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Abstract

We consider discrete least-squares methods using radial basis functions. A general `2-
Tikhonov regularization with Wm

2 -penalty is considered. We provide error estimates that
are comparable to kernel-based interpolation in cases which the function it is approximat-
ing is within and is outside of the native space of the kernel. Our proven theories concern
the denseness condition of collocation points and selection of regularization parameters.
In particular, the unregularized least-squares method is shown to have Wµ

2 (Ω) conver-
gence for µ > d/2 on smooth domain Ω ⊂ Rd. For any properly regularized least-squares
method, the same convergence estimates hold for a large range of µ ≥ 0. These results
are extended to the case of noisy data. Numerical demonstrations are provided to verify
the theoretical results. In terms of applications, we also apply the proposed method to
solve a heat equation whose initial condition has huge oscillation in the domain.

Keywords: Error estimate, Meshfree approximation, Kernel methods, Tikhonov
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1. Introduction

Given a set X = {x1, . . . , xnX} of data points in some bounded domain Ω ⊂ Rd, on
each of which function value fi = f(xi) ∈ R, 1 ≤ i ≤ nX , was specified via some unknown
function f . One important application is to reconstruct f based on data; commonly used
methods include interpolation or function approximation. The function reconstruction
process by radial basis functions (RBF) seeks an interpolant or approximant from the
trial space

UZ,Φ,Ω := span{Φ(· , zj) : zj ∈ Z},

defined by some translation invariant symmetric positive definite kernel Φ : Ω× Ω → R
centered at a set Z = {z1, . . . , znZ} ⊂ Ω of trial centers. In RBF interpolation, we pick
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Z = X and the reconstructed interpolant of the form

s =

nZ∑
j=1

αjΦ(·− zj), (1)

which can be uniquely determined by the solution ~α = [α1, . . . , αnZ ]T of the (square)
linear system

Φ(X,X)~α = ~f|X ,

where [Φ(X,X)]i,j = Φ(xi, xj), 1 ≤ i, j ≤ nX , is the interpolation matrix of Φ on X

and ~f|X = [f1, . . . , fnX ]T is the vector of data values. Traditional interpolation error
estimates were proven under the assumption that f lies in the reproducing kernel Hilbert
space, a.k.a. the native space, NΦ,Ω associated with the RBF kernel Φ. Convergence
estimates were measured in terms of the fill distance of trial centers Z as

hZ := sup
z∈Ω

min
zj∈Z

‖z − zj‖`2(Rd). (2)

Generally speaking, smoother kernels, which imply a smoother unknown function f ∈
NΦ,Ω, yield faster convergence rates. Readers are referred to the monographs [1, 2, 3, 4]
for details and to [5] for f not in the native space.

Still assuming that the data points in X and values f|X were given. A more general
setting removes the restriction that the sets Z of trial centers and X were identical, but
we do insist on having nZ ≤ nX to yield different minimization problems. In compar-
ison, there are far fewer theories for least-squares function approximation by RBF. A
continuous least-squares problem takes the form

arg inf
{
‖f − s‖L2(Ω) : s ∈ UZ,Φ,Ω

}
. (3)

Suppose Ω ⊂ Rd is a bounded domain that satisfies a cone condition and has a Lipschitz
boundary. Suppose further that the Fourier transform of the kernel Φ on Rd decays like

cΦ(1 + ‖ω‖22)−m ≤ Φ̂(ω) ≤ CΦ(1 + ‖ω‖22)−m for all ω ∈ Rd, (4)

for some bmc > d/2 with two positive constants 0 < cΦ ≤ CΦ. Under these assumptions,
the native space NΦ,Ω is norm equivalent to the Sobolev space Wm

2 (Ω). If f ∈ Wm
2 (Ω),

then it was shown in [6] and [7, Proposition 3.2] that

min
s∈UZ,Φ,Ω

‖f − s‖L2(Ω) ≤ ChmZ ‖f‖Wm
2 (Ω)

for some C > 0 independent of Z and f .
One may also consider the discrete least-squares problem

arg inf
{
‖f − s‖2`2(X) :=

nX∑
i=1

[f(xi)− s(xi)]2 : s ∈ UZ,Φ,Ω
}
, (5)
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which can be solved by the solution of the overdetermined linear system

