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Abstract. Ill-posed Cauchy problems for elliptic partial differential equations appear in many
engineering fields. In this paper, we focus on stable reconstruction methods for this kind of inverse
problems. Using kernels that reproduce Hilbert spacesHm(Ω), numerical approximations to solutions
of elliptic Cauchy problems are formulated as solutions of nonlinear least-squares problems with
quadratic inequality constraints (LSQI). A convergence analysis with respect to noise levels and fill
distances of data points is provided, from which a Tikhonov regularization strategy is obtained.
A nonlinear algorithm using generalized singular value decomposition of matrices and Lagrange
multipliers is proposed to solve the LSQI problem. Numerical experiments of two-dimensional cases
verify our proved convergence results. By comparing with solutions of MFS and FEM with the
discrete Tikhonov regularization by RKHS under same Cauchy data, we demonstrate that our method
can reconstruct stable and high accuracy solutions for noisy Cauchy data.
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1. Introduction. It is well known that Cauchy problems are ill-posed in the
sense that their solutions do not continuously depend on data. However, Tikhonov
[36] proposed that conditional stabilities of solutions for Cauchy problems can be
constructed with an a priori bound to the exact solution. In [21], an interior stability
for elliptic Cauchy problems was proved. A global stability was proved based on the
Carleman estimate in [34] by Takeuchi and Yamamoto. There are many other interior
and global conditional stability results for Cauchy problems, and for more detail, one
can refer to [1, 5, 15].

Based on these conditional stabilities, efforts were made to look for stable numer-
ical methods. The quasi-reversibility method [24] as regularization was proposed for
solving Cauchy problems of Laplace equations by Klibanov in 1990 and convergence
analysis for a discrete finite difference scheme was also given. In [3], a similar method
with an adaptive regularization parameter selective strategy was proposed for inverse
Cauchy problems. In [34], the discretized Tikhonov regularization was proposed by
Takeuchi and Yamamoto. Their regularization was built on the theory of reproducing
kernel Hilbert spaces (RKHS). A finite element scheme for Cauchy problems was used
and convergence results of the method were also proved in the same paper. Other
numerical methods with convergent analysis are found in the works [6, 19,33].

Meshless methods are another popular numerical method for solving Cauchy prob-
lems. Generally speaking, these methods can be applied to complicated geometry and
to solving high dimensional problems. The method of fundamental solution (MFS)
with different regularization strategies was used to solve homogenous Cauchy prob-
lems in [16, 20, 40]. MFS combined with the method of particular solution (MPS)
was used to solve nonhomogeneous cases by Li, Xiong, and Chen in [27,38]. A mesh-
less method called the general finite difference method (GFDM) was proposed by Fan
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in [9] to solve inverse Cauchy problems. These meshless approaches usually have good
numerical performance. However, most , if not all, are ad hoc and do not have robust
theoretical support.

Recently, some progress has been made in the theoretical aspects of meshless
collocation methods for PDEs. The Kansa method, proposed by E. J. Kansa in
1990 [22,23], is a typical meshless method used to solve partial differential equations
(PDEs) by imposing strong form collocation conditions to PDEs. To overcome the
singular problem of matrix systems by the Kansa method appearing in some cases
[18], the overdetermined Kansa method was applied to solve PDEs in [29]. Partial
convergence results of the overdetermined Kansa method were proved by Ling and
Schaback in [30]. Recently, convergence theorems for overdetermined Kansa methods
for elliptic PDEs were proved by Cheung, Ling, and Schaback in [7].

Motivated by these improvements, in this paper, we apply an overdetermined
kernel-based collocation formulation to solve inverse Cauchy problems. In Section 2,
we first introduce Cauchy problems considered in this paper and make some assump-
tions. We define discrete solutions for Cauchy problems with exact Cauchy data in
some trial spaces of the symmetric positive definite kernel. The discrete solutions were
defined as solutions of nonlinear optimization problems with quadratic inequality con-
straints. In the definition, the Tikhonov regularization strategy is used. Convergence
results of discrete solutions with respect to data densities and noise levels are also
proved based upon the scattered data approximation theory in RKHS [10, 37]. The
value of the regularization parameter can also be fixed in the proof. After considering
exact Cauchy data, we also define discrete solutions with noisy Cauchy data as solu-
tions of nonlinear least-squares problems with quadratic constraints. The convergence
theorem of the discrete solution with noisy Cauchy data is proved based on the results
of the discrete solution with exact Cauchy data. In Section 3, a solver for least-squares
problems with quadratic constraints is introduced based on generalized singular value
decomposition (GSVD) and the Lagrange multiplier method. In Section 4, we com-
pare the results by the least-quares optimization problem with quadratic inequality
constraints (LSQI) solver we introduced with those of other nonlinear solvers and
show numerically that the proposed solver can obtain high accuracy and stable solu-
tions. Numerical experiments for two-dimensional examples are computed to verify
the convergence results we proved in Section 2. The high accuracy of the numerical
results can also be seen by comparing them with the numerical solutions by MFS [31]
and RKHS [34].

2. Reconstruction methods and error analysis.

2.1. Cauchy problems. In this paper, we consider the following Cauchy prob-
lem for elliptic PDEs: given f, g∗0 and g∗1 , find u insider Ω or on ∂Ω \ Γ where

Lu = f in Ω,

u = g∗0 on Γ,

∂Lu = g∗1 on Γ.

(2.1)

In Eq. (2.1), domain Ω ⊆ Rd is a bounded domain with sufficiently smooth boundary
∂Ω and Γ is a nonempty open subset of ∂Ω. The elliptic operator L and the conormal
derivative operator ∂L associated with L can be denoted as

Lu(x) :=
d∑

i,j=1

∂j
(
aij(x)∂iu(x)

)
+ c(x)u(x) for x ∈ Ω, (2.2)
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and

∂Lu(x) :=
d∑

i,j=1

aij(x)νj∂iu(x) for x ∈ Γ,

where ν = ν(x) is the unit outer normal vector of ∂Ω at x.
We make assumptions for the domain and operator coefficients for further use.
Assumption 2.1 (Smoothness of coefficients and domain). We assume Ω ⊆ Rd is

an open bounded domain with Lipschitz continuous boundary and satisfies an interior
cone condition. Coefficients in Eq. (2.2) satisfy c(x) ≤ 0 almost everywhere in Ω,
{aij}di,j=1 and c(x) ∈ Wm−1

∞ (Ω) for m ≥ 2. We also assume {aij}di,j=1 are symmetric
positive definite, that is there exists a constant α > 0 such that

d∑
i,j=1

aijξiξj ≥ α

d∑
i=1

ξ2i for all x ∈ Ω, {ξi}di=1 ∈ Rd. �

We assume g∗0 and g∗1 are smooth enough to admit a uniquely defined exact
solution u∗ ∈ Hm(Ω) for the Cauchy problem (2.1) [21, Thm.3.3.1]. By the trace
theorem, g∗0 ∈ Hm−1/2(Γ) and g∗1 ∈ Hm−3/2(Γ). Conditional stabilities for Cauchy
problems (2.1) can be proved under an a priori bound for u∗, based on which we
construct numerical algorithms. We state the recent global conditional stability result
proved by Takeuchi and Yamamoto in [34].

