify if
condition (3.2) is being met. If it is unsatisfied, the theoretical error bounds of both
CLS and WLS will stagnate at a constant. In Section 6, we will numerically confirm
that both formulations converge. To be more general, we go back to the case where
Z is the set of trial nodes, independent of X and Y . Instead of (3.2), this allows us
to use another condition (3.3), whose satisfiability is trivial by using sufficiently small
hX and hY with respect to qZ .

Theorem 2.7 (WLS in a smaller trial space). Suppose the Assumptions 2.1 to

2.4 hold. Moreover, the sets X, Y and Z satisfy conditions (2.8) and (3.3). For any

0 ≤ θ ≤ 2, suppose the trial space of the weighted least-squares approximation (2.10) is

restricted to uWLS,θ
X,Y,Z ∈ UZ instead of UZ∪Y . Then, the error estimates in Theorem 2.6

with hZ∪Y replaced by hZ , i.e.,

‖uWLS,θ
X,Y,Z − u∗‖ν,Ω ≤ CΩ,Φ,L,ν,ρX ,γX ,γY

h
m−d/2−ν−(2−θ)+
Z ‖u∗‖m,Ω for m > ν + d

2 ,

and

‖uWLS,θ
X,Y,Z − u∗‖ν,Ω ≤ CΩ,Φ,L,ν,ρX ,ρY ,ρZ ,γX ,γY

h
m−ν−(2−θ)+
Z ‖u∗‖m,Ω for m > ν + 1 + d

2 ,

hold for some constants that also depend on the mesh ratios ρY and ρZ .

3. Optimal convergence rates for CLS. We first prove some necessary in-
equalities essential to our proofs.

Lemma 3.1 (Sampling Inequality of fractional order). Suppose Ω ⊂ R
d is a

bounded Lipschitz domain with a piecewise Cm–boundary. Then, there exists some

constant that depends only on Ω, m and s such that the followings hold:

‖u‖s,Ω ≤ CΩ,m,s

(
hm−s
X ‖u‖m,Ω + h

d/2−s
X ‖u‖X

)
for 0 ≤ s ≤ m,

and

‖u‖s− 1
2
,Γ ≤ CΩ,m,s

(
hm−s
Y ‖u‖m,Ω + h

d/2−s
Y ‖u‖Y

)
for 1

2 ≤ s ≤ m,

for any u ∈ Hm(Ω) with m > d/2 and any discrete sets X ⊂ Ω and Y ⊂ Γ with

sufficiently small mesh norm hX and hY .

Proof. The interior sampling inequality for X ⊂ Ω, which only requires Ω be a
bounded Lipschitz domain, is a special case of a sampling inequality in [1]. Applying
the interior sampling inequality to the union of unit balls in R

d−1, which are images
of the partition of unity of Γ under the Cm–diffeomorphism in Assumption 2.1, yields

‖u‖s−1/2,Γ ≤ C
(
h
(m−1/2)−(s−1/2)
Y ‖u‖m−1/2,Γ + h

(d−1)/2−(s−1/2)
Y ‖u‖Y

)
,

for all 1/2 ≤ s ≤ m. Finally, by applying the trace theorem, the desired boundary
sampling inequality is obtained. �
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Lemma 3.2 (Inverse Inequality). Let a kernel Φm : Rd×R
d → R satisfying (2.5)

with smoothness m > d/2 be given. Suppose Ω ⊂ R
d is a bounded Lipschitz domain

satisfying an interior cone condition. Assume d/2 < ν ≤ m. Then there is a constant

depending only on Ω, Φm, and ν such that

‖u‖m,Ω ≤ CΩ,Φm,ν q
−m+ν
Z ‖u‖ν,Ω for all u ∈ UZ (3.1)

holds in the trial space of Φm and all finite sets Z ⊂ Ω with separation distance qZ .

Proof. Let uν = IΦν ,Zum be the interpolant of um ∈ UZ,Ω,Φm
on Z in the trial space

UZ,Ω,Φν
. By [30, Cor.3.5], there exists a Paley-Wiener band-limited function

fσ ∈ Bσ = {f ∈ L2(Rd) : suppf̂ ⊆ B(0, σ)}

for some σ = Cd,νq
−1
Z such that fσ|Z = uν |Z = um|Z and ‖fσ‖ν,Rd ≤ CΩ,ν‖uν‖ν,Ω.

Since fσ is analytic, we have fσ ∈ Hm(Rd) and hence

‖um‖m,Ω ≤ ‖um − fσ‖m,Ω + ‖fσ‖m,Ω ≤ CΦm,Ω‖fσ‖m,Ω + ‖fσ‖m,Ω.