Φ(X,Z)~α = ~f|X ,

where [Φ(X,Z)]i,j = Φ(xi, zj), 1 ≤ i ≤ nX and 1 ≤ j ≤ nZ comprise the collocation
matrix of Φ on Z at X. Under the same assumptions, [8, Theorem 2.3] implies an error
estimate for the discrete error norm

min
s∈UZ,Φ,Ω

‖f − s‖`2(X) ≤ Cn
1/2
X ρ

d/2
X hmZ ‖f‖Wm

2 (Ω)

for some constant C > 0 independent of X, Z, and f . Here, ρX = hX/qX is the mesh
ratio of X defined by its fill distance as in (2) and the separation distance

qX :=
1

2
min
i6=j
‖xi − xj‖`2(Rd).

A trivial application of discrete least-squares approximation is on parabolic PDEs. If
one consider the regularity estimates [9] for parabolic problems

ut + Lu = f ∈ L2(0, T ;L2(Ω))

with homogenous boundary condition and initial condition u = g ∈ H1
0 (Ω), i.e.,

ess sup
0≤t≤T

‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2(Ω)) + ‖ut‖L2(0,T ;L2(Ω))

≤ C
(
‖f‖L2(0,T ;L2(Ω)) + ‖g‖H1

0 (Ω)

)
,

it is desirable to have a H1-approximation for the initial conditions g in the form of (1).
Then, the evolution of the time dependent coefficients α(t) can be obtained by solving
ODE systems. In this paper, we derive some error estimates in continuous norms for the
discrete least-squares function approximation by radial basis functions.

2. Stability of discrete least-squares problems

We consider a more general setting of the discrete least-squares problem with a
smoothness penalty given by the native space norm of some kernel Φ satisfying (4).
For any s ∈ UZ,Φ,Ω in the form of (1), its native space norm is given by

‖s‖2NΦ,Ω
= ~αTΦ(Z,Z)~α.

We still assume that Ω ⊂ Rd is a bounded Lipschitz domain satisfying a cone condition.
Now, for any regularization parameter λ ≥ 0, we define the corresponding regularized
least-squares approximant to data (X, ~f|X) by

sλ := arg inf
s∈UZ,Φ,Ω

(
‖s− f‖2`2(X) + λ2‖s‖2NΦ,Ω

)
. (6)

In this paper, we apply the native space norm in the regularization term, which is
related to kriging [10] in statistics. In statistics, other regularization techniques also play
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important roles in applications. For example, the `1 and `2 penalty are used in Lasso
regularized method [11] and ridge regression [12], respectively. Combination of `1 and `2
yields the Elastic Net regularization method [13]. Recently, a new regularized method
called principal components lasso (pcLasso) was proposed [14].

In a recently published monograph [15, Section 8.6], it was proven that the solution
sλ of (6) is stable with respect to the approximand:

‖sλ − f‖2`2(X) + λ2‖sλ‖2NΦ,Ω
≤ (1 + λ2/nX)‖f‖2NΦ,Ω

for all f ∈ NΦ,Ω,

and to the regularization parameter:

‖sλ‖NΦ,Ω
≤ ‖s0‖NΦ,Ω

for all λ ≥ 0,

where s0 denotes the unregularized solution with λ = 0. Moreover, the regularized
solution sλ converges to s0 in the sense that

‖sλ − s0‖2NΦ,Ω
= O(λ2) and ‖sλ − s0‖2`2(X) = O(nXλ

2) for all λ↘ 0.

