
Results on Meshless Collocation Techniques

Leevan Ling 1, Roland Opfer 2 and Robert Schaback 2

Abstract

Though the technique introduced by Kansa is very successful in engineering appli-

cations, there were no proven results so far on the unsymmetric meshless collocation

method for solving PDE boundary value problems in strong form. While the original

method cannot be proven to be fail–safe in general, we prove asymptotic feasibil-

ity for a generalized variant using separated trial and test spaces. Furthermore, a

greedy variation of this technique is provided, allowing a fully adaptive matrix–free

and data–dependent meshless selection of the test and trial spaces.

Key words: Kansa’s Methods, Asymptotic Feasibility, Matrix-free Algorithm

1 Introduction

The general idea for solving PDE problems in strong or weak form by kernel–

based meshless methods was outlined in [15]. It writes the PDE problem as

an uncountably infinite number of simultaneous scalar equations

λ[u] = fλ ∈ R, for all λ ∈ Λ. (1)

1 Department of Applied Mathematics, National Sun Yat-sen University, 70 Lien-

hai Rd. Kaohsiung 804, Taiwan ROC.
2 Institut für Numerische und Angewandte Mathematik, Georg-August-Universität

Göttingen, Lotzestraße 16-18, D-37083 Göttingen, Germany.

9 August 2005

The set Λ consists of infinitely many linear real–valued functionals λ that

usually take the form of point evaluations of functions or derivatives at points

inside a domain or on some boundary or interface layer. If several differential

or boundary operators are involved, we simply put everything into a single set

Λ of functionals of various types.

We call (1) a generalized interpolation problem, and we assume it to be solv-

able by a function u∗ that generates the data via fλ := λ(u∗) for all λ ∈ Λ.

Discretization just consists in replacing the infinite set Λ by some finite un-

structured subset Λn := {λ1, . . . , λn}. The space spanned by these functionals

can be called the test space, and Λ is the infinite test set.

The trial space consists of a space of functions in which the numerical solution

u is constructed, and we assume it to be spanned by a basis {u1, . . . , un} as

u :=
n

∑

j=1

αj uj ∈ U := span{u1, . . . , un}. (2)

Then, the discretized problem reads as

λi[u] =
n

∑

j=1

αj λi[uj] = fλi
= λi(u

∗), 1 ≤ i ≤ n, (3)

when written as linear equations for a function u of the trial space U .

Weak formulations use functionals of the form λj[g] := aj(g, uj) with certain

bilinear forms aj and test functions uj such that the discretized problem takes

the familiar form

λi[u] = ai(u, ui) =
n

∑

j=1

αj ai(uj, ui) = fλi
= λi(u

∗), 1 ≤ i ≤ n,

of meshless Petrov–Galerkin schemes [2]. In particular, weak formulations al-

ways have a strong built–in connection of test functionals to test functions.

2

For problems in strong formulation, the connection between test functionals

and test functions is to be established differently. To get a truly meshless

technique, and to allow very general problems, we use a symmetric positive

definite kernel Φ : R
d × R

d → R.

The special case of symmetric collocation now takes the discretized set Λn of

test functionals and defines the trial functions as uj := λy
j Φ(·, y) for 1 ≤ j ≤ n

where the superscript of λ indicates the variable of Φ on which the functional

operates. Then the collocation matrix (3) is symmetric with entries λi[uj] =

λx
i λy

jΦ(x, y) for 1 ≤ i, j ≤ n. This technique dates back to [17] and has a solid

mathematical basis [5,6]. Like in the standard (non–Petrov) Galerkin scheme

[3], the trial and test functions or functionals are closely related.