Proposition 2.2 (Global Conditional Stability). Let u∗ be the exact solution
of the Cauchy problem (2.1) and u∗ ∈ Hm(Ω) with m > d+2

2 . For 0 < κ < 1, there
exists a constant C > 0 such that

∥u∥L∞(∂Ω\Γ) ≤ C∥u∥Hm(Ω)

(
log

1

E(u)
+ log

1

∥u∥Hm(Ω)

)−κ

, (2.3)

with E(u) := ∥u∥L2(Γ) + ∥∂Lu∥L2(Γ) + ∥Lu∥L2(Ω). �

From the above result, we can easily see that ∥u∥L∞(∂Ω\Γ) converges to zero
whenever ∥u∗∥Hm(Ω) ≤ M and E(u) converges to 0. The latter suggests that kernel
collocation methods similar to those for solving direct problems can be developed to
minimize E(u).

2.2. Kernels and native space. We consider symmetric positive definite ker-
nels Φ : Rd × Rd → R and further assume that their Fourier transforms Φ̂ of kernel
Φ decay algebraically as

c1(1 + ∥ω∥22)−m ≤ Φ̂(ω) ≤ c2(1 + ∥ω∥22)−m for m > d/2. (2.4)

Matérn functions and Wendland’s compactly supported functions are two commonly
used kernels satisfying (2.4). The native space NRd,Φ of a kernel Φ is defined as

NRd,Φ :=
{
f ∈ L2(Rd) ∩ C(Rd) : f̂/

√
Φ̂ ∈ L2(Rd)

}
associated with norms

∥f∥2NRd,Φ
:= (2π)−

d
2

∫
Rd

f̂2(ω)

Φ̂
dω.
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It was shown in [37] that native spaces NRd,Φ of kernels Φ satisfying (2.4) coincide
with Sobolev spaces Hm(Rd). Native space norms ∥ · ∥NRd,Φ

and Sobolev norms ∥ · ∥m
are equivalent. From [37, Cor.10.48], if Ω has a Lipschitz boundary, we also have
native spaces NΩ,Φ being norm equivalent to Sobolev spaces Hm(Ω).

Let Z = {z1, z2, . . . , znZ
} be a discrete set of trial centers in the domain Ω. We

define the finite dimensional trial space based on the trial set Z.
Definition 2.3. Let Z be the trial set and kernel Φ satisfy (2.4), the finite

dimensional trial space UZ is defined as:

UZ,Φm := span{Φ(., zi), zi ∈ Z} ⊂ NΩ,Φ.

We propose a numerical method to seek numerical approximations of the Cauchy
problem (2.1) from these trial spaces. We do so by imposing collocation conditions.
Let X = {x1, x2, . . . , xnX}, Y0 = {y01 , y02 , . . . , y0nY0

} and Y1 = {y11 , y12 , . . . , y1nY1
} be sets

of discrete collocation points in Ω and on the Dirichlet and Neumann boundary.
To describe the point density of Z, we define the following quantities

hZ := sup
z∈Ω

min
zi∈Z

∥z − zi∥ℓ2(Rd), qZ :=
1

2
min

zi, zj ∈ Z
zi ̸= zj

∥zi − zj∥ℓ2(Rd) and ρZ :=
hZ

qZ
,

which are normally called fill distance, separation distance, and mesh ratio of Z re-
spectively. We further assume the trial set Z and collocation sets X, Y0 and Y1 are
all quasi-uniform, that is, the mesh ratio ρχ > 1 satisfies

qχ ≤ hχ ≤ ρχqχ and χ = {X, Y0, Y1, Z}. (2.5)

2.3. The discrete solution with exact Cauchy data and error analysis.
For easy understanding, we begin by introducing a discrete approximation with exact
Cauchy data in the trial space to the solution of the Cauchy problem. We aim to
develop a simple least-squares approach. Let u be a function in Hm(Ω), and v be a
general notation for functions in the trial space UZ,Φm ⊆ NΩ,Φm = Hm(Ω). We first
introduce some preliminaries. For any u ∈ C(Ω), we define a discrete norm of u on
collocation set X as

∥u∥X =

(∑
xi∈X

u(xi)
2

)1/2

.

From [11], for any u ∈ Hm(Ω), when Assumption 2.1 holds for coefficients of an
elliptic operator, one has

∥Lu∥Hm−2(Ω) ≤ CΩ,L∥u∥Hm(Ω), (2.6)

and

∥∂Lu∥Hm−1(Ω) ≤ CΩ,∂L∥u∥Hm(Ω).

To define a computable scheme for the Cauchy problem, we need to discretize the
continuous norms by discrete point sets in both the domain and the Cauchy boundary.
To do this, we introduce sampling inequalities in the following proposition.
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Proposition 2.4 (Sampling inequality of fractional order [7]). Suppose Ω ⊂
Rd is a bounded Lipschitz domain with a piecewise Cm–boundary. Then there is a
constant CΩ,m,s depending only on Ω, m and s such that following inequalities hold:

∥u∥s,Ω ≤ CΩ,m,s

(
hm−s
X ∥u∥m,Ω + h

d/2−s
X ∥u∥X

)
for 0 ≤ s ≤ m,

and

∥u∥s−1/2,Γ ≤ CΓ,m,s

(
hm−s
Y ∥u∥m,Ω + h

d/2−s
Y ∥u∥Y

)
for 1/2 ≤ s ≤ m,

for any u ∈ Hm(Ω) with m > d/2 and any discrete sets X ⊂ Ω and Y ⊂ Γ with
sufficiently small mesh norm hX and hY .

For the ill-posed property of the problems being solved, different regulariza-
tion strategies were proposed to stabilizing the numerical solutions, for instance,
the Tikhonov regularization method [26, 35], the damped singular value decompo-
sition [8, 20], and the truncated singular value decomposition [17]. Recently, a novel
regularization method for ill-posed problems called mixed regularization method was
put forward by Zheng, Zhang in [41]. In this paper, we use the Tikhonov regulariza-
tion method. Combining discrete norms on collocation sets X, Y0 and Y1, we define
the discrete solution in trial space UZ,Φm of Cauchy problems with exact data as:

Definition 2.5. The solution uX,Y0,Y1,σ ∈ UZ,Φm with exact Cauchy data de-
fined as the solution of the following least-squares problems with quadratic inequality
constraints (LSQI) problem:

uX,Y0,Y1,σ := arg inf
v∈UZ,Φm

σ2∥v∥2Hm(Ω) + ∥Lv − f∥2X

s.t. hd−1
Y0

∥v − g∗0∥2Y0
+ hd−1

Y1
∥∂Lv − g∗1∥2Y1

≤ (h2m−d−2
Z + h2m−d

Z )M̃2.