The last inequality is based on the fact that fσ|Z = um|Z and therefore um = IΦm,Zfσ
is the unique interpolant in UZ,Ω,Φm

of fσ. By [37, Lem.10.24], we have

(IΦm ,Zfσ − fσ, IΦm,Zfσ)NΦm (Ω) = 0,

which proves that the functions um,f − fσ and um,f are mutually orthogonal:

‖um,f − fσ‖
2
NΦm (Ω) + ‖um,f‖

2
NΦm (Ω) = ‖fσ‖

2
NΦm (Ω).

Hence, ‖um − fσ‖NΦm (Ω) ≤ ‖fσ‖NΦm (Ω). By the norm equivalence between NΦm
(Ω)

and Hm(Ω), we have

‖um − fσ‖m,Ω ≤ CΦm,Ω‖fσ‖m,Ω.

Using the Bernstein inequality for band-limited functions, e.g.,

‖Dαf‖L2(Rd) ≤ σ|α|‖f‖L2(Rd) for all f ∈ Bσ,

we obtain

‖um‖m,Ω ≤ (CΦm,Ω + 1)‖fσ‖m,Ω

≤ (CΦm,Ω + 1)‖fσ‖m,Rd

≤ (CΦm,Ω + 1)Cd,νq
−m+ν
Z ‖fσ‖ν,Rd

≤ (CΦm,Ω + 1)Cd,νCΩ,νq
−m+ν
Z ‖uν‖ν,Ω.

Finally, ‖uν‖ν,Ω ≤ CΦν ,Ω‖um‖ν,Ω holds because uν interpolates um. �

Lemma 3.3 (Stability). Let ν be an integer ν ≥ 2 and ν > d/2. Let a kernel

Φm as in (2.5) with m ≥ ν be given. Suppose Ω ⊂ R
d is a bounded Lipschitz domain

satisfying an interior cone condition. If the elliptic operator L satisfies all assumptions

to allow regularity (2.4), then there exists a constant depending only on Ω, Φm, L and

ν such that

‖u‖ν,Ω ≤ CΩ,Φm,L,ν

(
h
d/2+2−ν
X ‖Lu‖X + h

d/2−ν
Y ‖u‖Y

)

holds in two circumstances:
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• for all u ∈ UZ∪Y under the condition

CΩ,Φm,L,ν(h
m−ν
X + hm−ν

Y )q−m+ν
Z∪Y <

1

2
, (3.2)

• or for all u ∈ UZ under the condition

CΩ,Φm,L,ν(h
m−ν
X + hm−ν

Y )q−m+ν
Z <

1

2
, (3.3)

for any finite sets X ⊂ Ω and Y ⊂ Γ.

Proof. For 0 ≤ k ≤ m − 2, we apply the first inequality of Lemma 3.1 (for u =
Lu, s = k, m = m− 2) to get

‖Lu‖k,Ω ≤ CΩ,m−2,k

(
hm−2−k
X ‖Lu‖m−2,Ω + h

d/2−k
X ‖Lu‖X

)
for all u ∈ Hm(Ω)

and, by (2.3),

‖Lu‖k,Ω ≤ CΩ,m−2,k

(
hm−2−k
X ‖u‖m,Ω + h

d/2−k
X ‖Lu‖X

)
for all u ∈ Hm(Ω).

Using the second inequality of Lemma 3.1 (for s = k + 2,m), we get

‖u‖k+1+1/2,Γ ≤ CΩ,m,2

(
hm−2−k
Y ‖u‖m,Ω + h

d/2−2−k
Y ‖u‖Y

)
for all u ∈ Hm(Ω)

and this combines with the boundary regularity estimate (2.4) into

‖u‖k+2,Ω ≤ CΩ,L,m

(
(hm−2−k

X + hm−2−k
Y )‖u‖m,Ω + h

d/2−k
X ‖Lu‖X + h

d/2−2−k
Y ‖u‖Y

)
.