To obtain convergent estimates to f , our first goal is to derive a stability estimate for
(6) within the trial space UZ,Φ,Ω. By the sampling inequality in [16, Theorem 3.3], there
exists some constant that depends only on Ω, m and µ such that the followings hold:

‖s‖Wµ
2 (Ω) ≤ CΩ,m,µ

(
h
d/2−µ
X ‖s‖`2(X) + hm−µX ‖s‖Wm

2 (Ω)

)
for 0 ≤ µ ≤ m, (7)

for any s ∈ Wm
2 (Ω) with m > d/2 and any discrete sets X ⊂ Ω with sufficiently small

mesh norm hX . By the inequality (a+ b)2 ≤ 2(a2 + b2) for any a, b ≥ 0, we have

‖s‖2Wµ
2 (Ω) ≤ Chd−2µ

X

(
‖s‖2`2(X) + h2m−d

X ‖s‖2Wm
2 (Ω)

)
≤ Chd−2µ

X

(
‖s‖2`2(X) + λ2‖s‖2Wm

2 (Ω) + (h2m−d
X − λ2)+‖s‖2Wm

2 (Ω)

)
for 0 ≤ µ ≤ m with (x)+ = max(x, 0). Denote the critical regularization parameter

λ∗ := h
m−d/2
X .

For λ ≥ λ∗, we immediately see that there is a constant depending on Ω, m, and µ such
that

‖s‖2Wµ
2 (Ω) ≤ Ch

d−2µ
X

(
‖s‖2`2(X) + λ2‖s‖2Wm

2 (Ω)

)
for 0 ≤ µ ≤ m, (8)

holds for any s ∈Wm
2 (Ω).

For 0 ≤ λ < λ∗, we focus only on trial function s ∈ UZ,Φ,Ω ⊆ NΦ,Ω = Wm
2 (Ω). Within

the trial space UZ,Φ,Ω, we have a Bernstein inequality [17, Lemma 3.2], which states that
there is a constant depending only on Ω, Φ, m, and µ such that

‖s‖Wm
2 (Ω) ≤ CΩ,Φ,m,µ q

−m+µ
Z ‖s‖Wµ

2 (Ω) for d/2 < bµc, µ ≤ m (9)

holds for all finite sets Z ⊂ Ω with separation distance qZ . Although the original lemma
there requires the integer index to satisfy d/2 < µ ≤ m, a closer inspection of the
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proof shows that the updated condition in (9) on µ yields the appropriate extension to
fractional orders. Thus, we have

‖s‖2Wµ
2 (Ω) ≤ Chd−2µ

X

(
‖s‖2`2(X) + λ2‖s‖2Wm

2 (Ω) + (h2m−d
X − λ2)+q

−2m+2µ
Z ‖s‖2

Wµ
2 (Ω)

)
.

For sufficiently dense X, in the sense that

CΩ,Φ,m,µh
d−2µ
X (h2m−d

X − λ2)+q
−2m+2µ
Z ≤ 1

2
, (10)

we obtain the same stability estimate for 0 ≤ λ < λ∗ in the same form of (8) that holds
for all s ∈ UZ,Φ,Ω. We summarize the result as follows:

Lemma 1. Let a kernel Φ : Rd × Rd → R satisfying (4) with smoothness bmc > d/2
be given. Suppose Ω ⊂ Rd is a bounded Lipschitz domain satisfying an interior cone
condition. Let Z ⊂ Ω be a discrete set of trial centers with separation distance qZ . Let
X ⊂ Ω be another discrete set of collocation points with fill distance hX . Then, there
exists a constant depending on Ω, Φ, m, and µ such that

‖s‖2Wµ
2 (Ω) ≤ Ch

d−2µ
X

(
‖s‖2`2(X) + λ2‖s‖2Wm

2 (Ω)

)
for any λ ≥ 0

holds for all s ∈ UZ,Φ,Ω in two circumstances:

• for λ ≥ hm−d/2X , under the conditions

0 ≤ µ ≤ m,

and the set X being sufficiently dense for (7) to hold;

• or, for 0 ≤ λ < h
m−d/2
X , under the conditions

d/2 < bµc, µ ≤ m,

and the set X being dense enough with respect to Z and λ for (10) to also hold.