If one takes a set Xn := {x1, . . . , xn} ⊂ R
d of scattered points, one can use

the trial space U spanned by the trial functions

uj = Φ(xj, ·), 1 ≤ j ≤ n, (4)

associated to simple point evaluation functionals λδj
. Usually, these centers

are irregularly placed within Ω. Since the scattered points determine the trial

functions, we can call them trial centers. This leads to the unsymmetric collo-

cation technique started by Kansa [9,10] for the multiquadric kernel and used

by many authors afterwards; for instance, see [4,11–13,16,18] and an overview

in [7]. The resulting unsymmetric collocation matrix has the entries

λi[uj] = λy
i Φ(xj, y), 1 ≤ i, j ≤ n,

and can be singular in exceptional cases [8]. Consequently, there are no math-

ematical results on this technique, though it gives very good results in plenty

of applications in science and engineering.

3

To overcome these problems partially, one has to modify the setting. To get

solvability and error bounds, there should at least be a unique solution to

the modified discretized system that converges to the true solution if the dis-

cretization is refined. The first question requires that if the n test functionals

are fixed and are linearly independent, the system will have rank n provided

the trial functions are chosen properly. We shall prove this fact in Theorem

1 below. Then we show how to find proper trial functions in practice via QR

factorization once we fixed the test space. Finally, we propose an adaptive

greedy method that generates a sequence of nonsingular problems through a

search of proper test functionals and trial functions.

2 Nonsingularity

Let Ω ⊆ R
d be a domain and Φ : R

d × R
d → R be a symmetric positive

definite kernel on R
d. The kernel has an associated native [14] Hilbert space

NΦ of functions on Ω in which it acts as a reproducing kernel [1]. Let a

problem of the type (1) on a bounded domain Ω ⊂ R
d be discretized by n

linearly independent functionals Λn := {λ1, . . . , λn}. A suitable kernel for a

given PDE must be smooth enough to guarantee Λ ⊂ NΦ
∗. Then the functions

uλ := λyΦ(·, y) are smooth enough to be in NΦ for all λ ∈ Λn. This is true for

plenty of applications, because the smoothness requirements are weaker than

those discussed in [6] for symmetric collocation.

Note that conditionally positive definite kernels like the multiquadrics can be

modified [14] to turn into positive definite kernels by subtracting certain low–

order polynomials. This modification allows to restrict theoretical questions

to the positive definite case, but in practical implementations one will often

4

prefer to carry the additional polynomials along. This requires some additional

linear algebra that we omit here.

The given discretized strong collocation problem of (1) consists in finding a

function in U such that the equations (3) are satisfied for a set Λn of linearly

independent continuous linear functionals on U and prescribed real values

fΛn
:= (fλ1

, . . . , fλn
)T . Usually, the functionals are of different types. How-

ever, we keep the situation as general as possible, allowing quite arbitrary

functionals.

The standard trial space for Kansa’s unsymmetric collocation method is the

span of functions Φ(xj, ·) for a set Xn := {x1, . . . , xn} ⊂ R
d of suitably placed

trial centers. The system (3) then has the (in general unsymmetric) n × n

matrix

AΛn,Xn
:=

[

λy
i Φ(xj, y)

]

1≤i,j≤n

(5)

for λi ∈ Λn and xj ∈ Xn. One then solves

AΛn,Xn
α = fΛn

, (6)

for the unknown coefficients α := {α1, . . . , αn}. Numerical evidence shows that

cases of singularity are extremely rare, suggesting that AΛn,Xn
is nonsingular

for most choices of Xn.

Now, we consider the problem from a different perspective: suppose the set of

test functionals Λn is given, can one find a set of trial centers Xn such that

the Kansa’s collocation matrix (5) is nonsingular? We begin with a general

result:

Lemma 1 Let Ω ⊆ R
d be a domain and let {g1, . . . , gn} for 1 ≤ i ≤ n

be a linearly independent set of n continuous functions defined on Ω. For a

5

sufficiently dense subset X = {x1, . . . , xM} of points in Ω, the matrix with

entries gi(xj) for 1 ≤ i ≤ n, and 1 ≤ j ≤ M has full rank n.

