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Abstract. We propose a doubly stochastic radial basis function (DSRBF) method for function
recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose
distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A
careful operation count is provided in order to determine the ranges of all the parameters in our
methods. The overhead cost for setting up the proposed DSRBF method is O(n2) for function re-
covery problems with n basis. Numerical experiments confirm that the proposed method not only
outperforms constant shape parameter formulation (in terms of accuracy with comparable computa-
tional cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational
cost).
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1. Introduction. In recent years, radial basis function methods (or more gen-
erally, kernel-based methods) have been used to solve many problems in science and
engineering. In this paper, we focus on function recovery problems that include in-
terpolation, approximation, and partial differential equations in some bounded do-
main Ω. The general framework of these problems is as follows. Suppose we pick a
translation-invariant radial kernel K = ϕ(‖ ·− · ‖ℓ2(Rd)) : R

d × R
d → R with a func-

tion ϕ : R → R known as the radial basis function (RBF). Commonly used kernel,
include the Gaussian ϕ(r) = exp(−r2), the multiquadrics ϕ(r) = (1 + r2)β/2 with
β = 1 and inverse multiquadrics with β = −1, Sobolev ϕ(r) = rτ−d/2Kτ−d/2(r) with
K being the Bessel functions of the second kind, and a class of compactly supported
piecewise polynomial kernels [22]. Spatial discretization requires a selection of trial
centers Z = {z1, . . . , zN} ⊂ Ω. Since all the existing convergence theories [7, 9, 17]
are given in terms of the fill distance of Z, i.e.,

hZ,Ω := sup
ζ∈Ω

inf
z∈Z

‖z − ζ‖ℓ2(Rd),

it is common to require Z being quasi-uniform; that is, the fill distances of all admis-
sible Z remain proportional to its minimum separating distance

qZ,Ω :=
1

2
inf

zi 6=zj∈Z
‖zi − zj‖ℓ2(Rd)

during refinement and the mesh ratio hZ,Ω/qZ,Ω is asymptotically bounded above.
We define a finite-dimensional trial space in the form of

UZ = UZ,Ω,K := Span{ϕ(‖ ·−zj‖ℓ2(Rd) | zj ∈ Z}, (1.1)

from which we seek or recover the numerical solution for a given problem via some
minimization process. For interpolation problems, one seeks the trial function from
UZ so that it passes through a function f at all given data fZ ∈ R

N at Z. In
approximation theory, the interpolant is a linear best approximation problem from
UZ with respect to the native space norm of K, see [23]. For function approximation,
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one can provide another set of data points X = {x1, . . . , xM} ⊂ Ω denser than
Z and minimizes, say, the least-squares residual ‖u(X) − fX‖ℓ2(RM ) to recover an
approximant u ∈ UZ of an unknown function f . Pioneered by Kansa [14], solving
partial differential equations by meshfree collocation methods follows a similar setup.
Consider boundary value problems in their general form Lu = f in Ω and Bu = g on
∂Ω. Using a sufficiently dense set of collocation points X ⊂ Ω∪∂Ω in the interior and
on the boundary for collocating L and B respectively, we can obtain an overdetermined
collocation system that can be solved by least-squares minimization.

In all these applications, it is trivial that having a suitable trial space is essential
for the performance of kernel methods. A good trial space should contain some good
approximation to the solution, which makes it problem dependent. However, this is
not straightforward in practice. The most important thing in defining a trial space
as in (1.1) is to select a kernel K or equivalently a RBF ϕ. Existing theories tell
us that C∞ kernels (i.e., Gaussian and multiquadrics) are excellent for recovering
smooth functions and high orders of convergence can be expected. For functions
with low regularity, one should go for kernels with algebraic smoothness orders (i.e.,
Sobolev and compactly supported Wendland’s functions). Yet, scaled RBF ϕε can
be easily obtained from any RBF ϕ of our choice via a shape parameter ε > 0 by
ϕε(r) = ϕ(εr). This opens up a large amount of research aiming to seek for the
optimal shape parameter [6, 8, 12, 18]. The research interest was not limited to
constant shape parameters. Soon after the invention of the RBF collocation method,
it was observed that using variable shape parameters can improve accuracy of meshfree
methods [15]. More recent works in this direction can be found in both global [24] and
local [1] RBF formulations. These variable shape parameter strategies take spatial
information into account and assign different shape parameters to each kernel based
on the local density of its trial centers. As of today, we still lack of theoretical results
regarding the variable shape parameter formulations. In [4], it was shown that one
can mimic variable shape parameter approach by treating treating it as an additional
coordinate, which also results in an isometric reproduction kernel Hilbert space as in
the case of constant shape parameter.

