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Abstract. We proposed ways to implement meshless collocation methods extrinsically for
solving elliptic partial differential equations on smooth, closed, connected and complete Rieman-
nian manifolds with arbitrary codimensions. Our methods are based on strong-form collocations
with oversampling and least-squares minimizations, which can be implemented either analytically
or approximately. By restricting global kernels to the manifold, our methods resemble their easy-
to-implement domain-type analogies, i.e., Kansa methods. Our main theoretical contribution is
the robust convergence analysis under some standard smoothness assumptions for high order con-
vergence. Numerical demonstrations are provided to verify the proven convergence rates and we
simulate reaction-diffusion equations for generating Turing patterns on manifolds.
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1. Introduction. Throughout this paper, we use dM to denote dimension of
some manifold M ⊂ Rd, whose codimension is given as r := d − dM. We consider a
general second-order strongly elliptic equation on M in the form of

LMu :=
(
− a∆M +~b · ∇M + c

)
u = f. (1.1)

We assume coefficients a,~b, c ∈ Wm−2
∞ (M), f ∈ L2(M), and the existence [54] of clas-

sical solutions u∗ to (1.1) in Hilbert spaces Hm(M). The manifold gradient operator
∇M and the Laplace-Beltrami operator ∆M in (1.1) will be defined later in (3.2) and
(3.3).

In recent years, many numerical methods have been developed for solving the sur-
face problem by means of some intrinsic, extrinsic or embedding techniques. Intrinsic
methods use local parametrization in dM-dimensional coordinates [5, 37]. Spatial dis-
cretization of extrinsic methods are imposed on surface nodes/meshes without leaving
the surfaces [10, 21]. They may require analytical transformations of differential op-
erators on the surface to standard ones in Cartesian (or extrinsic) coordinates or
projections. Methods in the embedding class avoid such transformations by extend-
ing surface PDEs into some embedding spaces in Rd and work with d-dimensional
computational domains, see [4, 8, 18, 31, 32, 33, 34, 44, 46]. One potential disadvan-
tage is the additional computational cost due to the extension, particularly for high
codimensions.

A great deal of meshless radial basis functions (RBFs) approaches has been pro-
posed initially for PDEs on spheres. The standard RBFs were applied to produce pos-
itive definite kernels for divergence-free fields of tangent vectors on spheres [12, 14, 39].
Some developed an interpolant approximation by using muiltiscale compactly sup-
ported RBFs restricted on spheres [26] and it was applied to meshless collocation
technique for solving PDEs on spheres [27]. There are also some existing error es-
timates for RBF interpolations on spheres [52], as well as on manifolds generally
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[13]. In [53], a novel discretization method of meshless collocation approximation was
described for solving semilinear parabolic equations on Euclidean spheres. Recent
papers were introduced by making use of localized kernel bases [11, 48]. Besides, the
local meshless RBF approach [48] and a global one in [15] were respectively utilized
to approximate surface differential operators without information about curvatures of
manifolds.

Unsymmetric meshless strong-form collocation methods, also known as Kansa
methods [23, 24], are simple to implement and have been widely used in many physics
and engineering applications [7, 25, 28, 42]. It is known that the exactly determined
formulation in the original Kansa method could lead to singular linear systems [22].
Solvability, stability and convergence can be recovered via some overdetermined for-
mulations [9, 29, 30, 47].

Because of our interest in some computationally efficient meshless formulations,
we aim to derive collocation methods for PDEs that are generally sufficient to work on
any smooth, closed, connected and complete Riemannian manifolds with any codimen-
sion embedded in Rd [40]. Given two discrete sets of points onM, namely collocation
points in X and trial centers in Z, we employ some kernels Ψm :M×M→ R with the
smoothness order m that reproduce Hm(M). Spanned by such translation-invariant
Ψm, some finite-dimensional trial spaces UZ can be defined by

UZ = UZ,M,Ψm := span{Ψm

(
· − zj

)
| zj ∈ Z}. (1.2)

In this paper, we analyze the following least-squares solution

UX,Z := arg inf
u∈UZ

∑
x∈X
‖LMu(x)− f(x)‖22 (1.3)

from UZ in (1.2). The following theorem gives an error estimate in terms of fill
distances h• and mesh ratios ρ• of X and Z, whose formal definitions can be found in
(3.5) and (3.6), for the proposed least-squares solution (1.3) under the assumptions
in Sections 2 and 3.