Proof: Take an increasing sequence {XM}M of data sets XM := {x1, . . . , xM} ⊂

Ω such that the union of these sets is dense in Ω. If the assertion is false, there

are nonzero vectors αM := (αM
1 , . . . , αM

n) ∈ R
n such that

n
∑

i=1

αM
i gi(xj) = 0, 1 ≤ j ≤ M,

holds for all M . Since we can renormalize each vector in the set {αM}M to have

norm one, we can find a subsequence that converges to a nonzero normalized

vector α̃ ∈ R
n. If we define the functions

sα :=
n

∑

i=1

αi gi,

for all α ∈ R
n, we get

sα̃(xi) =
(

sα̃(xi) − sαM (xi)
)

+ sαM (xi),

and the right–hand side tends to zero for M → ∞ and all fixed points xi.

Consequently, the function sα̃ vanishes on a dense subset of Ω, and on all of

Ω by continuity. But its L2-norm defined via the Gram matrix

‖sα‖2 :=
n

∑

i,j=1

αi αi Gij, where Gij :=
∫

Ω

gi gj dx,

is positive since α̃ is nonzero and the {gi} are linearly independent, yielding

a contradiction. �

Lemma 2 Under the same hypothesis, there must exists n points {x1, . . . , xn} ∈

Ω such that the matrix with entries gi(xj) for 1 ≤ i, j ≤ n is nonsingular.

Proof: It is a contradiction to Lemma 1 if such a set does not exist. �

6

To make use of Lemma 2, we construct a set of functions using the test func-

tionals Λn and the symmetric positive definite kernel Φ. Let gi : R
d → R be

the associated continuous functions defined as

gi := λy
i Φ(·, y), 1 ≤ i ≤ n.

Then, the Kansa’s collocation matrix can be expressed as

AΛn,Xn
= [gi(xj)]1≤i,j≤n.

Theorem 1 Assume the kernel Φ to be smooth enough to guarantee that the

functions uλ := λy Φ(·, y) for λ ∈ Λ are continuous. Then the set of functions

{gi}
n
i=1 constructed above is linearly independent, and hence Kansa’s colloca-

tion matrix (5) is nonsingular for properly chosen trial centers.

Proof: By assumption, all {gi} are continuous. After we prove the indepen-

dence, the second assertion follows from Theorem 2. If
n

∑

i=1

βi gi = 0, then by

the reproducing property of the kernel

0 =
〈

f,
n

∑

i=1

βi gi

〉

=
n

∑

i=1

βi λ
y
i

〈

f, Φ(·, y)
〉

=
n

∑

i=1

βi λi[f], for all f ∈ NΦ,

which implies that βi ≡ 0, and thus {gi} are linearly independent. �

The continuity assumption of Theorem 1 is not satisfied if we handle weak

problems by kernels with minimal regularity, e.g. solving a Poisson problem in

2-dimension using the kernel K0 that reproduces the Sobolev space W 1
2 (R2).

In practice, one should fix the set Λn of n test functionals first and then

work on a trial space U constructed via a very large set XM of trial centers

located in a bounded domain that contains Ω. If M>>n is large enough, and

if the trial centers are reasonably distributed, the set XM contains a proper

set of trial centers as guaranteed by Theorem 1. The employed method should

7

automatically pick n out of these M centers to guarantee nonsingularity and,

most importantly, a reasonable condition of the resulting n × n collocation

matrix. In terms of linear algebra, this means to pick a subset Xn of n points

out of XM such that the square n × n submatrix AΛn,Xn
of the large non–

square n × M matrix AΛn,XM
is nonsingular. Clearly, this can be done by a

partial QR factorization of AΛn,XM
with column pivoting. The computational

complexity grows as O(n2M), because n steps are needed, each updating an

n × M matrix by an n × n Householder transformation. Storage grows like

O(nM). But there are techniques that gradually build up the relevant matrix

“on–the–fly”, as we shall show below.