Recently, it was reported that some cost-efficient random approaches [3, 16, 19]
can also help improve the accuracy of RBF methods. After clarifying our notations in
Section 2, we will present the doubly stochastic radial basis function (DSRBF) method
that uses quasi-optimal random shape parameters in Section 3. Implementation and
other numerical aspects of the proposed method will also be addressed. We conclude
the paper with some numerical demonstrations in Section 4.

2. Abstract formulation. Without loss of generality, we consider problems in
the form of

Λu = fΛ in Ω ⊂ R
d, (2.1)

that is defined via an infinite set of functionals Λ : C(Ω) → C(Ω) and has exact
solution u∗. For interpolation and function approximation problems, we have

Λ := {λx = δx |x ∈ Ω} and fΛ := {fλx
= λxu

∗ |λx ∈ Λ}.

For the boundary value problem in Section 1, we can compact the two differential
operators into

Λ := {λx |λx = δxL if x ∈ Ω or λx = δxB if x ∈ ∂Ω}
2



and fΛ can be defined as in interpolation problems. We assume that (2.1) is well-
posed and consider spatial discretization at X ∈ Ω ∪ ∂Ω by a finite set of functionals
ΛX := {λx ∈ Λ |x ∈ X} ⊂ Λ.

It is known that the meshfree interpolation process in trial space (1.1) is equivalent
[21] to finding the unbiased estimator for a stochastic Gaussian process with covariance
K from realization fZ at Z. We define the doubly stochastic trial space as

UZ,E = UZ,E,Ω,K := Span{ϕ(εj‖ ·−zj‖ℓ2(Rd) | zj ∈ Z, εj ∼ E} (2.2)

for some quasi-uniform trial centers Z and some stochastic shape parameters following
the probability distribution E . The trial space in (2.2) can therefore be related to some
stochastic Gaussian process with a stochastic covariance, and thus, doubly stochastic.
It is strongly encouraged to define a semi-discretized problem as follows

uZ,E = arg inf
u∈UZ,E

‖λxu− fλx
‖L2(Ω), (2.3)

for the sake of computational efficiency, in order to identify some numerical approxi-
mation.

Let us consider interpolation problems; recall that any trial function is a linear
combination of the basis used in defining (2.2) and is in the form of

u(x) =
∑

z∈Z

αjϕj(x) :=
∑

z∈Z

αjϕ(εj‖x− zj‖ℓ2(Rd)) (2.4)

with εj ∼ E and for some coefficients α = [α1, . . . , αnZ
]T ∈ R

nZ . To have a well-posed
fully-discretized problem, we make an observation ε = {εj}nZ

j=1 ∼ EnZ and define the
least-squares numerical solution

uX,Z,ε = arg inf
u∈UZ,ε

‖λxu− fλx
‖2X := arg inf

u∈UZ,E

∑

x∈X

|λxu− fλx
|2. (2.5)

For every realization εj ∼ E , imposing interpolation condition on (2.5) at X = Z
yields the familiar square unsymmetric system

Aε(Z,Z)α = f(Z),

with matrix entries [Aε(Z,Z)]ij = ϕ(εj‖zi−zj‖ℓ2(Rd)) for zi, zj ∈ Z. Unless E in (2.2)
is a degenerate distribution, i.e., constant shape parameter, there is no theory to en-
sure the invertibility of Aε(Z,Z). But, as long as the matrix Aε(Z,Z) is non-singular
for that particular realization ε of E , we have an interpolant from UZ,E , including
all those interpolants with constant shape parameters from the set of possible out-
comes of E . All interpolants can attain the zero minimum of (2.5). Without any
extra information, it is unclear how to pick a winning interpolant out of the infinitely
many. On the other hand, numerical evidence in the literature suggests that they can
outperform those with a constant coefficient.

Similar arguments also apply to the proposed PDE solvers and we can use (2.5)
to define DSRBF solutions. Well-posedness of the PDE guarantees that there is
a uniformly stable and convergent discretization [20]. The explicit form of stability
requires case by case analysis, but existing theories suggest that the collocation points
X should be denser than the trial centers Z. For example, convergence estimates of
least-squares RBF collocation methods for second order strongly elliptic PDEs [7]
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were built upon an H2(Ω) stability estimate on a class of kernels that can reproduce
Sobolev spaces. That is, for sufficiently dense X , the X-norm residual in (2.5) is an
upper bound to the error function in H2(Ω)-norm. Without going into the details
of convergence analysis, we shall focus on cost-efficient formulation for determining
some quasi-optimal trial space in the form of (2.2) and numerically verify that (2.5)
outperforms other techniques in accuracy.