(2.7)

with σ being a regularization parameter and M̃ being a constant.
To decide the value of regularization parameter, one can choose different ex-

perimental methods, like discrepancy principal, L-curve method, generalized cross-
validation, and quasi-optimality criterion [20,39]. In our work, both the regularization

parameter σ and the constant M̃ in (2.7) will be chosen during the convergence proof.
Let su denote the interpolant of the exact solution u∗ ∈ Hm(Ω) on Z from the trial
space UZ,Φm . It is known that su can be uniquely defined for positive definite kernels.
Convergence analysis of su to u∗ in native space was well studied in [10, 32, 37]. To
make use of these results in proving convergence of uX,Y0,Y1,σ, we first show that su
is feasible for the problem (2.7).

Lemma 2.6. Suppose domain Ω and elliptic operator satisfy the Assumption 2.1.
Let uX,Y0,Y1,σ be the discrete solution with exact Cauchy data and u∗ ∈ Hm(Ω) be the
exact solution. When kernel smoothness m > 1+d/2, the unique interpolant su of u∗

in UZ,Φm is a feasible solution for the problem (2.7).
Proof : As su is the interpolant function of u∗ in trial space UZ,Φm , we need only to

prove that it satisfies quadratic inequality constraints in (2.7). First, on the Dirichlet
boundary, one has for m > d/2

h
(d−1)/2
Y0

∥su − g∗0∥Y0 ≤ h
(d−1)/2
Y0

n
1/2
Y0

∥su − g∗0∥L∞(Γ)

≤ CρY0 ,Γ,Ω
∥su − u∗∥L∞(Ω)

≤ CΩ,ρY0 ,Φm,Γh
m−d/2
Z ∥u∗∥Hm(Ω),
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with the second inequality from nY0 ≤ CΓq
−(d−1)
Y0

≤ CΓ,ρY0
h
−(d−1)
Y0

and the last in-
equality from [10, Sec.15.1.2]. On the Neumann boundary, for m > 1 + d/2

h
(d−1)/2
Y1

∥∂Lsu − g∗1∥Y1 ≤ h
(d−1)/2
Y1

n
1/2
Y1

∥∂Lsu − ∂Lu
∗∥L∞(Γ)

≤ CΩ,ρY1
,Γ∥∂Lsu − ∂Lu

∗∥L∞(Ω)

≤ CΩ,ρY1
,Φm,∂L,Γh

m−1−d/2
Z ∥u∗∥Hm(Ω),

by [10, Sec.15.1.2] and inequality nY1 ≤ CΓq
−(d−1)
Y1

≤ CΓ,ρY1
h
−(d−1)
Y1

. Squaring both
sides of these two inequalities and applying ∥u∗∥Hm(Ω) ≤ M , the lemma was proved.
�

From the proof of Lemma 2.6, besides the fill distance of trial center Z and upper
bound M of ∥u∗∥Hm(Ω), the right hand side value of the inequality constraints in
problem (2.7) also affected by constant C depends on domain Ω, Cauchy boundary
Γ, and the mesh ratio ρY0 , ρY1 of boundary collocation sets Y0, Y1 and kernel Φm.

As the constant cannot be evaluated exactly, we write M̃ = CΩ,ρY0
,ρY1

,Φm,ΓM .
With Lemma 2.6, we can prove the error of objective functions in LSQI problem

(2.7). Let functional Jσ : Hm → R be defined as

Jσ(v) :=
(
σ2∥v∥2Hm(Ω) + ∥Lv − f∥2X

)1/2
. (2.8)

The discrete solution uX,Y0,Y1,σ satisfies Jσ(uX,Y0,Y1,σ) ≤ Jσ(su) for its optimal prop-
erty, and for Jσ(su), we have

Jσ(su) ≤ ∥Lsu − f∥X + σ∥su∥Hm(Ω)

≤ ∥Lsu − Lu∗∥X + σ(∥su − u∗∥Hm(Ω) + ∥u∗∥Hm(Ω)).

For the interpolant su, by [10, Cor. 18.1], we have in native space NΩ,Φm

∥su − u∗∥2NΩ,Φm
≤ ∥su − u∗∥2NΩ,Φm

+ ∥su∥2NΩ,Φm
= ∥u∗∥2NΩ,Φm

.

Then by the norm equivalent property of NΩ,Φm and Hm(Ω) for kernel Φm, we obtain
∥su−u∗∥Hm(Ω) ≤ CΩ,Φm∥u∗∥Hm(Ω). Error estimation of su to u∗ in [25, theorem 2.3]
suggests that for kernel smoothness m ≥ 2 + d/2

∥Lsu − f∥X ≤ CΩ,Φm,Lρ
d/2
X n

1/2
X hm−2

Z ∥u∗∥Hm(Ω).

By inequality nX ≤ CΩq
−d
X ≤ CΩ,ρXh−d

X , we can obtain the error estimation for
Jσ(uX,Y0,Y1,σ) as

Jσ(uX,Y0,Y1,σ) ≤ CΩ,Φm,L,ρX
(σ + h

−d/2
X hm−2

Z )∥u∗∥Hm(Ω). (2.9)

This observation combined with sampling inequalities and Lemma 2.6 allows us to
study the convergence of uX,Y0,Y1,σ.