Theorem 1.1. Let k ≥ 2. Suppose that assumptions A1–A4 in Sections 2 and
3 hold for some integer m ≥ dk + 1 + dM/2e and let u∗ ∈ Hm(M) be the classical
solution to (1.1). Then the least-squares solution UX,Z ∈ UZ defined by (1.3) satisfies
the estimate

‖UX,Z − u∗‖Hk(M) ≤ Ch
m−dM/2
Z

(
h−kZ + h−k+2

X h−2
Z

)
‖u∗‖Hm(M) (1.4)

for some constant C depending only on k, M, LM, Ψm and the mesh ratio ρX of X,
as well as sufficiently small hX < hZ in the sense of (3.13).

In Section 2, some definitions and notations essential to Theorem 1.1 will be
provided. Section 3 contains the proof of Theorem 1.1 after proving some necessary
lemmas. In Section 4, we show how the least-squares solution (1.3) can be sought
either by an analytical or by a kernel-based approximation approach. In Section 5,
we present two numerical experiments to verify the proven convergent property and
to compare the proposed methods with each other, as well as with other algorithms in
the literatures. Finally, we verify robustness of the proposed methods by simulating
Turing patterns on surfaces.

2. Sobolev spaces on manifolds and embedding domains. Firstly, we need
all the assumptions on the manifoldM so that an inverse inequality for kernel-based
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trial functions in [20] can be applied in Section 3.
A1. Let M be a closed, connected and complete Riemannian manifold of Rd such

that it is of class Cm+1 for some integer m. We further suppose as required in [20]
that M satisfies

• (Bounded geometry). If the injectivity radius rM ofM is positive and covari-
ant derivatives of the Riemannian metric are bounded, then M is of bounded
geometry.

• (Boundary regularity). If c1r
dM
M ≤ vol(B(x, r)) ≤ c2r

dM
M , 0 < c1 < c2 < ∞,

holds for any ball B(x, r) with the radius 0 ≤ r ≤ rM.
For such Cm+1 Riemannian manifolds, let TpM denote the tangent space at each

point p ∈ M. Moreover, the r-dimensional normal space of M at p is spanned by
some orthonormal bases {~ni(p)}ri=1. By these bases, we define the d× r matrix of
unit normal bases

N(p) := [~n1(p), . . . , ~nr(p)]. (2.1)

In this paper, we develop kennel-based methods that work solely on the manifoldM.
Yet, our convergence analysis calls upon certain embedding techniques and theories.
Formally, we suppose as in [33] that M is smooth enough. By [33, Thm. 3.8], there
exists some δM > 0 such that the Euclidean closest point restriction map

Rcp(x) := arg inf
p∈M

‖p− x‖2 (2.2)

is well-defined and, for any δ ∈ (0, δM], is of class Cm in the δ-narrow band domain

Ωδ :=
{
x ∈ Rd : ‖x− p‖2 ≤ δ, for some p ∈M

}
. (2.3)

We denote ΩM := ΩδM to be the largest possible narrow band domain that allows
Cm restriction maps. If we operate on sets, then we have Rcp(Ωδ) = M for any
δ ∈ (0, δM].

For any embedding domain Ω ⊂ Rd, we will work in standard Sobolev spaces
Wk
l (Ω) with some k ∈ N, see [1]. They consist of all functions u with distributional

derivatives Dα
xu in Ll(Ω) for all |α| ≤ k and associate with norms

‖u‖Wk
l (Ω) :=


( ∑
|α|≤k

∫
Ω

|Dα
xu(x)|ldx

)1/l

for 1 ≤ l <∞,

max
|α|≤k

(
ess sup
x∈Ω

|Dα
xu(x)|

)
for l =∞.