It is out of the scope of this paper to thoroughly analyze the convergence behaviour
of the proposed DSRBF approach. There are some convincing arguments to explain
why the proposed least-squares solutions on some doubly stochastic trial space can
improve accuracy. The near-singular resultant matrix can be a result of closely-
placed data points either in the set of Z or X . When two trial centers zi, zj ∈ Z
are closed with respect to given computational arithmetics, identically shaped trial
basis functions centered at these centers have nearly equal values at X . This leads
to two columns of nearly identical values and the problem of ill-conditioning. By
using two different shape parameters εi 6= εj at zi and zj respectively, the problem is
circumvented. If two collocation points are too close to each other, the same situation
occurs to the rows of the resultant matrix. However, these nearly identical rows will
not affect the condition numbers of overdetermined matrices provided that there are
enough rows to form a well-conditioned square submatrix within, see [16]. Yet, we
still need to decide what the RBF ϕ and distribution E are in order to start using the
proposed DSRBF approach.

3. Quasi-optimal doubly stochastic trial space. To begin, we consider the
problem of finding optimal shape parameter for trial spaces in the form of (1.1) for
some scaled RBF ϕε. For any function recovery problem from a given trial space, we
define the optimal shape parameter ε∗ in such a way that uX,Z,ε∗ is better than other
uX,Z,ε with ε 6= ε∗ under some error measure.

The idea of using leave-one-out cross validation to select optimal shape parameters
for RBF interpolation was proposed in [18]. Readers can find an extension to pseudo-
spectral RBF methods for solving PDEs in [10]. We refer readers to the original
articles for details and we will only include the important formula here. For any
N × N system of linear equation Aεα = b, whose matrix depends on a single shape
parameter ε > 0, the LOOCV cost vector e(ε) = [e1, . . . , eN ]T can be computed by
using the formula

ej(ε) =
αj

[A−1
ε ]jj

for j = 1, . . . , N (3.1)

for its jth error estimator. The ℓ2-LOOCV optimal shape parameter can then be
defined as

ε∗ = argmin
ε>0

‖e(ε)‖ℓ2(RN ). (3.2)

The minimization problem (3.2) can be solved by golden section search, i.e., by the
function fminbnd of Matlab, which takes O(1) steps to find the optimal. From the
computational point of view, this formula reduces the expensive O(N4) overall cost of
LOOCV down to theO(N3) cost of solving anN×N linear system by LU-factorization
once per iteration.

Seeking the optimal shape parameter is simply a problem of point estimation
in statistics. In practice, a complication is that the theoretical optimal and the nu-
merical optimal shape parameters do not necessarily coincide due to the problem of
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ill-conditioning as ε ց 0 and trial basis functions become flat. In this section, we
attempt to estimate the numerical optimal by making a small amount of observations
in double precision. Without further information about the statistics of the observa-
tion error, we propose using the χ2 distribution for E , whose degree of freedom is to
be determined by the mean of our observations.

3.1. Stochastic LOOCV estimations. Suppose the recovery problem in Sec-
tion 2 is defined by some given set of functionals Λ. Further suppose that the required
user inputs, including RBF ϕ, trial centers Z, and collocation pointsX with nX ≥ nZ ,
are fixed and a constant shape parameter ε > 0 remains undetermined. Then, identi-
fying the trial function from the minimization problem (2.5) is equivalent to finding
α = α(ε) in (2.4) from some matrix system

Aε(X,Z)α = fΛX
, (3.3)

which implicitly depends on ε. Unless we have nX = nZ , Aε(X,Z) does not fit the
interpolation framework in [18] to allow an O(N3) LOOCV computations. Instead of
reformulating and redefining the LOOCV optimal value for X 6= Z, we want to have
a fast numerical recipe to estimate the optimal shape parameters ε∗ as follows.

Firstly, we random sample the collocation points to yield square systems. Then,
we use formula (3.1) to compute the cost vector for a leave one-pair (of collocation
point and trial center) out cross validation.