Up to here, we are still in full Sobolev space. Now we use the inverse inequality in
Lemma 3.2, whatever the trial space is. If we only take Z nodes like in the lemma,
then

‖u‖k+2,Ω ≤ CΩ,Φ,L,ν

(
(hm−2−k

X + hm−2−k
Y )q−m+ν

Z ‖u‖ν,Ω

+h
d/2−k
X ‖Lu‖X + h

d/2−2−k
Y ‖u‖Y

)

for all u ∈ UZ . Setting k = ν − 2 with 2 ≤ ν ≤ m, the stability is

‖u‖ν,Ω ≤ CΩ,L,m,ν

(
h
d/2+2−ν
X ‖Lu‖X + h

d/2−ν
Y ‖u‖Y

)

for all u ∈ UZ under the condition CΩ,Φ,L,ν(h
m−ν
X + hm−ν

Y )q−m+ν
Z < 1/2. If we now

take Z ∪ Y nodes, then the same stability holds for all u ∈ UZ∪Y under the condition
CΩ,Φ,L,ν(h

m−ν
X + hm−ν

Y )q−m+ν
Z∪Y < 1/2. �

Lemma 3.4 (Consistency). If the elliptic operator L satisfies Assumption 2.2,

the kernel Φm as in (2.5) has smoothness order m > 2+d/2, and X is quasi-uniform,

then there exist some constants depending only on Ω, Φm, L and ρX such that

min
v ∈ UZ∪Y

v|Y = u∗
|Y

‖Lv − Lu∗‖X ≤ CΩ,Φm,L,ρX
h
−d/2
X h

m−2−d/2
Z∪Y ‖u∗‖m,Ω for m > 2 + d

2 ,
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and min
v ∈ UZ∪Y

v|Y = u∗
|Y

‖Lv − Lu∗‖X ≤ CΩ,Φm,L,ρX
h
−d/2
X hm−2

Z∪Y ‖u
∗‖m,Ω for m > 3 + d

2 ,

hold for any u∗ ∈ Hm(Ω).

Proof. By comparing the minimizer v∗ ∈ UZ∪Y of the optimization problem with
the interpolant IZ∪Y u

∗ ∈ UZ∪Y that also satisfies the constraints at Y , we turn the
problem into an error estimate for radial basis function interpolation:

‖Lv∗ − Lu∗‖X ≤ ‖LIZ∪Y u
∗ − Lu∗‖X .

The first error estimate can be derived based on native space error estimates [37,
Thm.11.9] and upper bounds of power functions [7, Sec.15.1.2]. For m > 2 + d/2, we
have

‖LIZ∪Y u
∗ − Lu∗‖X ≤ n

1/2
X ‖LIZ∪Y u

∗ − Lu∗‖L∞(Ω)

≤ CΩ,Ln
1/2
X max

|α|≤2
|DαIZ∪Y u

∗ −Dαu∗|

≤ CΩ,Ln
1/2
X h

m−d/2−2
Z∪Y ‖u∗‖m,Ω.

Noting that nX ≤ CΩq
−d
X ≤ CΩ,ρX

h−d
X yields the first estimate. If we employ ker-

nels with a higher smoothness parameter m > 3 + d/2, we can use the estimates for
functions with scattered zeros. Applying [29, Prop.3.3] to our Hilbert space setting
and taking care of the definitions of discrete norms yield the desired error bound. �

To prove Theorem 2.5, suppose Assumptions 2.1–2.4 hold so that all lemmas in
this section can be applied. Let uCLS

X,Y ∈ UZ∪Y be the CLS approximation of (2.1),
defined as in (2.9). Moreover, let IZ∪Y u

∗ denote the unique interpolant of the exact
solution u∗ ∈ Hm(Ω) from the trial space UZ∪Y ⊂ NΩ,Φm

= Hm(Ω). Assume the
condition (3.2) holds; we shall show that the CLS solution converges to the interpolant
in UZ∪Y . Since the stability result in Lemma 3.3 only applies to functions in the trial
space, the inequality

‖uCLS
X,Y − u∗‖ν,Ω ≤ ‖uCLS

X,Y − IZ∪Y u
∗‖ν,Ω + ‖IZ∪Y u

∗ − u∗‖ν,Ω,

suggests that we can focus on the difference uCLS
X,Y − IZ∪Y u

∗ ∈ UZ∪Y , which has zeros
at nodes Y . Using Lemma 3.3, we have

‖uCLS
X,Y − IZ∪Y u

∗‖ν,Ω ≤ CΩ,Φm,L,ν

(
h
d/2+2−ν
X ‖LuCLS

X,Y − LIZ∪Y u
∗‖X+0

)
.

Applying Lemma 3.4 yields

‖uCLS
X,Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX

(h2−ν
X + h2−ν

Z∪Y )h
m−2−d/2
Z∪Y ‖u∗‖m,Ω for m > ν + d/2,

and

‖uCLS
X,Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX

(h2−ν
X + h2−ν

Z∪Y )h
m−2
Z∪Y ‖u

∗‖m,Ω for m > ν + 1 + d/2.