3 Greedy Method

The previous section showed how to deal with a fixed set of test functionals

by picking suitable subsets of trial centers in a meshless and data–dependent

way. But choosing a set Λn that best approximates the original infinite test

set Λ is also essential. In view of the infinite problem (1) one should also pick

suitable test functionals in a meshless and data–dependent way from a large

set of test functionals. The choice of trial centers is left to a later stage. In this

section, we provide an adaptive greedy algorithm that automatically searches

for a suitable test/trial pair at each iteration consisting of a test functional

λk+1 and a trial center xk+1. It will work on k × k systems, allowing k < n to

grow, and doing update steps of complexity O(k2) after having found the pair

(λk+1, xk+1). This even allows to work on infinite sets of test functionals and

trial centers to choose from. We call the above property matrix-free since the

evaluation of the full (finite/infinite) matrix is unnecessary.

8

Given an infinite set Λ ⊆ NΦ
∗ of functionals. We want to reconstruct a function

u ∈ NΦ from its data Λ. At iteration k, assume that a solution to Kansa’s

method for functionals Λk := {λ1, . . . , λk} and suitably placed trial centers

Xk := {x1, . . . , xk} ⊂ R
d is already known such that the corresponding matrix

is nonsingular. We write this as the k × k matrix system

AΛk,Xk
αk = fΛk

, (7)

and denote the solution function by sk :=
k

∑

i=1

αk
i Φ(·, xi).

Now we pick from the infinite set Λ a functional λk+1 such that the residual

λk+1(sk −u) is large in absolute value, possibly maximal among all other such

functionals. The technique is therefore called greedy.

It suffices to assume

∣

∣

∣λk+1(sk − u)
∣

∣

∣ ≥ θ
∣

∣

∣λ(sk − u)
∣

∣

∣ for all λ ∈ Λ, (8)

for some θ ∈ (0, 1], e.g., by taking the actual maximum. If we find none with

a nonzero value, we stop. Otherwise we conclude that λk+1 must be linearly

independent from the other functionals. Now add λk+1 to the functionals con-

sidered so far,

Λk+1 := Λk ∪ {λk+1}.

For a moment, we consider the new trial center xn+1 as a free variable x ∈ R
d.

The determinant of AΛk+1,Xk+1
is then a function vk+1(x), in fact up to a sign

|vk+1(x)|=
∣

∣

∣det
(

AΛk+1,Xk

⋃

{x}

)∣

∣

∣

=

∣

∣

∣

∣

∣

k+1
∑

i=1

(−1)i gi(x) det
(

AΛk+1\{λi},Xk

)

∣

∣

∣

∣

∣

,

9

where gi := λy
i Φ(·, y). If we define βi = (−1)i det

(

AΛk+1\{λi},Xk

)

, we have

|vk+1(x)| =

∣

∣

∣

∣

∣

k
∑

i=1

βi gi(x) + (−1)k+1 det
(

AΛk,Xk

)

gk+1(x)

∣

∣

∣

∣

∣

. (9)

Now we pick a point x∗ ∈ R
d such that vk+1(x

∗) 6= 0 and |vk+1(x
∗)| is closest

to 1; call it xk+1 and add it to the previously chosen set of trial centers,

Xk+1 := Xk ∪ {xk+1}.

Now repeat the iteration for k + 1 instead of k. In the step that selects the

functional λk+1 we have something similar to the well-known a–posteriori error

estimators in finite elements. But, in addition, our subsequent choice of the

trial center xk+1 adaptively changes the trial space in a data–dependent and

meshless way.

Theorem 2 The adaptive greedy algorithm above generates a sequence of

uniquely solvable unsymmetric collocation problems. It can be carried out effi-

ciently, since the factors βi in (9) are constant multiples of the solution of

AT
Λk,Xk

γ =
(

gk+1(x1), . . . , gk+1(xk)
)T

. (10)

Proof: For the functional λ1 ∈ Λn, it is clear that there must exist a point

x1 ∈ R
d such that g1(x1) 6= 0. Suppose det

(

AΛk,Xk

)

6= 0. We assume that

vk+1(x) = 0 for all x ∈ R
d. Since the functions gi for 1 ≤ i ≤ n are linearly

independent, all βi for 1 ≤ i ≤ k + 1 in (9), including βk+1 := det
(

AΛk,Xk

)

,

are identically zero. This yields a contradiction to Lemma 1.