A1 (Sampling X). If nX > nZ , we randomly select a subset X̃ ⊂ X of nX̃ = nZ

collocation points to yield a reduced square submatrix system Aε(X̃, Z)α = fΛ
X̃

and
denote the corresponding optimal shape parameter by ε̃∗. Otherwise, when nX = nZ ,
we have ε̃∗ = ε∗, the LOOCV optimal of the full problem. ✷

When Aε(X,Z) is overdetermined, we shall run Algorithm A1 multiple times

to yield different optimal ε for Aε(X̃, Z) associated with different sampling X̃ of X .
To evaluate formula (3.1), we need to solve (3.3) by an LU-factorization. It is not
cost effective to spend O(n3

Z) to solve for these optimal shape parameters in every
iteration. Moreover, there is a high chance that the computed value of ε̃∗ will be
polluted by rounding error when the matrix system is ill-conditioning and deviate
from the optimal one. Thus, we propose using a fast procedure to estimate the value
of ε̃∗.

We adopt the following stochastic framework [2] to estimate the diagonal of any
N × N matrix M . Let {vj ∈ R

nZ}Nrv

j=1 be a sequence of Nrv < N random vectors.
Then diag(M) can be estimated by the following vector sequence

diag(M) ≈
[ Nrv∑

k=1

vk ⊙Mvk

]
⊘
[ Nrv∑

k=1

vk ⊙ vk

]
, (3.4)

where⊙ and⊘ represent element-wise multiplication and division operators of vectors,
respectively. To estimate the diagonal entries of M = Aε(X̃, Z)−1, we generate a
sequence {wj ∈ R

nZ}Nrv

j=1 of Nrv normal random vectors and compute Mvj = wj , i.e.,

vj = Aε(X̃, Z)wj , for j = 1, . . . , Nrv to form the {vj} random sequence of vectors in

the column space of Aε(X̃, Z). Putting these random vectors into (3.4) yields

diag(Aε(X̃, Z)−1) ≈
[ Nrv∑

k=1

vk ⊙ wk

]
⊘
[ Nrv∑

k=1

vk ⊙ vk

]
, (3.5)
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which can be used in (3.1) to approximate the error estimator. Since the column

space Col(V ) of V = [v1, . . . , vNrv
] is a subspace of the column space of Aε(X̃, Z), we

can seek for an approximation to the solution α of (3.3) from Col(V ). We do so by
projecting the right-hand vector PV fΛ

X̃
∈ Col(V ). Then, an approximate solution is

given by

α ≈ Aε(X̃, Z)−1PV fΛ
X̃
= Aε(X̃, Z)−1V V +fΛ

X̃
= WV +fΛ

X̃
, (3.6)

where V + is the pseudo-inverse of V and W = [w1, . . . , ws]. Putting (3.5) and (3.6)
into (3.1) yields an approximation to ε∗. Below is a summary of this subroutine.

A2 (Estimating ε̃∗). Given Aε := Aε(X̃, Z) from A1 and a small integer
Nrv < nZ , we generate an nZ × Nrv random matrix W and compute V = AεW .
Then, we estimate diag(A−1) by putting the columns of W and V into (3.5). Next,
we solve (3.6) to obtain an approximation to the solution α of (3.3). An estimated
cost vector is defined by using these approximated αj and A−1

ε in (3.1). ✷

We now have all the necessary numerical procedures to make observations of
the optimal shape parameter. Although we do not expect any of these estimate ε̃∗

from A2 to be exact, we expect their statistics to reflect some truth after a good
amount of repeated observations. Below is a summary of the whole algorithm, whose
computational cost will be analyzed in the next section.

A3 (Making observations). For j = 1 to some Nobs > 0, we apply A1 to

randomly select a square submatrix Aε(X̃j , Z) of Aε(X,Z), and estimate its optimal
shape parameter by some minimization algorithm, in which we use the estimated cost
computed by A2 with Nrv random vectors. Then, store result as ε̃j . ✷

3.2. Doubly stochastic RBF methods. Now we have a way to collect a set
of observations ε̃ = [ε̃1, . . . , ε̃Nobs

]T of the optimal shape parameter for problem Λ
discretized by RBF φε on trial centers Z and collocation point X . Although all
attempts in the literature so far use uniform distributions E in (2.2), we focus on E
being the χ2 distribution, in which we only need to estimate one parameter. To finally
solve the function recovery problem, we execute the procedure below:

• Generate a random vector [εj ]
nZ

j=1 ∼ EnZ = [χ2(mean(ε̃))]nZ based on the
observations made in A3.