For any ν > 2, we use (2.8), i.e., h2−ν
X ≤ γ2−ν

X h2−ν
Z∪Y , to complete the proof.
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4. Convergence for WLS. Instead of a specific weight, we will consider a class
of weighted least-squares formulations by a simple inequality.

Lemma 4.1. Let a, b > 0, 0 < ǫ < 1, and 0 ≤ θ ≤ 2. Then the inequalities

(ǫa+ b)2 ≤ 2
(
ǫθ a2 + b2

)
holds.

Proof. Consider 0 ≤ θ/2 ≤ 1. From (ǫa+ b)2 ≤ 2(ǫ2a2 + b2) and ǫ ≤ ǫθ/2, we have
(ǫa+ b)2 ≤ 2(ǫθa2 + b2). �

Lemma 4.2 (Stability). Suppose the assumptions in Lemma 3.3 hold under the

condition (3.2) and we further assume hX ≤ hY < 1. Let

Wθ := (hY /hX)(d/2+2−ν)θh−2θ
Y .

Then there exists a constant depending only on Ω, Φm, L and ν such that

‖u‖ν,Ω ≤ CΩ,Φm,L,νh
d/2−ν
Y W

− 1
2

θ

(
‖Lu‖2X +Wθ‖u‖

2
Y

) 1
2

for all 0 ≤ θ ≤ 2, u ∈ UZ∪Y

holds for any finite sets X ⊂ Ω and Y ⊂ Γ.

Proof. The CLS stability in Lemma 3.3 has to be further modified to suit the need
of WLS. With the denseness requirement (3.2), let us start with

‖u‖ν,Ω ≤ CΩ,Φm,L,ν(h
d/2+2−ν
X ‖Lu‖X + h

d/2−ν
Y ‖u‖Y ) (4.1)

for some max(2, ⌈(d+ 1)/2⌉) ≤ ν < m− d/2 and all u ∈ UZ∪Y . We want to obtain a
stability estimate with discrete sum of squares. Rewrite (4.1) as

‖u‖2ν,Ω ≤ CΩ,Φm,L,νh
d−2ν
Y

(
ǫ‖Lu‖X + ‖u‖Y )

2 with ǫ = (hX/hY )
d/2+2−νh2

Y .

Note that having ǫ < 1 is a very mild requirement, for example hX ≤ hY < 1, and
will not be an obstacle between theories and practice. By Lemma 4.1, we have

‖u‖ν,Ω ≤
(
CΩ,Φm,Lh

d−2ν
Y

(
ǫθ‖Lu‖2X + ‖u‖2Y )

)1/2

≤ C′
Ω,Φm,Lh

d/2−ν
Y ǫθ/2

(
‖Lu‖2X + ǫ−θ‖u‖2Y )

1/2,

for any 0 ≤ θ ≤ 2. Substituting ǫ back yields and we obtain the desired WLS stability
after simplification. �

Lemma 4.3 (Consistency). For any W > 0, define a functional JW : Hm(Ω) → R

by JW (u) :=
(
‖Lu‖2X + W‖u‖2Y

)1/2
. Suppose the assumptions in Lemma 3.4 hold.

Then, the error estimates in Lemma 3.4 also hold if the left-handed sides are replaced

by min
v∈UZ∪Y

JW (v − u∗).

Proof. Again, we compare the minimizer v∗ with the interpolant IZ∪Y u
∗ in UZ∪Y :

J2
W (v∗ − u∗) ≤ J2

W (IZ∪Y u
∗ − u∗) = ‖LIZ∪Y u

∗ − Lu∗‖2X +W‖IZ∪Y u
∗ − u∗‖2Y ,

where the last term vanishes due to the zeros of IZ∪Y u
∗ − u∗ at Y . �

With both consistency and stability results, we can now prove the convergence of
a class of WLS solutions defined by (2.10). By similar arguments used in Section 3,
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we only need to show that the WLS solution converges to the interpolant IZ∪Y u
∗ of

the exact solution u∗ from the trial space UZ∪Y . Consider the functional

JWθ
(u) :=

(
‖Lu‖2X +Wθ‖u‖

2
Y

)1/2

for 0 ≤ θ ≤ 2, (4.2)

where Wθ is as defined in Lemma 4.2. Applying the results of Lemmas 4.2 and 4.3,
we have the WLS solution convergence within the trial space; for simplicity, let τ be
d/2 if m > ν + d/2 and zero if m > ν + 1 + d/2. Then,