We apply Cramer’s rule to the system (10) and get

γi = (−1)k−i
det

(

AT
Λk+1\{λi},Xk

)

det AΛk,Xk

, 1 ≤ i ≤ k,

10

for the solution, and formally also γk+1 = −1. Thus, up to the irrelevant

nonzero common factor σk := ± det AΛk,Xk
, we have βi = σk γi, for 1 ≤ i ≤

k + 1. �

In practice, we use the scaled function vk+1(x)/σk+1 =
k+1
∑

i=1

γi gi(x) instead.

4 Implementation and Cost

The adaptive greedy method, if applied to a huge but finite linear system, can

be reformulated in linear algebra terms. Then, it is different from standard

elimination techniques with pivoting, because it takes the right–hand side into

account. It also has an “on–the–fly” formulation which we describe now.

Within each iteration, instead of solving (7) and (10) from scratch, we can

update the inverse matrices through a well–known matrix inversion formula.

Let Bk denote the inverse of the k-th stage matrix AΛk,Xk
. For k > 1, we have

Bk =

















AΛk−1,Xk−1
~v

~uT w

















−1

(11)

=

















E + δ (Bk−1~v)(~uT Bk−1) −δ (Bk−1 ~v)

−δ (~uT Bk−1) δ

















,

where the vectors and scalars above are given by ~u = gk(xj), ~v = gi(xk) for

1 ≤ i, j ≤ k − 1, w = gk(xk), δ := (w − ~uT Bk−1 ~v)−1, and E denotes the

identity matrix of size k − 1. The inverse update algorithm requires at most

O(k2) operations, and it can be viewed as the recursive form of Gaussian

11

elimination.

In practice, we discretize the generalized PDE problem first via a large set

of N test functionals ΛN . Then we provide a very large set of M>>N trial

centers XM for the algorithm to choose from. Note that the test functionals

are restricted to a computational domain and its boundaries, while the trial

centers can come from a larger domain.

The algorithm can be viewed as working on a full N ×M matrix, but it does

never compute or store the full matrix. Instead, only the essential elements

are computed and stored “on–the–fly”.

Algorithm:

Startup is done by finding some λ1 ∈ ΛN with the greedy criterion (8) and

then an x1 ∈ XM such that R 3 g1(x1) := λy
1 Φ(x1, y) 6= 0 and large in absolute

value. The first inverse matrix and the first approximated solution are given

by

B1 := g1(x1)
−1 ∈ R, s1 =

fλ1

g1(x1)
g1(·).

For some user defined integers 1 < krestart < kmax, the algorithm then iterates

on k = 2, 3, . . . as follows:

(1) Compute all residuals λi(sk−1 − u) for all λi ∈ ΛN ; this takes O(kN)

operations.

(2) Search for λk ∈ ΛN with maximum residual; this takes O(N) operations.

• STOP if all residuals in absolute value are smaller than some tolerance.

(3) Associated to λk is a function gk = λy
k Φ(·, y). Compute and store gk(xj)

for 1 ≤ j ≤ M . This takes O(M) operations.

12

(4) Evaluate the function

vk(x)

σk

= −gk(x) +
[

gk(x1), . . . , gk(xk−1)
]

Bk−1





























g1(x)

...

gk−1(x)





























,

for all x ∈ XM (see Theorem 2). This takes O(kM) operations.

(5) Search for xk ∈ XM such that |vk(xk)/σk| is closest to 1. This takes O(M)

operations.

• STOP if computed values are smaller than some tolerance.

(6) Update the index sets corresponding to the new sets of test functionals

and trial centers, Λk = Λk−1

⋃

{λk} and Xk = Xk−1

⋃

{xk}, respectively.

(7) IF mod(k, krestart) = 0, OR k = kmax, solve subsystem (7),

AΛk,Xk
αk = fΛk

,

with utmost numerical care, using SVD. Then STOP.

(8) ELSE update the inverse matrix Bk as in (11). This takes O(k2) opera-

tions.