Theorem 2.7. (Convergence of uX,Y0,Y1,σ) Suppose the domain and elliptic oper-
ators satisfy the Assumption 2.1 and conditional stability in the Proposition 2.3 holds
for the Cauchy problem. Let kernel Φ have smoothness order m ≥ 2 + d

2 . The exact
solution is denoted as u∗ ∈ Hm(Ω). When the regularization parameter is taken as

σ∗ = h
− d

2

X hm−2
Z , (2.10)
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convergence results for uX,Y0,Y1,σ defined in (2.7) hold as:

∥uX,Y0,Y1,σ − u∗∥L∞(∂Ω\Γ) ≤ CM

(
log

1(
hm−2
Z + h

m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)
M2

)−κ

,

(2.11)

with the constant C depending on L, ∂L, Φm, Ω, Γ, ρX , ρY0
, and ρY1

.
Proof : Tikhonov regularization parameter σ is chosen to ensure the bound-

ness of ∥uσ,X,Y0,Y1
∥Hm(Ω) which is necessary for its convergence. Because the reg-

ularization term is contained in the definition of functional Jσ(uσ,X,Y0,Y1), we have
∥uσ,X,Y0,Y1

∥Hm(Ω) ≤ Jσ(uσ,X,Y0,Y1
)/σ. From error estimation of Jσ(uσ,X,Y0,Y1

), we
have

∥uσ,X,Y0,Y1∥Hm(Ω) ≤ CL,Φm,Ω,ρX

1

σ

(
h
−d/2
X h

m−2−d/2
Z + σ

)
M

≤ CL,Φm,Ω,ρXM,
(2.12)

with σ taken as in Eq. (2.10). Then, we consider the convergence of E(uσ,X,Y0,Y1−u∗).
It contains three terms that represent the L2 norm of the difference between uσ,X,Y0,Y1

and u∗ in the domain, on the Dirichlet Cauchy boundary, and on the Neumann Cauchy
boundary. For simplicity, we consider terms in the domain and on the Cauchy bound-
ary separately. For boundary terms, using sampling inequalities on the boundary in
Proposition 2.4 and inequality a+ b ≤ C(a2 + b2)1/2, we have

∥uσ,X,Y0,Y1 − g∗0∥L2(Γ) + ∥∂Luσ,X,Y0,Y1 − g∗1∥L2(Γ)

≤ CΩ,Γ,∂L

((
hd−1
Y0

∥uσ,X,Y0,Y1
− g∗0∥2Y0

+ hd−1
Y1

∥∂Luσ,X,Y0,Y1
− g∗1∥2Y1

)1/2
+
(
h
m−1/2
Y0

+ h
m−3/2
Y1

)
∥uσ,X,Y0,Y1 − u∗∥Hm(Ω)

)
.

Because uσ,X,Y0,Y1 satisfy constraint inequalities in (2.7) and ∥uσ,X,Y0,Y1∥Hm(Ω) is
bounded, we obtain

∥uσ,X,Y0,Y1 − g∗0∥L2(Γ) + ∥∂Luσ,X,Y0,Y1 − g∗1∥L2(Γ)

≤ C
(
h
m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)
M,

with C depending on Ω, Γ, ρY0 , ρY0 , Φm and ∂L. By sampling inequality in the
domain, we can get

∥Luσ,X,Y0,Y1 − f∥L2(Ω) ≤ CΩh
d/2
X

(
∥Luσ,X,Y0,Y1 − f∥X + σ∥uσ,X,Y0,Y1 − u∗∥m,Ω

+
(
h
m−2−d/2
X − σ

)
+
∥uσ,X,Y0,Y1 − u∗∥m,Ω

)
,

with (x)+ = max{0, x}. When σ takes as in Eq. (2.10), we have (h
m−2−d/2
X −σ)+ = 0

under the condition hX ≤ hZ . Applying the boundness property of ∥u∗
σ,X,Y0,Y1

∥Hm(Ω)

in Eq. (2.12), for m ≥ 2 + d/2, we have

∥Luσ,X,Y0,Y1 − f∥L2(Ω) ≤ CΩh
d/2
X

(
Jσ(uσ,X,Y0,Y1) + σ∥u∗∥Hm(Ω)

)
≤ CΩ,Φm,L,ρXhm−2

Z M.
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Then, the convergence of E(uσ,X,Y0,Y1 − u∗) becomes

E(uσ,X,Y0,Y1 − u∗) ≤ C
(
hm−2
Z + h

m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)
M, (2.13)

with C depending on Ω, Φm, L, ρX , Γ, ρY0 , ρY0 , and ∂L.
Substituting estimation for E(uσ,X,Y0,Y1 − u∗) in Eq. (2.13), boundness of Hm

norm of uσ,X,Y0,Y1 to the conditional stability of the Cauchy problem in Eq. (2.3)
results in the convergence of uσ,X,Y0,Y1 obtained as in Eq. (2.11). �

From convergence results of the discrete solution with exact Cauchy data in Eq.
(2.11), we can see uσ,X,Y0,Y1 converge to u∗ at log rate with respect to fill distance

of the trial centers h
m−1−d/2
Z , boundary collocation sets h

m−1/2
Y0

and h
m−3/2
Y1

. After
knowing that there is a good approximation in Hm(Ω) with exact Cauchy data, we
can now seek a good comparison function in trial spaces with noisy Cauchy data.

2.4. Discrete solution with noisy Cauchy data and error analysis. When
considering Cauchy data with noise, we need only to consider boundary terms. We
denote noisy Cauchy data as gδ0 and gδ1 for the Dirichlet and Neumann boundaries,
respectively, and assume noise level ∆ > 0 such that(

hd−1
Y0

∥gδ0 − g∗0∥2Y0
+ hd−1

Y1
∥gδ1 − g∗1∥2Y1

)1/2 ≤ ∆.

With noisy Cauchy data with noise level ∆ contained in the definition of the
solution, similar to the discrete solution in the noise-free case in Definition 2.5, we
can define the solutions with noisy Cauchy data as:

Definition 2.8. The discrete solution uδ
X,Y0,Y1,σ

∈ Hm(Ω) with noisy data de-
fined as solutions of the following LSQI problem:

uδ
X,Y0,Y1,σ := arg inf

v∈UZ,Φm

σ2∥v∥2Hm(Ω) + ∥Lv − f∥2ℓ2(X),

s.t. hd−1
Y0

∥v − gδ0∥2Y0
+ hd−1

Y1
∥∂Lv − gδ1∥2Y1

≤
(
h2m−d−2
Z + h2m−d

Z

)
M̃2 +∆2.

(2.14)

Unlike the definition in the noise-free case, noise Cauchy data gδ0 and gδ1 are used in
the left side of the inequality constraint, and an additional noise level term is added to
the right side of the inequality constraint. It is easy to show that the discrete solution
in the noise-free case uX,Y0,Y1,σ is a feasible solution of problem (2.14). By triangle
inequalities, we have

∥uX,Y0,Y1,σ − gδ0∥2Y0
≤ ∥uX,Y0,Y1,σ − g∗0∥2Y0

+ ∥gδ0 − g∗0∥2Y0
,

and

∥∂LuX,Y0,Y1,σ − gδ1∥2Y1
≤ ∥∂LuX,Y0,Y1,σ − g∗1∥2Y1

+ ∥gδ1 − g∗1∥2Y1
.

Since uX,Y0,Y1,σ satisfies quadratic constraints in definition 2.5, we have proved it to
be a feasible solution of problem (2.14). By the optimal property of uδ

X,Y0,Y1,σ
and

the convergence results of Jσ(uX,Y0,Y1,σ) in Eq. (2.9), we get

J(uδ
X,Y0,Y1,σ) ≤ J(uX,Y0,Y1,σ) ≤ CΩ,Φm,L,ρX

(
h
−d/2
X hm−2

Z + σ
)
M.