3. Error estimates

We consider cases f ∈W β
2 (Ω) with bβc > d/2 and β ≤ m; i.e., f is not in the native

space of Φ if β < m.
Let sf ∈ UZ,Φ,Ω be the interpolant of f on Z in the trial space UZ . For any appropriate

value of µ as specified in Lemma 1, we can manipulate the Wµ
2 (Ω) approximation error
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of sλ ∈ UZ,Φ,Ω in (6) by a chain of comparisons:

‖sλ − f‖2Wµ
2 (Ω) ≤ ‖sλ − sf‖2Wµ

2 (Ω) + ‖sf − f‖2Wµ
2 (Ω)

≤ Chd−2µ
X

(
‖sλ − sf‖2`2(X) + λ2‖sλ − sf‖2Wm

2 (Ω)

)
+ ‖sf − f‖2Wµ

2 (Ω)

≤ Chd−2µ
X

(
‖sλ − f‖2`2(X) + λ2‖sλ‖2Wm

2 (Ω)

+‖sf − f‖2`2(X) + λ2‖sf‖2Wm
2 (Ω)

)
+ ‖sf − f‖2Wµ

2 (Ω).

By the minimization property of sλ, we obtain an upper bound in terms of the interpolant

‖sλ − f‖2Wµ
2 (Ω) ≤ 2Chd−2µ

X

(
‖sf − f‖2`2(X) + λ2‖sf‖2Wm

2 (Ω)

)
+ ‖sf − f‖2Wµ

2 (Ω) (11)

for some positive constant C = CΩ,Φ,m,µ. Error estimates can now be derived based on
the approximation power of RBF interpolants. For this, we rely on the results in [5] that
some improved error bounds found in [7].

To begin, we bound the two continuous norms in (11). For any 0 ≤ µ ≤ β ≤ m, [5,
Theorem 4.2] states that

‖sf − f‖Wµ
2 (Ω) ≤ Ch

β−µ
Z ρm−µZ ‖f‖Wβ

2 (Ω),

and using [17, Lemma 3.2] followed by [5, Corollary 4.3] yields that

‖sf‖Wm
2 (Ω) ≤ Cq−m+β

Z ‖sf‖Wβ
2 (Ω) for bβc > d/2

≤ Cq−m+β
Z (1 + C ′ρm−βZ )‖f‖Wβ

2 (Ω).

It remains to handle the discrete norm in (11). If β = m and f ∈ Wm
2 (Ω), the zero

lemma in [8, Theorem 2.3] ensures that

‖sf − f‖`2(X) ≤ Cn
1/2
X ρ

d/2
X hmZ ‖sf − f‖Wm

2 (Ω)

≤ Cn
1/2
X ρ

d/2
X hmZ ‖f‖Wm

2 (Ω).

The last inequality follows from the optimality of sf and norm equivalence between NΦ,Ω

and Wm
2 (Ω).

For f ∈W β
2 (Ω), with β ∈ N and d/2 < β ≤ m, not in the native space, we have

‖sf − f‖`2(X) ≤ Cn
1/2
X ρ

d/2
X ρm−βZ hβZ‖f‖Cβ(Ω̄)

by [7, Corollary 3.11]. Using the standard estimates nX ≤ Cq−dX = CρdXh
−d
X and

‖f‖Wβ
2 (Ω) ≤ ‖f‖Cβ(Ω̄), we can complete the proof of the following theorem.

Theorem 1. Suppose all of the assumptions in Lemma 1 hold. Let sλ be the discrete
least-squares solution of (6), then
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• if f ∈Wm
2 (Ω),

‖sλ − f‖Wµ
2 (Ω) ≤ C

(
ρdXh

−µ
X hmZ + h

d/2−µ
X λ+ ρm−µZ hm−µZ

)
‖f‖Wm

2 (Ω),

• or, if f ∈W β
2 (Ω) with β ∈ N, d/2 < bβc and β ≤ m,

‖sλ − f‖Wµ
2 (Ω) ≤ C

(
ρdXρ

m−β
Z h−µX hβZ

+ρ2m−2β
Z h

d/2−µ
X hβ−mZ λ+ ρm−µZ hβ−µZ

)
‖f‖Cβ(Ω̄),

holds for some constants depending on Ω, Φ, m, µ, and β.

The least amount of regularization used in (6) that does not impose any denseness
requirement on the collocation set X is λ∗. The resulting approximation power is com-
parable to RBF interpolation.