‖uWLS,θ
X,Y,Z∪Y − IZ∪Y u

∗‖ν,Ω ≤ CΩ,Φm,L,νh
d/2−ν
Y W

−1/2
θ JWθ

(
uWLS,θ
X,Y,Z∪Y − IZ∪Y u

∗
)

≤ CΩ,Φm,L,ν,ρX
h
−(1−θ/2)d/2−(ν−2)θ/2
X h

−(1−θ/2)(ν−d/2)
Y hm−2−τ

Z∪Y ‖u∗‖m,Ω (4.3)

≤ CΩ,Φm,L,ν,ρX
max(γX , γY )

θ−νh
m−ν−(2−θ)−τ
Z∪Y ‖u∗‖m,Ω.

The last holds under the assumption (2.8) and max(γX , γY )
θ−ν ≤ Cν,γX ,γY

for all
0 ≤ θ ≤ 2. We can compare the difference between the WLS solution and the exact
solution to obtain error estimates for any 0 ≤ θ ≤ 2. Now, we consider θ = 2

‖uWLS,2
X,Y,Z∪Y − u∗‖ν,Ω ≤ CΩ,Φm,L,ν,ρX ,γX ,γY

hm−ν−τ
Z∪Y ‖u∗‖m,Ω.

The CLS and the above optimal WLS formulation share convergence estimates of the
same form. They both match the convergence estimate of the interpolant exactly,
that in turn confirms their optimality. To complete proving Theorem 2.6 for θ > 2,
we consider the stability for θ = 2 and Lemma 4.2 gives

‖u‖ν,Ω ≤ CΩ,Φm,Lh
d/2+2−ν
X

(
‖Lu‖2X + (hY /hX)d+4−2νh−4

Y ‖u‖2Y

)1/2

≤ CΩ,Φm,Lh
d/2+2−ν
X (‖Lu‖2X + (hY /hX)d+4−2νh−2θ

Y ‖u‖2Y )
1/2,

for any θ ≥ 2 as long as hY < 1. We extend the definition of functional JWθ
in (4.2)

to θ ≥ 2 by Wθ = (hY /hX)d+4−2νh−2θ
Y . Then, for any u ∈ Hm(Ω), we have

Jθ1(u) ≤ Jθ2(u) for 2 ≤ θ1 ≤ θ2 ≤ ∞.

Since the CLS formulation is equivalent to the WLS with θ = ∞, we have

min
v∈UZ∪Y

JWθ
(v − u∗) ≤ JWθ

(uCLS
X,Y − u∗) ≤ JW∞(uCLS

X,Y − u∗) for θ ≥ 2,

where the last term is minimal by the definition of CLS solution. Theorem 2.6 can
now be concluded based on Theorem 2.5. We have to take (3.2) into account in both
theorems.

5. WLS in a smaller trial space. In this section, we will prove Theorem 2.7.
To begin, let us return to the proof for WLS consistency (Lemma 4.3) but restrict
the approximation in the smaller trial space UZ , within which the stability result in
Lemma 4.2 remains valid. However, we can only compare the minimizer v∗ ∈ UZ with
the interpolant IZu

∗ ∈ UZ to the exact solution u∗ ∈ Hm(Ω):

min
v∈UZ

J2
Wθ

(v − u∗) ≤ J2
Wθ

(IZu
∗ − u∗) = ‖LIZu

∗ − Lu∗‖2X +Wθ‖IZu
∗ − u∗‖2Y .

The PDE residual onX is exactly the same as that in the previous section. Without Y
in the trial centers to annihilate the boundary collocation, we simply need to identify
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the extra terms associated to boundary error on Y . Following the ideas in the proof
of Lemma 3.4, for m > ν + d/2, we can bound the boundary term by

‖IZu
∗ − u∗‖Y ≤ n

1/2
Y ‖IZu

∗ − u∗‖L∞(Γ) ≤ n
1/2
Y ‖IZu

∗ − u∗‖L∞(Ω)

≤ CΩ,Φm,L,ρY
h
(d−1)/2
Y h

m−d/2
Z ‖u∗‖m,Ω.

Hence, the error estimate for WLS on UZ contains a non-dominating extra term

h
d/2−2
Y Wθ

−1/2
(
Wθ

1/2CΩ,Φm,L,ρY
h
(d−1)/2
Y h

m−d/2
Z ‖u∗‖m,Ω

)

≤ CΩ,Φm,L,ρY
h
d/2−2
Y h

−(d−1)/2
Y h

m−d/2
Z ‖u∗‖m,Ω

≤ CΩ,Φm,L,ρY ,γY
h
m−d/2−3/2
Z ‖u∗‖m,Ω. (5.1)

For the other case when m > ν + 1 + d/2, we want to bound the ℓ2(Y ) norm on

the boundary by some ℓ2(Z̃ ∪ Y ) norm in the domain (like the trace theorem does).