(2.4)

For Sobolev spacesWk
l (M) on manifolds, we adopt the definition in [54]. Functions in

Wk
l (M) are characterized by some Ck atlas {(Vi, ℘i)}i∈Λ and a subordinate partition

of unity {%i}i∈Λ in Ck0 (M). The corresponding norms are defined by

‖u‖Wk
l (M) :=


( ∑
|β|≤k

∑
i∈Λ

‖Dβ
θ {(%iu) ◦ ℘−1

i (θ)}‖lLl(℘i(Vi))
)1/l

for 1 ≤ l <∞,

max
|β|≤k

∑
i∈Λ

‖Dβ
θ {(%iu) ◦ ℘−1

i (θ)}‖L∞(℘i(Vi)) for l =∞.

(2.5)
In the case of l = 2, Wk

2 (M) coincides with the Hilbert space Hk(M). For any
discrete set Ξ = {p1, . . . , pnΞ} of nΞ points on M, discrete norms [19, Rem.17] on Ξ
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are defined as

‖u‖`l(Ξ) :=


(
nΞ∑
j=1

∣∣u(pj)
∣∣l)1/l

for 1 ≤ l <∞,

max
1≤j≤nΞ

∣∣u(pj)
∣∣ for l =∞.

(2.6)

With these notations, we give a special case of norm equivalence betweenM and
Ωδ as follows. As a direct consequence of chain rules and A1, this allows us to go
between the distributional derivatives Dα

x in (2.4) and Dβ
θ in (2.5) for the x- and

θ-space respectively.
Lemma 2.1. Suppose that the manifold M satisfies the assumption A1. Let Ωδ

be defined as that in (2.3) with any sufficiently small δ < δM. Then there exist some
constants 0 < C1 ≤ C2 depending only on M, d and k such that

C1δ
(d−dM)/2‖u‖Hk(M) ≤ ‖u ◦Rcp‖Hk(Ωδ) ≤ C2δ

(d−dM)/2‖u‖Hk(M)

holds for any u ∈ Hm(M) and 0 ≤ k ≤ m.

Proof. This lemma is a straightforward generalization of [8, Lem. 3.1] from r =
d− dM = 1 to arbitrary codimensions. To prove the lemma, we consider any nearby
translated manifoldMυ = {p+N(p)υ | p ∈M} for any υ ∈ Rr with ‖υ‖`2(Rd) < δM.
Then, N(p)υ is normal to M and we have ‖u ◦ Rcp‖Hk(Mυ) = ‖u‖Hk(M). Using a
coarea formula for ‖u ◦Rcp‖Hk(Ωδ) in the tangential and normal directions ofM, the

desired scale factor δr/2 arises from the volume of the hypersphere with radius δ in
Rr. �

3. Partial differential equations on M. In this section, we prove Theo-
rem 1.1. Let Id denote the identity matrix of size d × d. Using the matrix of unit
normal bases N(p) in (2.1), we define the orthogonal projector

P := P(p) = Id −N(p)N(p)T , (3.1)

which projects vectors from Rd at p ∈ M onto the tangent space TpM. We denote
columns of P by Pi, whose entries are given by Pij with i, j = 1, 2, . . . , d. We remark
that, it is not required in [33] that the bases in (2.1) be mutually orthogonal. In this
case, the transpose T in (3.1) should be replaced by a pseudoinverse †.

Let ∇ be the gradient operator and ∆ be the Laplacian operator in Rd. The
gradient operator on M is defined as

∇M := P∇, (3.2)

and the Laplace-Beltrami operator is defined as [10]

∆M := ∇M · ∇M = (P∇) · (P∇). (3.3)

Using definitions (3.2) and (3.3), we completely define the elliptic operator LM in
(1.1). We now make the necessary assumption about this manifold PDE.

A2. Assume that LM in (1.1) is a second-order strongly elliptic operator whose
coefficients are in Wm−2

∞ (M) and (1.1) admits a classical solution u∗ ∈ Hm(M) for
some m ≥ 2.
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Using the restriction map Rcp in (2.2), the manifold operator LM can be embed-
ded to Ωδ by [34]

LE := −
(
a ◦Rcp

)
∆ +

(
~b ◦Rcp

)
· ∇+ (c ◦Rcp). (3.4)

The coefficients in (3.4) are obtained from those in (1.1) by the constant-along-normal
extension. With the use of some carefully chosen δ and the trial centers, this embed-
ding technique allows the development of extrinsic formulations. First, we need a reg-
ularity estimate that holds in Sobolev spaces. We extend the results in [8, Thm. 3.2]
to codimension r ≥ 1 as below.