Corollary 1. Let sλ∗ be the regularized least-squares solution of (6) with regularization

parameter λ∗ = h
m−d/2
X . Under the assumption of Lemma 1, there exists some constant

depending on Ω, Φ, and m such that

‖sλ∗ − f‖Wµ
2 (Ω) ≤ C

(
ρdXh

−µ
X hmZ + hm−µX + ρm−µZ hm−µZ

)
‖f‖Wm

2 (Ω) for 0 ≤ µ ≤ m,

holds for all f ∈Wm
2 (Ω). In particular, we have

‖sλ∗ − f‖L2(Ω) ≤ C
((
ρdX + ρmZ

)
hmZ + hmX

)
‖f‖Wm

2 (Ω).

3.1. Noisy data

When data are contaminated by measurement or some other sort of error, we only
have some noisy data ~fδ |X to work with instead of using the exact data value ~f|X in (6),
the regularized solution with noisy data takes the form

sδ,λ := arg inf
s∈UZ,Φ,Ω

(
‖s− fδ‖2`2(X) + λ2‖s‖2NΦ,Ω

)
. (12)

Here, we do not require that fδ be a function and only its values at X are required.
Following the same line of logic in deriving (11), we have

‖sδ,λ − f‖2Wµ
2 (Ω) ≤ Chd−2µ

X

(
‖sδ,λ − f‖2`2(X) + λ2‖sδ,λ‖2Wm

2 (Ω)

+‖sf − f‖2`2(X) + λ2‖sf‖2Wm
2 (Ω)

)
+ ‖sf − f‖2Wµ

2 (Ω)

≤ 2Chd−2µ
X

(
‖sf − f‖2`2(X) + λ2‖sf‖2Wm

2 (Ω)

)
+ ‖sf − f‖2Wµ

2 (Ω)

+2Chd−2µ
X ‖f − fδ‖2`2(X),
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that differs from (11) only in the last term.

Corollary 2. Suppose all of the assumptions in Lemma 1 hold. Let sδ,λ be the discrete

least-squares solution of (12) with noisy data ~fδ |X , then the error estimates in Theorem 1

hold with an extra term Ch
d/2−µ
X ‖f−fδ‖`2(X) added to the upper bounds for some constant

C depending on Ω, Φ, m, and ν.

We now focus on the case that f ∈ Wm
2 (Ω) is in the native space of Φ, and the

pointwise absolute error at each data point is bounded. Following the general framework
in [18, Section 8], we assume the existence of a noise level δ∞ ≥ 0 relative to the Sobolev
norm of f such that

max
x∈X

∣∣f(x)− fδ(x)
∣∣ ≤ δ∞‖f‖Wm

2 (Ω) (13)

for any set X ∈ Ω. Then,

‖f − fδ‖`2(X) ≤ n
1/2
X δ∞‖f‖Wm

2 (Ω) ≤ q
−d/2
X δ∞‖f‖Wm

2 (Ω)

and, hence, Corollary 2 yields

‖sδ,λ − f‖Wµ
2 (Ω) ≤ C

(
ρdXh

−µ
X hmZ + h

d/2−µ
X λ+ ρm−µZ hm−µZ + ρ

d/2
X h−µX δ∞

)
‖f‖Wm

2 (Ω).

This suggests a regularization strategy by using

0 ≤ λ ≤λδ := h
−d/2
X δ∞ = λ∗h

−m
X δ∞,

for any allowed value of µ.
If we take λ = 0, we fail the theoretical requirement for L2(Ω) convergence; this

will be studied numerically in the next section. If we take λ = λδ, Lemma 1 allows
0 ≤ µ ≤ m and the density requirement on data points X is independent of trial centers
Z for significantly large noise in the sense that δ∞ ≥ hmX . In application, this means
that we can take nZ . nX . Due to the presence of the ρZ term in the error estimates
in Theorem 1, we are highly motivated to choose Z ⊂ Ω quasi-uniformly, or uniformly if
possible. The L2(Ω) error bound for the regularized least-squares solution of (12) with
regularization parameter λδ will be

‖sδ,λδ − f‖L2(Ω) ≤ C
(
ρdXh

m
Z + ρmZ h

m
Z + ρ

d/2
X δ∞

)
‖f‖Wm

2 (Ω).