For any subset Z̃ ⊆ Z, we have

‖IZu
∗ − u∗‖Y =‖IZu

∗ − u∗‖Z̃∪Y ≤ CΩ,Φm
n
1/2

Z̃∪Y
ρ
d/2

Z̃∪Y
hm
Z ‖u∗‖m,Ω.

We want to select Z̃ so that ρZ̃∪Y can be bounded by the denseness measures of Y
and Z. We already assumed Y and Z are quasi-uniform in Assumption 2.4. We also
assume Y is sufficiently dense with respect to Ω so that qY,Γ < qY,Ω (see [10, Thm.6]).

Consider the following subset that excludes all points in Z that are within distance

hZ to the boundary: Z̃ :=
{
z ∈ Z ∩ {ζ ∈ Ω : dist(ζ − Γ) > hZ}

}
⊆ Z. Then, we

have

min(qZ , qY ) ≤ qZ̃∪Y ≤ hZ̃∪Y ≤
(

sup
ζ∈ΩhZ

+ sup
ζ∈Ω\ΩhZ

)
min

z∈Z̃∪Y
‖z − ζ‖ℓ2(Rd)

≤ hZ + (hZ + hY ).

It is now clear that the set Z̃ ∪ Y is also quasi-uniform with respect to some parameter
ρZ̃∪Y that depends on ρZ and ρY . Hence, we can bound ρZ̃∪Y by some generic
constant CρY ,ρZ

. To control the term nZ̃∪Y , consider

nZ̃∪Y ≤ nZ + nY ≤ CΩ,ρZ
h−d
Z + CΩ,ρY

h
−(d−1)
Y ≤ CΩ,ρY ,ρZ

(
h−d
Y + h−d+1

Y

)
.

Since we assumed hY < 1, we have nZ̃∪Y ≤ CΩ,ρY ,ρZ
h−d
Y . Together, we have

‖IZu
∗ − u∗‖Y ≤ CΩ,Φm,ρY ,ρZ ,γY

h
−d/2
Z hm

Z ‖u∗‖m,Ω

and the extra term associated with boundary error on Y is

h
d/2−2
Y W

−1/2
θ

(
W

1/2
θ CΩ,Φm,ρY ,ρZ

h
−d/2
Z hm

Z ‖u∗‖m,Ω

)
≤ CΩ,Φm,L,ρY ,ρZ ,γY

hm−2
Z ‖u∗‖m,Ω.

Boundary errors in both cases do not affect the convergence rates.

6. Numerical demonstrations. We test the proposed formulations in Ω =
[−1, 1]2, Discretization is done by using regular Z with nZ = 112, 162, . . . , 362 and
collocation points X are either regular or scattered, see Figure 6.1. For the regular
cases, collocation points X (strictly in the interior) and Y are constructed similarly
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with hX = γXhZ and hY = γY hZ with γX = 1, 1/2, 1/3 and γY = 1, 1/2 such that
Z ⊆ X and (Z∩Γ) ⊆ Y respectively. All reported (absolute) errors are approximated
by using a fixed set of 1002 regular points, which is denser than the collocation X ∪Y
sets in all tests.

In matrix form, collocation conditions for the PDE and boundary condition can
be written as KL,Xλ = f|X and KB,Y λ = g|Y , respectively, with entries [KL,X ]ij =
LΦ(xi−zj) and [KB,Y ]ij = Φ(yi−zj) for xi ∈ X and yi ∈ Y . Both resultant matrices
have nZ + nY (and nZ) columns for trial space UZ∪Y (and UZ) corresponding to
each zj from the trial space. In the CLS approach (2.9), the constraints at Y are
enforced using the null space matrix of the boundary collocation matrix, denoted by
NB,Y := null(KB,Y ), as in [25], so that the unknown coefficient is expressed in the

form λ = NB,Y λ̃+K†
B,Y g|Y , for some new unknown λ̃, which can be found by solving

KL,XNB,Y λ̃ = f|X −KL,XK†
B,Y g|Y .