8



Then, we are ready to prove the convergence of the discrete solution with noisy Cauchy
data.

Theorem 2.9. Suppose the domain and elliptic operators satisfy the Assumption
2.1 and conditional stability in the Proposition 2.3 holds for the Cauchy problem. Let
kernel Φ have smoothness order m ≥ 2 + d

2 with Theorem 2.7 for u∗
X,Y0,Y1,σ

holding.
The exact solution is denoted as u∗ ∈ Hm(Ω). When the regularization parameter
takes the value

σ = h
−d/2
X hm−2

Z , (2.15)

the convergence result for discrete solution uδ
X,Y0,Y1,σ

with noisy Cauchy data is

∥uδ
X,Y0,Y1,σ − u∗∥L∞(∂Ω\Γ)

≤ CM

(
log

1(
(hm−2

Z + h
m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)M +∆
)
M

)−κ

,

(2.16)

with the constant C depending on L, ∂L, Φm, Ω, Γ, ρX , ρY0 , and ρY1 .
Proof : For convergence of uδ

σ,X,Y0,Y1
, we need to prove the convergence of func-

tional E(uδ
σ,X,Y0,Y1

− u∗) and the boundness of ∥uδ
σ,X,Y0,Y1

∥m,Ω. We first consider the
boundness condition. From the definition of functional Jσ in Eq. (2.8), we have

∥uδ
X,Y0,Y1,σ∥m,Ω ≤

Jσ(u
δ
X,Y0,Y1,σ

)

σ
≤ CΩ,Φm,L,ρX

M,

with σ as in Eq. (2.15). Next, we analyze the convergence of E(uδ
σ,X,Y0,Y1

− u∗). By
applying sampling inequalities on boundary terms and then inserting noisy Cauchy
data gδ0 and gδ1, we get

∥uδ
X,Y0,Y1,σ − g∗0∥L2(Γ) ≤ CΩ,Γ,Φm,L,ρX

(
h

d−1
2

Y0
∥uδ

X,Y0,Y1,σ − g∗0∥Y0 + h
m− 1

2

Y0
M
)

≤ C
(
h

d−1
2

Y0

(
∥uδ

X,Y0,Y1,σ − gδ0∥Y0 + ∥gδ0 − g∗0∥Y0

)
+ h

m− 1
2

Y0
M
)
,

with C depending on Ω, Γ, Φm, L, ρX , and

∥∂Luδ
σ,X,Y0,Y1

− g∗1∥L2(Γ) ≤ C
(
h

d−1
2

Y1
∥∂Luδ

σ,X,Y0,Y1
− g∗1∥Y1 + h

m− 3
2

Y1
M
)

≤ C
(
h

d−1
2

Y1
(∥∂Luδ

σ,X,Y0,Y1
− gδ1∥Y1

+ ∥gδ1 − g∗1∥Y1
)

+h
m− 3

2

Y1
M
)
,

with C depending on Ω, Γ, Φm, L, ρX , and ∂L. Combining these two inequalities
and using constraint conditions for uδ

σ,X,Y0,Y1
in definition 2.8, we obtain

∥uδ
X,Y0,Y1,σ − g∗0∥L2(Γ) + ∥∂Luδ

X,Y0,Y1,σ − g∗1∥L2(Γ)

≤ CΩ,Γ,Φm,L,ρX ,ρY0
,ρY1

∂L

(
(h

m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)M +∆
)
.

In the domain, when σ takes values as in Eq. (2.15), by the same argument used in
the proof of the theorem 2.7, the residual has an error estimation as

∥Luδ
σ,X,Y0,Y1

− f∥L2(Ω) ≤ CΩh
d/2
X (Jσ(u

δ
σ,X,Y0,Y1

) + σ∥u∗∥Hm(Ω))

≤ CΩ,Φm,L,ρXhm−2
Z M.

9



By combining the error in the domain with that on the Cauchy boundary, the error
estimation for E(uδ

σ,X,Y0,Y1
− u∗) becomes

E(uδ
σ,X,Y0,Y1

− u∗) ≤ C
(
(hm−2

Z + h
m−1−d/2
Z + h

m−1/2
Y0

+ h
m−3/2
Y1

)M +∆
)
. (2.17)

with C depending Ω, Γ, Φm, L, ρX , ρY0 , ρY1 , and ∂L. Substituting estimation in
Eq. (2.17) and the boundness of ∥uδ

σ,X,Y0,Y1
∥Hm(Ω) to the conditional stability of the

Cauchy problem in Eq. (2.3), the convergence of uδ
σ,X,Y0,Y1

holds as Eq. (2.16). �

From Theorem 2.9, with an a prior bound to the Hm norm of exact solution
u∗, the discrete solution with noisy Cauchy data uδ

σ,X,Y0,Y1
converges at log-rate with

respect to noise levels ∆, the fill distance of trial centers hm−2
Z , and collocation set

h
m−1/2
Y0

and h
m−3/2
Y1

. After defining the solution for the Cauchy problem (2.1) and
proving its convergence with respect to the exact solution, we can find numerical
methods to solve problem (2.14) in Definition 2.8.

3. Numerical algorithms. In this section, the LSQI problem will first be writ-
ten in matrix form by RBF collocation methods. A numerical solver by combining
GSVD and the Lagrange multiplier method is introduced for the LSQI problem. The
approximated solution uδ

σ,X,Y0,Y1
can be represented by the radial basis function ex-

pansion analogous to that used for scattered data interpolation as

uδ
σ,X,Y0,Y1

=

nZ∑
j=1

λjΦ(·, zj) for zj ∈ Z.

By overdetermined Kansa methods, collocation conditions in the domain Ω are im-
posed at set X with elliptic operator L acting on the collocation matrix as

Luδ
σ,X,Y0,Y1

=

nX∑
i=1

nZ∑
j=1

λjLΦ(xi, zj) := LK(X,Z)λ for xi ∈ X, zj ∈ Z,

with λ = [λ1, . . . , λnZ
]T ∈ RnZ . By the same argument, we impose collocation

conditions on the Dirichlet and Neumann boundaries at sets Y0 and Y1 as

uδ
σ,X,Y0,Y1

=

nY∑
i=1

nZ∑
j=1

λjΦ(yi, zj) := K(Y,Z)λ for yi ∈ Y0, zj ∈ Z,

and

∂Lu
δ
σ,X,Y0,Y1

=

nY∑
i=1

nZ∑
j=1

λj∂LΦ(yi, zj) := ∂LK(Y, Z)λ for yi ∈ Y1, zj ∈ Z.