The presence of noise affects accuracy linearly depending on some constant that de-
pends Ω, Φ, m, and the mesh ratio ρX of X. In other words, admissible noise in data is
comparable to the interpolation error, i.e., δ∞ = O(hmZ ), for RBF least-squares methods.

4. Numerical examples

Note that the native space norm of the trial function in UZ,Φ,Ω in the form of (1) is
given by

‖s‖NΦ,Ω = ~αTΦ(Z,Z)~α.
8



Then, it is straightforward to show that the unique solution to (6)
(
or to (12)

)
is given

by the normal equation(
Φ(X,Z)TΦ(X,Z) + λ2Φ(Z,Z)

)
~α = Φ(X,Z)T ~f|X

(
or Φ(X,Z)T ~fδ|X

)
,

for identifying the unknown coefficients of the approximant sλ (or sδ,λ) in the form of (1).
To avoid worsening the problem of the ill-condition, we compute a stabilized Cholesky
decomposition of (

Φ(Z,Z) + εInZ

)
= LLT ,

for some smallest possible ε ≥ 0 so that the Cholesky algorithm does not crash due to
non-positive definiteness. This stabilization is implemented to safeguard the robustness
of our algorithm when a large order of smoothness m is used. With L in hand, we can
recast the normal equation as[

Φ(X,Z)
λLT

]
~α =

[
~f|X
0nZ

] (
or ~fδ|X

)
,

which becomes an overdetermined system that can be solved by standard linear solvers.
If any ε > 0 is required in the Cholesky decomposition, the least-squares problem above
is equivalent to adding an extra smoothness term ελ2‖~α‖ in the regularization for the
sake of numerical stability.

We provide some demonstrations to verify some aspects of the proven theories. All
numerical tests use the standard Whittle-Matérn-Sobolev kernel

Φm(x) := ‖x‖m−d/2
`2(Rd)

Km−d/2(‖x‖`2(Rd)) for all x ∈ Rd,

which satisfies (4) with exact Fourier transform (1 + ‖ω‖22)−m. We test bmc > d/2 as
required in Lemma 1. Note that one can always scale the kernel by ‖x‖2 ← ε‖x‖2 with
any ε > 0. Instead of scaling, we normalize test functions in Ω = [−1, 1]2 for easy
comparison without fewer parameters. In particular, we consider standard test functions

f1(x, y) = peaks(3x, 3y),

f2(x, y) = franke(x/2 + 1/2, y/2 + 1/2),

and functions in the form of (x + y)p, which is in W 2
2 (Ω) for any p > 3/2, aiming to

test the limit cases in theories. In our implementation, we evaluate the function and its
derivatives via a smoothing by machine epsilon εmach = 2.2× 10−16 and use

f3(x, y) := max(εmach, (x+ y)3/2).

All reported errors are estimated on a 512 uniform grid.

Example 1: Oversample ratio

The least-squares stability in Lemma 1 holds under the condition when the fill distance

hX of collocation is small enough to fulfill (7) and also (10) if λ < λ∗ = h
m−d/2
X . Although

these denseness requirements were not known explicitly in practice, practitioners have
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seldom had stability problems with RBF least-squares approximation, which hints that
(7) and (10) can be fulfilled easily by some oversampling such that nX > nZ .

To test the requirement (10), we set up an unconventional asymmetric interpolation
problem. We take nZ = 212 regular nodes as trial centers Z. A set of nX = nZ
collocation points X were quasi-random generated by a Halton sequence. The resulting
linear system (6) is therefore an asymmetric square system. Note that, with λ = 0, the
solvability of such a system is not guaranteed by any theories. Figure 1(a) shows the
resulting interpolant, which fails badly near the boundary where no collocation data is
presented. The colorbar there indicates the absolute error. In Figure 1(b), the regularized
fit using λ = λ∗ is shown. Appropriate regularization is necessary in cases of insufficient
oversampling.