Lemma 3.1. Suppose that A1 and A2 hold. Let Ωδ be an embedding domain as
in (2.3) with some δ < δM. Then, for any u ∈ Hm(M), the inequality

‖u‖Hk(M) ≤ Cδ−r/2‖LE(u ◦Rcp)‖Hk−2(Ωδ), 2 ≤ k ≤ m,

holds with some constant C depending only on M and k.

Proof. For any u ∈ Hm(M), applying an elliptic Neumann-boundary regularity
estimate [50] to the operator LE and the function u ◦Rcp yields

‖u ◦Rcp‖Hk(Ωδ) ≤ CΩδ,k

(
‖LE(u ◦Rcp)‖Hk−2(Ωδ) + ‖∂~n(u ◦Rcp)‖Hk−3/2(∂Ωδ)

)
.

The domain-dependent constant can be bounded as CΩδ,k ≤ CΩM,k = CM,k. By
Lemma 2.1, we can bound ‖u ◦Rcp‖Hk(Ωδ) from below via using δr/2‖u‖Hk(M). The
constant-along-normal property of u ◦ Rcp ensures that ∂~n(u ◦ Rcp) = 0 on ∂Ωδ and
the proof is completed. �

3.1. Kernels and discrete settings. We are ready to work in trial spaces.
Given any discrete set of points Ξ ⊂M, let distΩ := ‖·‖2 and distM be the Euclidean
and geodesic measures in Ω and onM respectively. For Π ∈ {Ωδ,M}, the fill distance
hΞ,Π and the separation distance qΞ,Π are defined as

hΞ,Π := sup
ζ∈Π

inf
η∈Ξ

distΠ(ζ, η), and qΞ,Π :=
1

2
inf

ηi 6=ηj∈Ξ
distΠ(ηi, ηj), (3.5)

respectively. In Theorem 1.1, the mesh ratio of the set Ξ is defined as

ρΞ,Π := hΞ,Π/qΞ,Π. (3.6)

For brevity, we use hΞ = hΞ,M, qΞ = qΞ,M and ρΞ = ρΞ,M later, unless otherwise
stated.

For discretization, our proposed least-squares methods require two sets on the
manifold.

A3. Let X = {x1, . . . , xnX} ⊂ M and Z = {z1, . . . , znZ} ⊂ M be the sets of
collocation points and trial centers, respectively. We assume both of them are quasi-
uniform, that is, both admissible point sets satisfy

qΞ ≤ hΞ ≤ ρΞqΞ, Ξ ∈ {X,Z} (3.7)

for some constants ρΞ ≥ 1.
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Instead of working with arbitrary manifold kernels Ψm, we focus on those related
to some global kernels Φτ : Rd × Rd → R that are symmetric positive definite with
Fourier transforms Φ̂τ satisfying the following decay

c1(1 + ‖ω‖22)−τ ≤ Φ̂τ (ω) ≤ c2(1 + ‖ω‖22)−τ , for all ω ∈ Rd, (3.8)

for some constants 0 < c1 ≤ c2. From [35], these Φτ reproduce Hτ (Rd) for any
τ > d/2. One example of such kernels is the standard Whittle-Matérn-Sobolev kernels
[35],

Φτ (x, y) :=
‖x− y‖τ−d/22 Kτ−d/2(‖x− y‖2)

2τ−1Γ(τ)
, (3.9)

where K is the Bessel functions of the second kind. The class of Wendland compactly
supported kernels is another example [51]. Simply by restricting such global kernels
Φτ onM, we can obtain restricted kernels Ψm :M×M→ R that reproduce Hm(M)
under the following assumption [13, 38].

A4. Let m = τ − r/2 > dM/2. Suppose that the kernel Ψm :M×M→ R takes
the form of

Ψm( · , · ) := Φτ ( · , · )|M×M, (3.10)

for some kernel Φτ : Rd × Rd → R that satisfies (3.8).

3.2. Stability and consistency. We prove a stability estimate on M, as well
as a theorem of consistency for arbitrary codimensions in this section. Firstly, the
sampling inequality in [8, Thm. 3.3] should be extended to arbitrary codimensions.