• Construct the matrix system in (3.3), where

[Aε(X,Z)]ij = λxi
φ(εj(· − zj)) and [fΛX

]i = λxi
u∗

for 1 ≤ i ≤ nX and 1 ≤ j ≤ nZ .
• Seek for numerical solution in the form of (2.4) by solving (3.3) for the ex-
pansion coefficient α ∈ R

nZ in the least-squares sense (2.5).
The total complexity for pre-optimizing the trial space as in A3 depends on the three
parameters:

• Nrv, the number of random vectors used in estimating the LOOCV error
estimators in A1,

• Nobs, the number of observations of optimal shape parameter we made, and
• N iter, the average number of iterations required for the minimization algo-
rithm in A3 to terminate.
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The overall cost for determining E = χ2(·) is NobsN iter times of the cost of the inner-
most computation of A2, i.e., (3.5) and (3.6). The leading cost in each iteration of
optimal shape parameter search is as follows. It requires O(n2

Z) to form the matrix
system. Computing the Nrv random vectors in the columns of V and the projec-
tion PV fΛ

X̃
share the same O(n2

ZNrv) complexity. Thus, the overhead of using the
proposed stochastic LOOCV quasi-optimization is

Cost = O(NobsN iterNrvn
2
Z).

The values of Nobs and Nrv are user determined, but N iter depends on the employed
minimization algorithm. By picking some Nrv = O(1) and keeping track of the total

number of iterations NobsN iter, a trivial strategy is to stop making new observations
when NobsN iter = O(1). By doing so, we keep the overhead at O(n2

Z) that is lower
than the O(nXn2

Z) cost required for solving an nX × nZ square or overdetermined
system in the least-squares sense by any direct solver. In the next section, we will give
some numerical demonstrations to show that this efficient strategy is also effective.

4. Numerical demonstrations. It was shown in [2] that the diagonal esti-
mator quickly yields somewhat accurate approximations for a very small number of
vectors (Nrv). In all presented examples, we run the stochastic LOOCV optimization
algorithm in Section 3.1 with Nrv = 15 to determine E = χ2(·) and hence, setup the
proposed DSRBF method. We stop making new observations of the optimal shape
parameter when the total number of innermost loops executed in A2, NobsN iter, ex-
ceeds nX . To maintain O(n2

Z) complexity, we impose another condition that at most
10 observations will be made, i.e., Nobs ≤ 10. Under the typical assumption that
N iter = O(1), which will be numerically verified soon, the setup cost for the proposed
DSRBF methods is O(nXn2

Z) for small problems and is O(n2
Z) asymptotically.

In A3 when we estimate ε̃∗, we deploy the Matlab function fminbnd to solve
(3.2), i.e., calling

ε∗ = fminbnd(@(ε) e(ε), a, b), (4.1)

for some subroutine e(ε) that executes A2 to compute cost vector in (3.1) for a fixed
value of ε. Except in the first example, in which we study the effect of the search
interval [a, b] on N iter, we use a = 0 and b = 5 in all computations.

To validate the accuracy of the proposed DSRBF method, all reported errors are
in L2(Ω), which is approximated by sufficiently dense sets of regular or quasi-uniform
evaluation points. As for efficiency, we reported the CPU clock times required to run
the MATLAB 2015a scripts on a 3.20 GHz CPU and 3.17 GB RAM computer.

Example 1 (Interpolation). This example aims to compare the numerical
performance of the proposed stochastic LOOCV optimization and DSBRF methods
on infinitely smooth Gaussian (GA) and multiquadric (MQ) basis. For the sake of
easy reproducibility, we consider a few simple and artificial interpolation problems
in Ω = [−1, 1]2 for an exponential function f1 = exp(x + y), the peaks function of
Matlab and the Franke’s function [13], denoted by f2 and f3 respectively. All data
sites X = Z in this example are regularly placed in this example.

In Tables 4.1 and 4.2, we present the detailed results obtained for nZ = 50×50 of
both test functions. With three different search intervals [a, b], we first note that the
average numbers of iterations N iter required for fminbnd in the stochastic LOOCV
algorithm to converge are around 20, i.e., O(1) as claimed, and are comparable to
Niter required in the full LOOCV algorithm. In terms of accuracy, the proposed
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Constant LOOCV-optimal RBF methods Proposed stochastic LOOCV/DSRBF