Next, we include more points from the Halton sequence to obtain an expanded set
of nX = 529 collocation points, which yields an oversample ratio of nX : nZ = 1.2. The
corresponding least-squares approximants are shown in Figure 2; there is no observable
difference between the unregularized and regularized fit. The former is hence preferred
due to its lower computational cost. The same observations can be made for the other
two test functions, and thus we omit their results from this presentation.

Example 2: hZ–Convergence

To test convergence in the case of scattered data points, we use a Halton sequence to
create the set 72 ≤ nZ ≤ 212 of trial centers Z. All tested sets Z are parts of the same
Halton sequence with the same starting point, and hence, are nested. The oversample
ratio is fixed at nX = 1.2nZ and we generate the collocation sets X similarly with a
different starting point. With a large enough skip, resulting points in X are distinct
from Z. Then, we seek for the unregularized (λ = 0) and λ∗-regularized least-squares
approximants by solving (6). For easy comparison between the different test functions,
we report the relative W 2

2 (Ω) and L2(Ω) errors

Eq =
‖sλ − f‖W q

2 (Ω)

‖f‖W q
2 (Ω)

, q ∈ {0, 2} (14)

in Figure 3 against hZ ≈ (4/nZ)1/2. We point out that our proven theories do not
apply to the L2(Ω) convergence of the unregularized cases, and yet, we can see that the
convergence profiles of the unregularized and regularized approximants are analogous.
Under close inspection, the λ∗-regularized least-squares approximations display slightly
more stable convergence behavior.

Test by test, the peaks function f1 allows convergence faster than predicted. The
franke function f2 is also infinitely smooth and results in similar situations of supercon-
vergence [19]. Most obviously, the predicted W 2

2 (Ω) divergence rate for the case m = 2
should be (hX/hZ)−2 ≈ 1.2−2 by Corollary 1 and convergence behavior can be clearly
seen in Figure 3(a)–(d). Now, we consider f3 for a test of functions outside the native
space. The W 2

2 (Ω) error remains constant for all tested orders m of the kernel and sets
Z, whereas the regularized least-squares approximations converge with order 2 even for
kernels with higher order.
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Example 3: hX–divergence

We further investigate a possible hX divergence in the upper bound of the error es-
timate suggested by Corollary 1 when µ > 0. We focus on µ = 2 and study the W 2

2 (Ω)
relative errors E2. For ease of reproduction, we only consider uniform sets Z and X. The
number of trial centers is fixed at nZ = 212 with hZ ≈ 10−1. The number of collocations
is nX ≈ γ nZ for 1.1 ≤ γ ≤ 10. Because f1 and all least-squares approximants are
smooth, having some testing nX larger than the number of error evaluation points does
not affect the results. Among all three test functions, the peaks reveals the most notice-
able trends in hX -divergence; see Figure 4 for the results from kernel smoothness orders
m = 3 and m = 4. Despite observing the trends, the rate of divergence is much below
the predicted rate of −2. Although we did not further investigate larger oversampling
ratio, we conjecture that hX -divergence, if present, is illegible in practice.

Example 4: Noisy data

Using the nZ = 212 uniform trial centers and uniform collocation points with over-
sample ratio nX = 1.2nZ as in the last example, we test the linear divergence results
with respect to noise in Corollary 2. We focus on reconstructing the first two smooth
functions using kernels with m = 2. Noisy function values at the collocation points in X
were generated by

fδ = f + Unif(−ξ, ξ) with 10−5 ≤ ξ ≤ 15.

Figure 5 shows various relative errors Eq as in (14) for q = 0, 1, 2 of the least-squares
reconstructions (12) of the peaks f1 and franke f2 functions with λ = 0 and λ = λδ. To
identify the parameter λ∞ in (13), we must first have an estimate for ‖f‖Wm

2 (Ω), which is
a nontrivial task in general. For the sake of demonstration, we make such an estimation
based on the same procedure of error evaluation. We once again see that unregularized
and regularized least-squares approximations yield similar accuracy and the expected
linear divergence with respect to noise can be observed.