(9) Solve the k × k subsystem (7) for αk = Bk fΛk
. This takes O(k2) opera-

tions.

(10) Repeat the iteration for k + 1.

The rule in step 5 may look strange, but since the function vk is (up to a

factor) the determinant of the enlarged system, one has to avoid large and

small values to ensure numerical stability.

If the final iteration count is K, the total work of the adaptive greedy method

is O(K3 +K2M +K2N) operations, while storage is of order O(K2 +M +N).

13

The method is extremely efficient in theory and practice, if K is small and

M , N are large. The final size of K determines its overall complexity, and K

will be strongly problem–dependent, turning out to be surprisingly small in

standard applications, as we will show in the next section.

5 Numerical results

In this section we show some numerical examples which demonstrate the effi-

ciency of our proposed adaptive greedy algorithm. In all presented examples

we have used the multiquadric

Φc(x, y) =

√

1 +
||x − y||2

c2
,

where x, y ∈ R
2 and c > 0 is the scaling parameter. As test equation we solve

the Poisson problem with Dirichlet boundary conditions, i.e.

4u(x) = f(x) for x ∈ Ω ⊂ R
d,

u(x) = g(x) for x ∈ ∂Ω.

(12)

We solve this problem on the three domains Ω1, Ω2, Ω3 ⊂ R
2 which are plotted

in figure 1.

In order to compare the exact solution of (12) with the computed approximant,

we choose as the right hand sides of (12) the functions f = 4gi for 1 ≤ i ≤ 3

where the functions gi are

g1(x, y) := 0.5 log(x2 − 4x + 8 + y2 − 4y),

g2(x, y) := MATLAB’s peaks function,

g3(x, y) := (max{x, 0})3.

14

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Ω
1

−0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Ω
2

−0.5 0 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Ω
3

Fig. 1. The domains Ω1, Ω2, and Ω3.

We collocate the PDE (12) at N1 + N2 points

{z1, . . . , zN1
} ⊂ Ω, {z̃1, . . . , z̃N2

} ⊂ ∂Ω (13)

such that the first point set associates with the domain operator and the

second set associates with the boundary operator.

Fill distance of the trial points should be more or less equal to that of the test

points. The choice of the outer box, in which the trial points lies, determines

the value of M and vise versa. We discretize the set [−6, 6]2 by 47229 equally

distributed points XM ⊂ [−6, 6]2. We allow the greedy method to pick from

the trial functions
{

Φc(xi, ·) : xi ∈ XM

}

,

and from the test functionals

{

λi := δzi
4[u] : 1 ≤ i ≤ N1

}

∪
{

λ̃j := δz̃j
[u] : 1 ≤ j ≤ N2

}

.

Finally, we pick krestart = 10 and kmax = 250.

Since the method is extremely fast, the forthcoming examples are not re-

stricted to single solutions of single problems. Instead, a full sequence of prob-

lems is solved, using varying scalings of the kernel.

15

2 4 6 8 10
10−8

10−6

10−4

10−2

Scaling parameter c

R
M

S
 o

f
 (

s
o
lu

ti
o
n
−

a
p
p
ro

x
im

a
n
t)

2 4 6 8 10
20

40

60

80

100

120

D
e

g
re

e
 o

f
fr

e
e

d
o

m

Scaling parameter c

Fig. 2. RMS and DOF against scaling parameter c for the domain Ω1 and for

f = 4g1.

Example 1 In our first example we solve (12) for the domain Ω1 (see Fig-

ure 1) and for f = 4g1. The adaptive greedy algorithm can pick from N1 +

N2 = 1116 test functionals (see (13)). To show the influence of the scaling

parameter c, we run the algorithm 73 times with ci := 1 + 0.125i, 0 ≤ i ≤ 72.