[a, b] ε∗ Niter L2 errors CPU(s) mean(ε̃) N iter L2 errors CPU(s)

f1

[0, 3] 2.366 18 8.708(-07) 106.377 2.144 19.3 7.307(-12) 8.798
[0, 5] 4.289 21 4.790(-07) 122.831 3.286 21.2 2.524(-11) 9.779
[0, 10] 4.259 22 1.039(-05) 127.622 6.103 18.2 1.457(-09) 8.433

f2

[0, 3] 1.053 18 1.191(-11) 100.846 2.195 18.5 8.616(-13) 8.531
[0, 5] 3.079 20 2.158(-07) 112.268 3.291 18.6 4.950(-12) 8.611
[0, 10] 5.948 17 1.169(-05) 105.925 6.493 19.8 2.543(-10) 9.168

f3

[0, 3] 2.898 21 1.029(-02) 129.716 2.306 19.1 1.201(-05) 8.712
[0, 5] 4.716 30 1.763(-05) 173.013 3.562 19.3 1.679(-08) 8.919
[0, 10] 7.502 24 2.653(-08) 156.313 5.192 20.1 1.148(-09) 9.296

Table 4.1

Example 1: Interpolation problems with the Gaussian basis. Comparison of the optimal shape
parameters ε∗ by by LOOCV and estimated mean(ε̃) by the proposed stochastic LOOCV algorithm
with Nrv = 15 for setting up an nZ = 50×50 interpolation problems. Corresponding CPU times and
resulting accuracy of the optimal-constant shape parameter RBF methods and the proposed DSRBF
methods were provided.

Constant LOOCV-optimal RBF methods Proposed stochastic LOOCV/DSRBF

[a, b] ε∗ Niter L2 errors CPU(s) mean(ε̃) N iter L2 errors CPU(s)

f1

[0, 3] 2.306 17 1.256(-06) 98.507 1.896 18.4 2.217(-09) 6.022
[0, 5] 3.001 19 6.893(-07) 114.990 2.782 20.1 6.793(-09) 6.586
[0, 10] 2.728 21 3.982(-07) 125.355 5.074 20.9 6.438(-09) 6.816

f2

[0, 3] 2.659 20 4.289(-07) 119.166 1.906 17.9 1.943(-10) 5.797
[0, 5] 3.820 18 5.885(-06) 115.231 2.958 19.7 7.861(-10) 6.346
[0, 10] 3.738 18 5.167(-06) 116.148 4.984 21.4 1.258(-08) 6.877

f3

[0, 3] 2.999 25 2.473(-06) 147.279 2.156 18.4 1.754(-08) 5.897
[0, 5] 4.293 21 7.688(-09) 132.794 3.549 20.1 2.322(-09) 6.388
[0, 10] 6.311 24 6.019(-08) 152.457 6.911 21.8 5.046(-09) 6.891

Table 4.2

Example 1: Results of multiquadirc basis under the same setting as of those in Table 4.1.

DSRBF methods outperform the classical constant LOOCV-optimal shape parameter
(that changes with nZ) formulations in all test cases up to 5 orders of magnitude. It
is also important to compare the robustness of these methods with respect to the
search interval [a, b]. In Table 4.1, interpolation errors of constant LOOCV-optimal
RBF methods with search interval [0, 5] are two order of magnitudes smaller than
those with [0, 10]. If we focus on the values of optimal shape parameter ε∗ for f1 in
Table 4.2, LOOCV selected 2.728 ∈ [0, 10] but 3.001 ∈ [0, 5] suggesting either one
must be suboptimal. Problem of ill-conditioning takes the blame for such behaviours.
Instead of tracing for the real optimal, our stochastic approach obtains quasi-optimal
shape parameters much quicker. By design, our proposed method took less than
one-tenth of the time of the full LOOCV algorithm to find mean(ε̃) and to fix the
DSRBF trial space for a given problem. Once setup, both LOOCV and DSRBF takes
the same time to solve the resulting nZ × nZ linear systems by some direct method.
Results in Table 4.2 reconfirm the above observations.

The fact that the proposed DSRBF is more efficient and accurate than the con-
stant LOOCV approach is robust with respect to the selection Nrv and Nobs. This
is a result of the use of stochastic shape parameters whose construction is insensitive
to the accuracy of the approximated value of mean(ε̃). In Table 4.3, we show more
numerical results for the case of interpolating f2 on nZ = 50× 50. The search range
is set to be [a, b] = [0, 5]. Using larger values Nrv and Nobs does not have significant
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GA MQ

(Nrv, Nobs) mean(ε̃) N iter L2 errors CPU(s) mean(ε̃) N iter L2 errors CPU(s)