Example 5: An application to heat equations

As mentioned in the introduction, the proposed approximation methods allow us to
obtain approximate initial conditions in the trial space. From there, we can update
with a method of lines or some Rothe’s time stepping methods. Consider the following
unforced heat equation in Ω = [−1, 1]2:

ut(x, y, t) = ∆u(x, y, t) for (x, y, t) ∈ Ω× (0, T ],
u(x, y, t) = 0 for x ∈ ∂Ω, t ∈ [0, T ],
u(x, y, 0) = g(x, y) for x ∈ Ω.

(15)

We set the initial function as

g(x, y) = cos(πx/2) cos(πy/2) arctan(50(x− y)),

which “jumps” along the line x = y and is compatible with the zero boundary condition.
For demonstration purposes only, we set up a standard RBF method of lines [20] for

(15), in which we treat the RBF coefficients as time dependent. Whittle-Matérn-Sobolev
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kernel with smoothness order m = 3 is used in this demonstration. We use sets interior
and boundary collocation points X ⊂ Ω and Y ⊂ ∂Ω, and simply take Z = X ∪ Y as
trial centers. By firstly enforcing boundary conditions at Y, we obtain an nX ×nX ODE
system, which is solved by the MATLAB ODE45 solver.

To well capture this initial condition with rapid changes, we use quasi-uniform (i.e.,
without refinement near the jump) data points X ⊂ Ω with hX ≈ hZ/3 to approximate
g and, hence, obtain the initial value for the above set up ODE system. In Figure 6,
we present the numerical solutions (with nZ ≈ 600 and hZ ≈ 0.08) corresponding to
the unregularized (λ = 0) and λ∗-regularized approximants of initial condition g. The
finite element solution (with 2577 nodes) obtained by the MATLAB PDE Toolbox is
also presented for comparison. At t = 0.25 and 0.5, we can see that the λ∗-regularized
and FEM solutions are analogous. It is obvious that the unregularized solution is not
decaying as fast as the other two solutions; this is the consequence of the oscillations
near the jump at the initial stage.

5. Conclusion

We provided some Sobolev error estimates for regularized RBF discrete least-squares
approximation. With appropriate regularization, a least-squares stability holds for any
sampling ratio of the fill distances of collocation points and trial centers. This results
various Wµ

2 (Ω) error estimates for µ ≥ 0. For the unregularized least-squares approach,
stability can only be shown with collocation points being sufficiently dense with respect
to trial centers. This was demonstrated by a numerical example. The consequence is
an extra condition on all of the proven error estimates, which only holds for µ > d/2.
With sufficiently dense collocation points, the unregularized least-squares method shows
numerical convergence profiles that closely resemble the regularized case. It is our future
work to develop new theoretical tools to extend the results to 0 ≤ µ ≤ d/2.
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(a) Unregularized (b) Regularized

Figure 1: Example 1. Least-squares approximants obtained by nZ = 441 uniformly placed set of trial
center Z and nX = nZ quasi-random Halton set of collocation X with (a) no regularization λ = 0 and
(b) regularization parameter λ∗.

(a) Unregularized (b) Regularized

Figure 2: Example 1. Least-squares approximants obtained by the setup in Figure 1 but with oversam-
pling nX = 1.2nZ .
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(d) Regularized, f2
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(e) Unregularized, f3
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(f) Regularized, f3

Figure 3: Example 2. W q
2 (Ω)-Relative error, Eq for q ∈ {0, 2}, with respect to hZ = (4/nZ)1/2 of the

unregularized and λ∗-regularized least-squares approximant.
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Figure 4: Example 3. W 2
2 (Ω) error profiles of least-squares approximation using the same uniform nZ =

212 trial centers against different sets of uniformly distributed collocation points under oversampling
ratio.
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Figure 5: Example 4. Error profiles of least-squares approximation based on noisy data against maximum
plointwise noise ξ = maxX |f(x)− fδ(x)|.
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(a) Unregularized IC (b) λ∗-Regularized IC (c) FEM

Figure 6: Example 5. Snapshots at time t = 0.25 and 0.5 of numerical solutions for a heat equation
obtained by (a) the method of lines with unregularized and (b) λ∗-regularized initial conditions (IC),
and (c) finite element method.
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