Furthermore, by the norm equivalence property with native space norm from [37,
Sec.10.1], norm ∥uδ

σ,X,Y0,Y1
∥m in the Tikhonov regularization term can be expressed

as

∥uδ
σ,X,Y0,Y1

∥2m =

nZ∑
i=1

nZ∑
j=1

λjλiΦ(zi, zj) := λTK(Z,Z)λ for zi, zj ∈ Z.

10



Combining the above representations, the problem (2.14) with quadratic constraints
can be written in matrix form as:

arg inf
λ∈RnZ

∥Aλ− b∥2 s.t. ∥Bλ− d∥2 ≤ E, (3.1)

with expressions and sizes for matrices and vectors are

A =

[
LK(X,Z)

σ(K(Z,Z))1/2

]
∈ R(nX+nZ)×nZ , b =

[
f(X)
0

]
∈ R(nX+nZ),

B =

[
h
(d−1)/2
Y0

K(Y0, Z)

h
(d−1)/2
Y1

∂LK(Y1, Z)

]
∈ R(nY0+nY1 )×nZ , d =

[
h
(d−1)/2
Y0

gδ0|Y0

h
(d−1)/2
Y1

gδ1|Y1

]
∈ RnY0+nY1 ,

E =
(
(h2m−d−2

Z + h2m−d
Z )M̃2 +∆2

)1/2 ∈ R.

Nonlinear optimization solvers such as SDPT3 solver in Matlab CVX toolbox
[13,14], and Mosek solver [2] can be used to solve the quadratic constraints quadratic
problem (3.1). Furthermore, a faster algorithm presented in [12] can be modified to
solve problem (3.1) and we introduce it here. First, the problem is simplified using
the GSVD of matrix A and B in problem (3.1). The full GSVD of A and B are

UTAX = DA, V TBX = DB , UTU = InX+nZ
, and V TV = InY0+nY1

, (3.2)

with the size of each matrix being U ∈ R(nX+nZ)×(nX+nZ), X ∈ RnZ×nZ , DA ∈
R(nX+nZ)×nZ , DB ∈ R(nY0

+nY1
)×nZ , and V ∈ R(nY0

+nY1
)×(nY0

+nY1
). Matrices DA

and DB have representations as:

DA =



α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αnZ

...
...

. . .
...

0 0 · · · 0


, DB =


β1 0 · · · 0 · · · 0
0 β2 · · · 0 · · · 0
...

...
. . .

... · · · 0
0 0 · · · βnY0+nY1

· · · 0

 .

After computing the GSVD of matrices A and B in Eq. (3.2), we can convert the
LSQI problem to

arg inf
ΛZ∈RnZ

∥DAΛ̃Z − b̃∥2 s.t. ∥DBΛ̃Z − d̃∥2 ≤ E, (3.3)

with Λ̃Z = X−1ΛZ ∈ RnZ , b̃ = UT b ∈ RnX+nZ and d̃ = V T d ∈ RnY0
+nY1 . We can

write the problem (3.3) in scaler form as

arg inf
ΛZ∈RnZ

nZ∑
i=1

(αiλ̃i − b̃i)
2 +

nX+nZ∑
i=nZ+1

b̃2i s.t.

nY0
+nY1∑

j=1

(βj λ̃j − d̃j)
2 ≤ E2,

with Λ̃Z = {λ̃1, . . . , λ̃nZ
}. The minimization without regards to constraints given as

λ̃i =

{
b̃i/αi, αi ̸= 0,

d̃i/βi, αi = 0.

11



If the above unconstrained solution does not satisfy the constraint, the solution of the
LSQI problem occurs on the boundary of the feasible set. Therefore, we need only
find the solution of the least-squares problem with the equality constraint condition

arg inf
ΛZ∈RnZ

∥DAΛ̃Z − b̃∥2 s.t. ∥DBΛ̃Z − d̃∥2 = E.

To solve the above optimization problem, we use the method of Lagrange multipliers.
The Lagrange function is defined as:

h(η, Λ̃) = ∥DAΛ̃Z − b̃∥22 + η(∥DBΛ̃Z − d̃∥22 − E2).

By making derivatives of h with respect to λ̃i, i = 1, . . . , nZ equal zero, we obtain
the following equation system:

(DT
ADA + ηDT

BDB)Λ̃Z = DT
Ab̃+DT

B d̃.

The solution of λ̃ can obtained with respect to Lagrange parameter η by solving the
above equations system

λ̃i(η) =


αib̃i + ηβid̃i
α2
i + ηβ2

i

, 1 ≤ i ≤ nY0 + nY1 ,

b̃i
αi

, nY0 + nY1 + 1 ≤ i ≤ nZ .

We are left to evaluate the Lagrange parameter η, which can be obtained by solving
the scaler secular equation:

ϕ(η) = ∥DB(Λ̃Z(η)− (DB)
−1d̃)∥22 = E2.

It was shown in [12] that the above scaler secular equation has a unique solution η∗

and that it can be obtained by, say, Newton iteration with a Hebden model as in [4].
Finally, the coefficients ΛZ for the LSQI problem (3.1) can evaluated by the relation

ΛZ = XΛ̃Z .

4. Numerical experiments. In this section, we test the accuracy and efficiency
of the proposed method in Section 3 for solving Cauchy problems by comparing them
with other nonlinear solvers. We study convergence behavior of numerical results
with respect to noise levels and the fill distance of trial centers. By comparing our
numerical results with the MFS and the finite element method (FEM), we further
show the effectiveness of our method.

Noisy Cauchy data are utilized to test the robustness of the algorithm proposed
in Section 3. Cauchy data with noise are generated by the same method as in [31]
and [34]

gδi = g∗i + δmax
y∈Γ

|g∗i |rand(ξ) for i = 0, 1,

where rand(ξ) is a uniformly random number in [−1, 1] for each component and δ is
the level of noise. In all numerical experiments, we compute relative errors over the
domain as

Er(u
δ
σ,X,Y0,Y1

) =
∥u∗ − uδ

σ,X,Y0,Y1
∥L2(Ω)

∥u∗∥L2(Ω)

12



and pointwise relative errors on evaluation points as:

E(uδ
σ,X,Y0,Y1

)(i) =
|u∗(i)− uδ

σ,X,Y0,Y1
(i)|

max{|u∗|}

as in [31] and [34] for the sake of comparison. The unscaled Whittle-Matérn-Sobolev
kernel

Φm(x) := ∥x∥m−d/2
2 Km−d/2(∥x∥2) for all x ∈ Rd,

satisfying (2.4) is used in all numerical examples, and Kν is the Bessel function of the
second kind.