(15,30) 3.159 19.1 6.681(-12) 24.803 2.944 18.7 1.143(-09) 16.605

(15,50) 3.103 19.5 7.133(-12) 42.186 2.818 19.3 7.287(-10) 29.228

(15,100) 3.234 19.5 3.761(-11) 84.011 3.001 19.8 5.872(-10) 58.416

(30,10) 3.277 21.3 2.116(-11) 10.062 3.135 18.6 6.250(-10) 6.024

(30,30) 3.384 19.7 2.997(-11) 28.079 3.418 19.2 1.621(-08) 19.532

(30,50) 3.247 19.5 5.896(-12) 46.009 3.180 19.3 5.936(-10) 31.292

Table 4.3

Example 1: Comparison of various user defined parameters Nrv and Nobs and their effects on
the approximated mean of optimal shape parameters, resulting L2-errors, and CPU times of DSRBF
approach for interpolating f2 with nZ = 50× 50.

effects in the mean(ε̃) and interpolation errors, but increases the CPU times in the
setup of DSRBF.

Next, we further confirm that the above observations hold asymptotically with
increasing nZ . Numerical experiments were run under identical setup except with
varying nZ . Figure 4.1 shows the LOOCV-optimal shape parameters ε∗ and our
proposed quasi-optimal ε̃j obtained using A3 for interpolating f2. For multiquadrics
basis, the LOOCV-optimal shape parameters grow exponentially with nZ . Such an
expected trend cannot be seen in the case of Gaussian basis due to ill-conditioned
nature in their linear systems. Since our algorithm only make Nobs = 10 observations,
we are not ready to conclude if the statistics will turn out to be correct eventually.
The answer to this question has no real impact to our proposed method, but we do
see the optimal sitting inside the range of estimated values for large nZ . Instead of
identifying the real optimal shape parameter, it is more important to examine the
speed and accuracy of the DSRBF methods.

Figure 4.2(a)-(b) show the CPU times for finding LOOCV-optimal shape parame-
ters and the proposed stochastic-LOOCV algorithm respectively. Two reference lines
of slope 2 and 3 were included to confirm that their complexities of O(n3

Z) and O(n2
Z)

are as claimed. Lastly, the convergence profiles in Figures 4.3(a)-(b) show that the
proposed DSRBF is more robust, efficient and accurate than LOOCV. By comparing
to the accuracy of the constant shape parameters ε = 1, 3, 5, the worthiness of the
O(n2

Z) overhead cost can be justified by the exact accuracy. The proposed stochastic
LOOCV algorithm and DSRBF methods yield stable solution fast convergence and
stable solution for large nZ , both of which are desired for practitioners.

Example 2 (Boundary value problems). This example aims to verify the
performance of DSRBF for solving PDEs. We compare the accuracy of our DSRBF
methods and RBF methods with various constant shape parameters (among all nZ).

To further verify the numerical performance of our proposed DSRBF methods,
we first consider two-dimensional Possion problems subject to the Dirichlet boundary
conditions in the unit square. We choose two analytical solutions; a trigonometric
function u∗

1 = sin(πx) sin(πy), and a Runge function u∗
2 = 1/(1 + 25(x2 + y2)). The

collocation points X were evenly distributed in the domain Ω = [−1, 1]2 and its
boundary ∂Ω. We denote n with the number of partition in each coordinate, and
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Fig. 4.1. Example 1: LOOCV-optimal shape parameters (labelled by ◦) and 10 stochastic
estimates (labelled by +) for interpolation problems of different sizes nZ × nZ with the Gaussian
(GA) and multiquadric (MQ) basis.
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Fig. 4.2. Example 1: CPU times required for the LOOCV-optimal shape parameters (labelled
by ◦) and all 10 stochastic estimates (labelled by ✷) in Figure 4.1.
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Fig. 4.3. Example 1: Interpolation error of the constant LOOCV-optimal shape parameter RBF
methods (labelled by ◦), the proposed DSRBF methods with χ2-distributed random shape parameters
(labelled by ✷) using the shape parameters in Figure 4.1, and RBF methods with constant parameters.
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Fig. 4.4. Example 2: Error profiles when solving a 2D Poisson equation with exact
solution u∗

1 = sin(πx) sin(πy) by the proposed DSRBF methods using χ2-distributed shape
parameters determined by the stochastic LOOCV algorithm and by RBF methods using var-
ious constant shape parameters.
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ǫ=5
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Fig. 4.5. Example 2: Results of u∗
2 = 1/(1 + 25(x2 + y2)) under the same setting as of

those in Figure 4.4.

thus the total number of collocation points is N = n2. We use the (n− 1)× (n− 1)
regular grid to generate the trial centers in Z. Other parameters were set up exactly
as in Example 1.