In all WLS formulations, with weighting specified by Wθ in Theorem 2.6, the
unknown coefficient λ is obtained by solving the following overdetermined system

[
KL,X

WθKB,Y

]
λ =

[
f|X

Wθg|Y

]

with the Matlab function mldivide in the least-squares sense. For all computations
in this section, we did not employ any technique to deal with the problem of ill-
conditioning. To deal with the numerical instability, readers are referred to our trial
subspace selection techniques [23, 24, 28] that determine the trial set Z adaptively to
circumvent the problem of ill-conditioning.

Example 6.1. How dense is dense? First, we consider a Poisson problem
with Dirichlet boundary conditions generated from three different exact solutions u∗ =
sin(πx/2) cos(πy/2), peaks(3x, 3y), and franke(2x − 1, 2y − 1) by the corresponding
functions in MATLAB. We cast the CLS formulation (2.9) using Whittle-Matérn-
Sobolev kernels that reproduce Hm(Ω) with m = 3, . . . , 6. Note that our proven H2–
convergence theories require m ≥ 4 for Ω ⊂ R

2. To see the effect of “oversampling”,
all sets in this example are regular and we tested hX = {hZ , hZ/2, hZ/3} and hY =
{hZ , hZ/2}. Figure 6.2 compactly shows all convergence profiles inH2(Ω) with respect
to hZ (instead of hZ∪Y for ease of comparison to the results in the next example).

To begin, let us focus on the H2(Ω) errors for u∗ = sin(πx/2) cos(πy/2) in Fig-
ure 6.2. Generally speaking, all collocation settings demonstrate an m−2 convergence
rate for all tested smoothnessm; this also includes the original Kansa formulation with
Z = X ∪ Y . It is obvious that the error profiles for each tested m are split into two
groups. The least accurate groups (i.e., the group above) correspond to hX = hZ .
Without over-testing the PDE, this setting would probably fail the denseness require-
ment (3.2) but yet allow convergence at the optimal rate. All errors reduce at a rather
constant rate, except that we can see two unstable profiles in the cases ofm = 6. These
numerical instabilities correspond to the two cases with large numbers of boundary
collocations; (hX , hY ) = (hZ/2, hZ/2) and (hX , hY ) = (hZ/3, hZ/2). In comparison,
the other two tested solutions, u∗ = peaks(3x, 3y) and franke(2x − 1, 2y − 1), are
more oscillatory. We can see the CLS convergence rates slow down and approach an
optimal m− 2 order.

We omit the L2(Ω) error profiles, which show exactly two extra orders as one
would expect and achieve an order-m convergence before numerical instability kicks
in.
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UZ∪Y UZ

nY rank(KB,Y ) nY rank(KB,Y )
80 80 80 80
160 104 160 96
244 108 244 96
328 100 328 96

Table 6.1
Numerical ranks of boundary collocation matrices resulting from different nY .

Fig. 6.1. Schematic point sets, collocations X and Y (left), and trial Z (right), used to solve
various PDEs.

Example 6.2. CLS convergence in trial space UZ. Putting the theoretical
requirements aside, we are interested in the numerical performance of casting the CLS
in the smaller and more practical trial spaces UZ . Elementary linear algebra says that
if nZ < nY , then we may not be able to find nontrivial functions from UZ with zeros
at Y . However, one can observe numerically that the CLS formulation hardly runs
into trouble when it is cast in this smaller trial space. Numerically, as hY → 0, the
rank of the boundary collocation matrix is bounded; for example, for nZ = 212 with
finer and finer Y , we can see from Table 6.1 that the numerical ranks of the boundary
matrices are bounded.

Figure 6.3 shows the H2(Ω) error profiles for the CLS performance in UZ with
all other settings identical to those in Example 6.1. Comparing the CLS convergence
rates in the two trial spaces, we observe that optimal convergence is also possible in UZ

but only for small enough hZ . The CLS accuracy can “catch up” when the numerical
rank of KB,Y is relatively insignificant compared to nZ . Therefore, the larger the
rank(KB,Y ) the longer CLS takes to achieve optimal convergence. By using a smaller
trial space, we not only gain computational efficiency but suffer less ill-conditioning.
In all tested cases and parameters, we see no accuracy drop due to ill-conditioning.