The left plot of figure 2 shows the root-mean-square (RMS) error against the

scaling parameter c;

RMS :=
1

|Ω̃|

√

∑

x∈Ω̃

(s1(x) − s̃(x))2

where s̃ denotes the computed approximant and Ω̃ is a sufficiently fine dis-

cretization of Ω The right plot of figure 2 shows the degrees of freedom, i.e.

the number K of chosen trial centers or the number of total iterations, against

the scaling parameter c.

A small value of c allows the algorithm to pick many trial centers and test

functionals which results in a high accuracy. A huge value of c causes an ill–

conditioned matrix. Therefore the iteration terminates after fewer steps, i.e.

16

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 3. Loci of points for c = 1. Left: chosen test functionals. Right: chosen trial

centers.

better efficiency. However, all computed examples have a remarkably small

error, taking into account that we have actually picked less than 120 points in

all examples. The greedy algorithm proposed by [8] needs nearly 3000 points

for the same problem to achieve an accuracy of 0.001. To show how the scaling

parameter c influences the distribution of the points, Figure 3 and 4 show the

loci of the chosen trial centers and test functionals for the scaling parameters

c = 1 and c = 5. In the left plots of figure 3 and 4, the circles indicate the cho-

sen boundary functionals whereas the crosses indicate the interior functionals.

For c = 1 the trial centers are uniformly distributed close to the domain Ω1,

whereas for c = 5 the trial centers (39 out of 40) move out of the domain. We

observed the same behaviour in other examples: the adaptive greedy algorithm

prefers “exterior” centers for large scaling parameters c.

Example 2 In this example we solve the PDE (12) for the domain Ω2 (see

Figure 1) and for f = 4g2. We run the algorithm with the same settings as

in the previous example, but the number of test functionals is now N1 +N2 =

1082. The left plot of figure 5 shows the RMS error while the right plot of

17

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−5 0 5
−6

−4

−2

0

2

4

6

Fig. 4. Loci of points for c = 5. Left: chosen test functionals. Right: chosen trial

centers.

2 4 6 8 10
10−8

10−6

10−4

10−2

100

Scaling parameter c

R
M

S
 o

f
 (

s
o
lu

ti
o
n
−

a
p
p
ro

x
im

a
n
t)

2 4 6 8 10
20

40

60

80

100

120
D

e
g
re

e
 o

f
fr

e
e
d
o
m

Scaling parameter c

Fig. 5. RMS and DOF against scaling parameter c for the domain Ω2 and for

f = 4g2.

figure 5 shows the final degrees of freedom K against the scaling parameter c.

In this example we observe a similar behaviour of the algorithm with respect to

the scaling parameter c as in the previous example. A small c results in a very

high accuracy. If we choose the scaling parameter close to 10, the algorithm

can only pick about 20 points before it runs into condition problems. Therefore

18

0.5 1 1.5 2 2.5 3
10−4

10−3

10−2

10−1

100

Scaling parameter c

R
M

S
 o

f
 (

s
o
lu

ti
o
n
−

a
p
p
ro

x
im

a
n
t)

0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

D
e

g
re

e
 o

f
fr

e
e

d
o

m

Scaling parameter c

Fig. 6. RMS and DOF against scaling parameter c for the domain Ω3 and for

f = 4g3.

we lose accuracy.

Example 3 In our last example we solve the PDE (12) for Ω3 and for f =

4g3. Note that in this example 4g3 has a corner inside the domain Ω3, and

the solution has a derivative singularity there. Since our approximant is always

a superposition of shifted super smooth functions, we cannot expect a high

accuracy. The number of test functionals is N1+N2 = 636 in this example. We

only ran the adaptive greedy algorithm 29 times for ci := 0.2+0.1i, 0 ≤ i ≤ 28.

Figure 6 shows the RMS error and the degrees of freedom against the scaling

parameter c.

6 Conclusion

We propose a truly meshless adaptive greedy technique that allows general

PDE problems to be solved on complicated domains. The method is adap-

tive, data-dependent and matrix-free; hence, it provides a fast and efficient

19

alternative to solve large-scale problems.