Due to the stochastic nature of the proposed methods, they yield different nu-
merical solutions every time. To supply convincing evidence, we perform 10 trial runs
to each tested problem and demonstrate the resulting error profiles in Figures 4.4 to
4.5. The error bars on the DSRBF curves represent the range of error among all 10
runs and the solid lines are the mean error of all runs. At first glance, the proposed
method not only is more accurate, it also shows no instability due to ill-conditioning
in the tested range of nZ . It is obvious that the proposed DSRBF methods with
adaptively chosen random shape parameters using the stochastic LOOCV algorithm
are a highly attractive alternative to the standard RBF methods.

Next, we employ the Gaussian kernel to solve a Possion equation with Dirichlet
boundary conditions in an amoeba shape domain, whose boundary is given in polar
form as r(θ) = exp(sin θ) sin2 2θ+exp(cos θ) cos2 2θ [5]. We take the rational function
u∗
3 = 65/(65 + (x− 0.2)2 + (y + 0.1)2) to generate the boundary data. The numerical

results are shown in Figures 4.6 and 4.7.

11



-2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

x

Fig. 4.6. Example 2: (Left) A schematic diagram of the domain Ω and locations of data
points; (Right) The exact solution u∗

3 = 65/(65 + (x− 0.2)2 + (y + 0.1)2).

x

y

x

Fig. 4.7. Example 2: The resulting error functions in the approximation the PDE solution
u∗
3 by (left) DSRBF and (right) LOOCV.

Our last demonstration focuses on a three-dimensional Laplace equation −∆u = 0
on Ω = [0, 1]3 subject to u = g on the boundary, where g is computed based on
the analytical solution u∗ = exp((x+ y)/

√
2) cos(z). In this example, the data sites

X = Z are regularly placed as in the original Kansa method, which does not require
one to decide on the ratio of overtesting nX : nZ . The number of data points tested
are nZ = 53, 103, 153, and 203. In Figure 4.8, we show the error functions of the
proposed methods using the Gaussian basis. Note that the maximum error occurs
near boundary, which suggests that our proposed methods, although sophisticated,
behave like the original Kansa methods [11]. For that, we also expect all the empirical
strategies that improve Kansa methods to work with our proposed DSRBF methods.

Despite the assumptions of the full LOOCV algorithm do not fit into the PDE
framework and the algorithm was excluded in this example so far, we include it in our
last demonstration and see how it behaves. In Figure 4.9(Left), we show the CPU
times for determining shape parameters in this 3D test problem and see the same
predicted trends as in the 2D cases in Figure 4.2. For accuracy, see Figure 4.9(Right);
using the full LOOCV shape parameters yield no trivial benefit, whereas our proposed
methods outperform all other tested methods.
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Fig. 4.8. Example 2: Error distribution when solving a 3D Laplace equation by the
proposed DSRBF methods using χ2-distributed shape parameters determined by the stochastic
LOOCV algorithm with n3

z = 1000, 3375, and 8000.
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Fig. 4.9. Example 2: (Left) CPU time required to determine the mean of E = χ2 distri-
butions used in the DSRBF methods used in Figure 4.8 and that of the full LOOCV algorithm
for comparison; (Right) Error profile of solving a Laplace equation by different methods.

5. Conclusions . We propose a stochastic LOOCV algorithm for determining
χ2 random distributed shape parameters for a doubly stochastic radial basis function
(DSRBF) method for solving function recovery problems. Similar to the standard ra-
dial basis function (RBF) methods, our method is a global method but uses stochastic
shape parameters. Both the DSRBF and RBF methods require some users to specify
in an empirical way shape parameters to complete the definition of trial spaces. To
avoid this ad hoc step, one can use a leave-one-out cross validation (LOOCV) ap-
proach to select optimal shape parameters for RBF interpolation problems. In this
paper, we extend this idea and propose a stochastic analogy to estimate the problem
dependent optimal shape parameters. Our stochastic approach reduces the O(n3) cost
of LOOCV down to O(n2) for problems of sizem×n with m ≥ n. Thus, our stochastic
algorithm works on overdetermined PDE collocation instead of just the interpolation
problem. Numerical experiments confirm that the proposed DSRBF methods are ef-
ficient and accurate in comparison with RBF methods using LOOCV-optimal shape
parameters. When compared with the empirical constant shape parameter, DSRBF is
still favorable because of its robustness and parameter-free nature, all of which justify
the O(n2) overhead cost for running our stochastic LOOCV algorithm. Since there is
no conflict between the DSRBF methods and our previously proposed adaptive trial
subspace selection algorithm, the two ideas can work together and further improve
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the robustness of RBF methods. We leave this to our next exploration.
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