When solving the LSQI problem (2.14) numerically, the value of M̃ , which appears
in the upper bound of the inequality constraint, is required. As its value cannot be
evaluated exactly from Lemma 2.6, we take M̃ = 1 in all numerical tests. Boundary
collocation sets Y0 and Y1 are given as hY0 = hY1 and we use hY as a simple notation.
The elliptic operator is chosen to be the Laplacian operator in all examples.

4.1. Robustness of the proposed solver. Besides the LSQI solver introduced
in section 3, other nonlinear solvers can also be applied to problem (3.1). We show
numerical solutions by different solvers in this part. Cauchy data were generated from
exact solutions

u∗ := x3 − 3xy3 + e2y sin(2x)− ey cos(x).

The problem is solved in the domain Ω := [−1, 1]× [0, 1] under the Cauchy boundary
Γ := ∂Ω \ [−1, 1] × {1}. We use hY ∈ {0.07, 0.08, 0.10}. Regularly distributed trial
centers Z and collocation pointsX are constructed such that hX = hZ = hY . Relative
errors are approximated by using 602 uniform grid. Kernel smoothness is required as
m ≥ 2 + d/2, and we test m ∈ {3, 4}. Three nonlinear solvers are used to solve the
quadratic constraint least-squares problems (3.1):

1 LSQI solver introduced in Section 3,
2 SDPT3 solver in MATLAB CVX toolbox [13,14], and
3 MOSEK [2].

To be consistent with other papers, we use the value of δ in Eq. (4.1) to measure noise
and a logarithmically spaced noise level vector δ with 10 elements between 10−6 to
10−1 is used. L2 errors obtained by the three solvers are shown in Figure 4.1. As the
exact same optimization problem is solved by different solvers when kernel smoothness
m and sets X, Z and Y are fixed, the same solutions should be obtained if numerical
errors are ignored. From Figure 4.1, almost identical L2 errors are obtained by all
three solvers when the problems are solved with kernel smoothness m = 3. For higher
kernel smoothness m = 4, MOSEK solver failed to solve the problem for some δ when
hY ∈ {0.07, 0.08}, and SDPT3 solver could not obtain solutions for most tested cases
except for one successful case when hY = 0.10 and δ = 10%.

In cases when SPDT3 and MOSEK converged, the three solvers yielded the same
L2 errors. When considering CPU times, the LSQI solver was the fastest of the three
under the same problem setting as only a nonlinear scaler equation needs to be solved.
SDPT3 solver consumed the most CPU time. Thus, in the following numerical tests,
we use only the LSQI solver for solving problem (3.1).
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Fig. 4.1: L2 errors by three nonlinear solvers for example u∗ = x3 − 3xy3 + e2y sin(2x) −
ey cos(x) with Cauchy boundary ∂Ω\[−1, 1]× {1}, hY ∈ {0.07, 0.08, 0.10} and m ∈ {3, 4}

4.2. Convergence with respect to δ and hZ . From Theorem 2.9, numerical
solutions converge to exact solutions with respect to a log-rate of noise levels δ, fill

distances hm−2
Z and h

m−3/2
Y . For convergence tests, we use an example with exact

solutions u∗ := x3−3xy3+e2y sin(2x)−ey cos(x) in domain Ω := [−1, 1]× [0, 1] under
two kinds of Cauchy boundaries

Γ1 : ∂Ω \ [−1, 1]× {1},

and

Γ2 : [−1, 1]× {0}.

Regularly distributed collocation points and trial centers satisfying hX = hZ = hY

are used.
In noise-free case δ = 0, Figure 4.2 shows the L2 error for m ∈ {3, 3.5, 4} against

the fill distance of trial centers hZ when hZ is a logarithmically spaced vector with
8 elements between 10−1.2 and 10−0.4. Because the ratio of the Cauchy boundary to
the whole boundary influences the convergence behavior, the results of the two tested
Cauchy boundaries are slightly different. For Cauchy boundary Γ0, convergence rates
are between 1 and 3 for m ∈ {3, 3.5, 4}. Slower rates between 0.3 to 1 are observed for
the smaller boundary Γ2. In both cases, a larger m yields a faster convergence rate.

We use hY ∈ {0.07, 0.09} and kernel smoothness m = 4 to test convergence
behavior with respect to 10−6 ≤ δ ≤ 10−1. Figure 4.3 plots the L2 errors of our
reconstructed solutions based on Cauchy boundaries Γ1 (a) and Γ2 (b). The L2 errors
for both Cauchy boundaries first decrease linearly at a rate of 0.5 and then stop at a
rate indicating noise-free accuracy as δ approaches zero .

4.3. Comparison with other numerical methods. In this section, we con-
sider two examples with Cauchy data generated from

u∗
1 = x3 − 3xy3 + e2y sin(2x)− ey cos(x),

and

u∗
2 := cos(πx) cosh(πy).

14



0.1 0.15 0.2 0.25 0.30.35
10-3

10-2

10-1

100

slope 3

slope 1

m=3
m=3.5
m=4

L
2
E
rr
o
r

Γ1 : ∂Ω\[−1, 1] × [1]

hZ

(a)

0.1 0.15 0.2 0.25 0.30.35
10-2

10-1

100

slope 1

slope 0.3

m=3
m=3.5
m=4

Γ2 : [−1, 1] × [0]

hZ

(b)

Fig. 4.2: L2 error profiles by LSQI solvers for example u∗ = x3−3xy3+e2y sin(2x)−ey cos(x)
in noisefree case when m ∈ {3, 3.5, 4}, Cauchy boundary Γ1 : ∂Ω\[−1, 1] × [1] (a) and
Γ2 : [−1, 1]× [0] (b)
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Fig. 4.3: L2 errors by LSQI solver for example u∗ = x3−3xy3+e2y sin(2x)−ey cos(x) when
hY ∈ {0.07, 0.09} , m = 4 and Cauchy boundary Γ1 : ∂Ω\[−1, 1]× [1] (a) and Γ2 : [−1, 1]× [0]
(b)
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The FEM with discrete Tikhonov regularization based on RKHS was applied to both
examples in [34]. The method of fundamental solution combined with Tikhonov
regularization was used to reconstruct solutions in [31]. Figure 4.4 shows the exact
solution in the domain Ω of u∗

1 and u∗
2. For a fair comparison, we use the same Cauchy

data as in [34] (hY = 0.02) and [31] (hY = 0.024). These two examples are solved in
the domain Ω := [−1, 1]× [0, 1] under two kinds of Cauchy boundaries

Γ1 : ∂Ω \ [−1, 1]× {1},

and

Γ2 : [−1, 1]× {0}.