Note that the greedy method currently runs on large discrete sets of test

functionals and trial centers. But it can be run on infinite sets thereof. In the

latter case, the searches over the discrete sets ΛN and XM are replaced by two

d-dimensional optimization problems. Also, there is quite some chance to prove

convergence to the true solution of the full problem, using the techniques of

[15]. We leave this to a forthcoming paper, together with the possibility to use

trial spaces that arise from kernels of different scales and incorporate functions

which account for singularities of solutions at the boundary.

References

[1] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–

404, 1950.

[2] Satya N. Atluri and Shengping Shen. The Meshless Local Petrov-Galerkin

(MLPG) Method. Tech Science Press, Encino, CA, 2002.

[3] F. A. de Paula and J. C. F. Telles. A comparison between point collocation

and Galerkin for stiffness matrices obtained by boundary elements. Eng. Anal.

Boundary Elements, 6(3):123–128, 1989.

[4] G. E. Fasshauer. Newton iteration with multiquadrics for the solution of

nonlinear PDEs. Comput. Math. Appl., 43(3-5):423–438, 2002.

[5] C. Franke and R. Schaback. Solving partial differential equations by collocation

using radial basis functions. Appl. Math. Comput., 93(1):73–82, 1998.

[6] Carsten Franke and R. Schaback. Convergence order estimates of meshless

20

collocation methods using radial basis functions. Adv. Comput. Math., 8(4):381–

399, 1998.

[7] M.A. Golberg and C.S. Chen, editors. The dual reciprocity method and radial

basis functions. Elsevier, Amsterdam, 2000. Eng. Anal. Boundary Elements 24

(2000), no. 7-8.

[8] Y. C. Hon and R. Schaback. On unsymmetric collocation by radial basis

functions. Appl. Math. Comput., 119(2-3):177–186, 2001.

[9] E. J. Kansa. Application of Hardy’s multiquadric interpolation to

hydrodynamics. In Proc. 1986 Simul. Conf., Vol. 4, pages 111–117, 1986.

[10] E. J. Kansa. Multiquadrics—a scattered data approximation scheme with

applications to computational fluid-dynamics. I. Surface approximations and

partial derivative estimates. Comput. Math. Appl., 19(8-9):127–145, 1990.

[11] Jichun Li, Alexander H. D. Cheng, and Ching-Shyang Chen. A comparison of

efficiency and error convergence of multiquadric collocation method and finite

element method. Eng. Anal. Boundary Elements, 27(3):251–257, 2003.

[12] Leevan Ling and M. R. Trummer. Multiquadratic collocation method with

integral formulation for boundary layer problems. Comput. Math. Appl., 48(5-

6):927–941, 2004.

[13] N. Mai-Duy and T. Tran-Cong. Numerical solution of Navier-Stokes equations

using multiquadric radial basis function networks. Int. J. Num. Meth. Fluid,

37:65–86, 2001.

[14] R. Schaback. Native Hilbert spaces for radial basis functions I. In Buhmann

M.D., Mache D. H., Felten M., Müller, and M.W., editors, New Developments

in Approximation Theory, volume 132 of International Series of Numerical

Mathematics, pages 255–282. Birkhäuser Verlag, 1999.

21

[15] R. Schaback. On the versatility of meshless kernel methods. In S.N. Atluri, D.E.

Beskos, and D. Polyzos, editors, Advances in Computational & Experimental

Engineering & Sciences, number 428, 2003.

[16] A. S. M. Wong, Y. C. Hon, T. S. Li, S. L. Chung, and E. J. Kansa.

Multizone decomposition for simulation of time-dependent problems using the

multiquadric scheme. Comput. Math. Appl., 37(8):23–43, 1999.

[17] Zong Min Wu. Hermite-Birkhoff interpolation of scattered data by radial basis

functions. Approx. Theory Appl., 8(2):1–10, 1992.

[18] D. L. Young, S. C. Jane, C. Y. Lin, C. L. Chiu, and K. C. Chen. Solutions

of 2D and 3D Stokes laws using multiquadrics method. Eng. Anal. Boundary

Elements, 28(10):1233–1243, 2004.

22