Example 6.3. Numerically optimal weight for WLS. Now we consider the
WLS formulation in (2.10) with θ ∈ {∞, 0, 0.5, 1, 2}. We begin with the same set up as
in Example 6.1 and set hX = hY = hZ/2 to solve the Poisson problem in Ω = [−1, 1]2.
The WLS weighting, as in (4.2), in this test are Wθ ∼1, nZ , n

2
Z and n4

Z , and using
W∞ is equivalent to the CLS. Figures 6.4–6.5 show the H2(Ω) error resulting from
various Wθ associated with u∗ = sin(πx/2, πy/2) and u∗ = peaks(3x, 3y) respectively.
The estimated convergence rates shown in the legends are obtained from least-squares
fitting to all data; if the convergence profile is not “straight” enough, the corresponding
estimate is not trustworthy.
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Fig. 6.2. Example 6.1: H2(Ω) error profiles for casting the CLS formulation in UZ∪Y with
Whittle-Matérn-Sobolev kernels of order m = 3, . . . , 6 (colored green, blue, black, and red with the
associated reference slopes 1, . . . , 4 respectively) to solve ∆u = f with different exact solution u∗.
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Fig. 6.3. Example 6.2: H2(Ω) error profiles for casting the CLS formulation in UZ to the same
settings as in Figure 6.2.

From these figures, we immediately see that there is no benefit at all (in terms
of both efficiency and accuracy) to go for the unweighted W0 formulation. Unlike the
CLS in UZ , all tested Wθ with θ > 0 do not have a lag in convergence rate but may
suffer ill-conditioning for large θ. By comparing all tested cases, we see that θ = 1
allows good accuracy and an optimal convergence rate in both trial spaces.

To further verify these observations, we now use sets of nX scattered collocation
points (generated by the Halton sequence; see Figure 6.1) to solve three different
PDEs. Boundary collocation points remain regular with hY = hZ/2. We present the
numerical result for m = 4 in Figure 6.6. All PDEs have

u∗(x, y) = max(0, x)4 −max(0, y)4,

whose biharmonic is discontinuous, as the exact solution. These results are compared
to the results of m = 4 in Figure 6.5 and the convergence patterns are very similar.
More numerical examples in 3D can be found in [4].

7. Conclusion. We have proven some error estimates for a constraint least-
squares and a class of weighted least-squares strong-form RBF collocation formula-
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Fig. 6.4. Example 6.3: H2(Ω) error profiles and estimated convergence rates for casting the
WLS formulation in UZ∪Y and UZ with Whittle-Matérn-Sobolev kernels of order m = 3, 4, 5 (with
estimated slopes in the legend) to solve ∆u = f with exact solution u∗ = sin(πx/2, πy/2).
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Fig. 6.5. Example 6.3: H2(Ω) error profiles and estimated convergence rates for casting the
WLS formulation in UZ∪Y and UZ with Whittle-Matérn-Sobolev kernels of order m = 3, 4, 5 (with
estimated slopes in the legend) to solve ∆u = f with exact solution u∗ = peaks(3x, 3y).
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Fig. 6.6. Example 6.3: H2(Ω) error profiles and estimated convergence rates for casting the
WLS formulation in UZ∪Y and UZ with Whittle-Matérn-Sobolev kernels of order m = 4 (with
estimated slopes in the legend) to solve various PDEs with exact solution u∗(x, y) = max(0, x)4 −
max(0, y)4.
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tions for solving general second order elliptic problem with nonhomogenous Dirichlet
boundary condition. All analysis is carried out in Hilbert spaces so that both PDE
and RBF theories apply. We show that the CLS and WLS formulations using ker-
nels, which reproduce Hm(Ω), with sufficient smoothness can converge at the optimal
m− 2 rate in H2(Ω) for d ≤ 3 with respect to the fill distance of the trial centers.
Besides some standard smoothness assumptions for high order convergence, the con-
vergence theories require some linear ratios of oversampling on both sets of PDE and
boundary collocation points to hold. The mesh ratios of the collocation points will
only affect the constant in the convergence estimates, which allows adaptive colloca-
tion when necessary. The techniques used in this paper cannot be further generalized
to obtain optimal estimates in weaker norms. In particular, the consistency of PDE
residuals measured in ℓ2(X) is capped at a rate of m − 2, which is a bottleneck for
getting an optimal order-m (or m − 1) convergence estimates in L2(Ω) (or H1(Ω)).
We leave this problem open for further studies.

We verify by numerical examples that there are many convergent formulations for
Ω ⊂ R

2 that enjoy the optimal convergence rate. We thoroughly study the numer-
ical performance of Whittle-Matérn-Sobolev kernels in two trial spaces. The larger
space that includes all boundary collocation points as trial centers is more theoreti-
cally sound (in the sense of the range of optimal weighting), whereas the small one is
computationally more efficient. Taking both accuracy and efficiency into considera-
tion, casting WLS in the small trial space with a moderate weight consistently yields
competitive accuracy and numerical stability.
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