We first consider the example with exact solution u∗
1. Fill distances of the collo-

cation set and trial centers are taken as hZ = hX = 0.06, and the kernel smoothness
is set to m = 4. An L2 error comparison of accuracy obtained by our proposed solver
and other numerical methods provided in Table 4.1 for Cauchy boundary Γ1 and in
Table 4.2 for Cauchy boundary Γ2. Compared with RKHS in [34], comparable solu-
tions are obtained by our method for all δ in both tested Cauchy boundaries. Except
for the noise-free case, the same order of accuracy is obtained by our LSQI solver as
that shown in the results by MFS in [31].

In the other test solution u∗
2, Cauchy data on Γ1 and Γ2 are flatter than data on

the missing boundary at [−1, 1] × {1}. Importantly, the Neumann data gδ1 remains
zero for all δ. These conditions make this example special and harder to solve than the
other example. When we use the LSQI solver in Section 3 to solve the problem (3.1),
the numerical solution may not be as accurate as the others because the Dirichlet and
Neumann boundaries are considered together in inequality constraints in problem
(3.1). To make use of the zero Neumann boundary for all noise levels as the other
two methods did, we consider the Neumann boundary separately by imposing an
equality constraint. Instead of LSQI problem (3.1), we solve the following least-
squares problems with quadratic constraints on the Dirichlet boundary and an equality
constraint on the Neumann boundary (LSQIEC)

arg inf
λ∈RnZ

∥Aλ− b∥2 (4.1)

s.t. ∥B0λ− d0∥2 ≤ E0 and B1λ = d1,

with A and b being the same as in Eq. (3.1) and

B0 = h
(d−1)/2
Y K(Y,Z), B1 = ∂LK(Y,Z),

d0 = h
(d−1)/2
Y gδ0|Y , d1 = gδ1|Y ,

E0 = h
m−d/2
Z M̃ + δ0, δ0 = h

(d−1)/2
Y ∥g∗0 − gδ0∥Y .

The equality constraint can be handled by the null space approach in [28]. Unknown
coefficients are expressed as λ = NBγ + B1\d1. For the new unknown vector γ,
substituting the above expression into the objective function and inequality constraint
on the Dirichlet boundary yields the following problem:

arg inf
λ∈RnZ

∥ANBγ − b+A(B1\d1)∥2 (4.2)

s.t. ∥B0NBγ − d0 +B0(B1\d1)∥2 ≤ E0.
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(a) (b)

Fig. 4.4: Exact solutions of two tested examples: u∗ = x3 − 3xy3 + e2y sin(2x) − ey cos(x)
(a) and u∗ = cos(πx) cosh(πy) (b)

Results for hY = 0.020 Results for hY = 0.024

δ LSQI RKHS [34] LSQI MFS [31]

0.00 0.0014 0.0043 0.0012 1.6 ∗ 10−5

0.01 0.0064 0.0106 0.0068 0.0053

0.05 0.0170 0.0218 0.0180 0.0167

0.10 0.0258 0.0425 0.0287 0.0332

Table 4.1: Relative errors compare of u∗ = x3 − 3xy3 + e2y sin(2x)− ey cos(x) when Cauchy
boundary given on ∂Ω \ [−1, 1]× {1}, hX = hZ = 0.06 and m = 4

This is again an LSQI problem that can be solved by our solver. For Cauchy boundary
Γ1, fill distance as hZ = hX = 0.05 and m = 4, we show the L2 error by both the LSQI
and LSQIEC solutions in Table 4.3. The accuracy of solution improved for all noise
levels after imposing an equality constraint on the Neumann boundary, especially for
small noise level (δ ≤ 0.01). From the third and fourth columns of Table 4.3, LSQIEC
gives comparable results with those from RKHS. When compared with MFS, we again
obtained better solutions by LSQIEC except in the noise-free case (see the last two
columns of Table 4.3).

Table 4.4 shows the results for Cauchy boundary Γ2. We use hX = hZ = 0.04.
The Sobolev kernel with m = 4 is used for LSQI. For LSQIEC, we show results for
both m = 4 and m = 5. The LSQIEC results are clearly improved over those of
LSQI. Better results were also obtained for large noise levels compared with RKHS
and MFS. For small noise levels, comparable solutions obtained by LSQIEC (m=5)
with other two methods except in noise-free case by MFS.

Figure 4.5 plots the numerical solutions of δ ∈ {0%, 10%} and hY = 0.024 by
LSQI solver recovered from Cauchy boundary Γ2 for u∗

1. Blue points indicate the
exact solution values on the missing boundary ∂Ω/Γ. Figure 4.6 are the numerical
solutions of δ ∈ {0%, 10%}, hY = 0.024 and m = 5 under the Cauchy boundary Γ2

for u∗
2 obtained by LSQIEC. Although large errors appear on the missing boundary

in both examples, reconstruction solutions can give reasonable approximations of the
overall shape of the exact solutions.

Conclusion. We give both theoretical and numerical studies for kernel-based col-
location methods for inverse Cauchy problems. We use kernels reproducing Hm(Ω)
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Results for hY = 0.020 Results for hY = 0.024

δ LSQI RKHS [34] LSQI MFS [31]

0.00 0.0690 0.0428 0.0691 8.6 ∗ 10−4

0.01 0.0769 0.0507 0.0784 0.0696

0.05 0.1109 0.2449 0.1144 0.1023

0.10 0.1555 0.2797 0.1631 0.1869

Table 4.2: Relative errors for Cauchy problems with u∗
1 = x3−3xy3+e2y sin(2x)−ey cos(x)

and Cauchy boundary [−1, 1]× {0}, hX = hZ = 0.06 and m = 4

Results for hY = 0.020 Results for hY = 0.024

δ LSQI LSQIEC RKHS [34] LSQI LSQIEC MFS [31]

0.00 0.0181 0.0064 0.0037 0.0126 0.0063 1.5 ∗ 10−4

0.01 0.0188 0.0063 0.0046 0.0129 0.0067 0.0074

0.05 0.0208 0.0106 0.0198 0.0155 0.0125 0.0365

0.10 0.0223 0.0159 0.0292 0.0175 0.0176 0.0831

Table 4.3: Relative errors compare of u∗ = cos(πx) cosh(πy) when Cauchy boundary given
on ∂Ω \ [−1, 1]× {1} for hX = hZ = 0.05 and m = 4

and all analysis is provided in Hilbert space. A solver for LSQI problem by gen-
eralized singular value decomposition of matric and method of Lagrange multiplier
is used to obtain solutions of Cauchy problems. The convergence of the algorithm
respect to noise levels and fill distances of collocations sets and trial set is proved.
For stable reconstruction, we use Tikhonov regularization with a priori choice of the
regularization parameter.

Numerical examples verified our proved convergence results with respect to noise
level and fill distance of trial centers. Robustness of our proposed method to noisy
Cauchy data can be seen when compared with other numerical methods. High accu-
racy results show that the method can be applied to various Cauchy problems.
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