Lemma 3.2. Suppose that A1–A3 hold. Let Ωδ be an embedding domain defined
as that in (2.3) with some δ = hX < δM. Further assume that the set of collocation
points X ⊂M is sufficiently dense. Then, for any integer k with 2 ≤ k ≤ m,

‖LE(u ◦Rcp)‖Hk−2(Ωδ) ≤ Cδ
r/2
(
hm−kX ‖u‖Hm(M) + h

dM/2−k+2
X ‖LMu‖`2(X)

)
holds for all u ∈ Hm(M) and some positive constant C depending only on M, LM,
m and k.

Proof. Applying a sampling inequality [9, Lem. 3.1] to LE(u ◦Rcp) ∈ Hm−2(Ωδ) at
some sufficiently dense set X ⊂M, we have

‖LE(u ◦Rcp)‖Hk−2(Ωδ) (3.11)

≤ CΩδ,k,m

(
hm−kX,Ωδ

‖LE(u ◦Rcp)‖Hm−2(Ωδ) + h
d/2−k+2
X,Ωδ

‖LE(u ◦Rcp)‖`2(X)

)
,

in which the constant CΩδ,m,k can be bounded by another constant CΩM,m,k.
SinceM is smooth and compact, by [13, Thm. 6], the measures onM and in Ωδ

are proportional with respect to some constants depending on the diameter ofM, i.e.,
distM(x, y) ∼ ‖x− y‖2. Note that any ζ ∈ Ωδ can be decomposed to ζ = Rcp(ζ) + t~n
by some unit normal vector ~n at the point Rcp(ζ) ∈M and t ∈ [0, δ]; we can see that

h2
X,Ωδ

:= sup
ζ∈Ωδ

inf
η∈X
‖ζ − η‖22 ≤ sup

ζ∈Ωδ

inf
η∈X
‖Rcp(ζ)− η‖22 + δ2

∼ sup
y∈M

inf
η∈X

dist2M(y, η) + δ2.
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In other words, by choosing δ = hX,M, we have proportional fill distances hX,Ωδ ∼
hX,M with some constant depending on M.

Applying [17, Lem. 3.4] and Lemma 2.1 yields an upper bound for the first term
on the right of (3.11), i.e.,

‖LE(u ◦Rcp)‖Hm−2(Ωδ) ≤ CΩM,LE‖u ◦Rcp‖Hm(Ωδ)

≤ CΩM,LECM,mδ
r/2‖u‖Hm(M).

By A2, there exists some constant CM,LM,m that can bound CΩM,LECM,m from the
above. Together, we have

‖LE(u ◦Rcp)‖Hk−2(Ωδ)

≤ CM,LM,k,m

(
hm−kX δr/2‖u‖Hm(M) + h

d/2−k+2
X ‖LE(u ◦Rcp)‖`2(X)

)
∼ CM,LM,k,mδ

r/2
(
hm−kX ‖u‖Hm(M) + h

(d−r)/2−k+2
X ‖LE(u ◦Rcp)‖`2(X)

)
.

The lemma follows from dM = d− r. �

Lemma 3.3. Suppose that A1–A3 hold for some integers m > dM/2 and 2 ≤ k ≤
m. Then there exists some constant C depending only on M, LM, m and k such that

‖u‖Hk(M) ≤ Ch
dM/2−k+2
X ‖LMu‖`2(X) (3.12)

holds for all trial functions u ∈ UZ as in (1.2), provided that the sets of trial centers
Z and collocation points X satisfy

CM,LM,Ψm,ρZ ,kh
m−k
X h−mZ ‖u‖L2(M) <

1

2
‖u‖Hk(M) (3.13)

for some constant CM,LM,Ψm,ρZ ,k > 0 independent of X.

Proof. By combining Lemmas 3.1 and 3.2 with a sufficiently small δ = hX < δM, a
stability estimate can be arrived

‖u‖Hk(M) ≤ CM,LM,m,k

(
hm−kX ‖u‖Hm(M) + h

dM/2−k+2
X ‖LMu‖`2(X)

)
, (3.14)

for m ≥ k ≥ 2. By A1 for M, we can apply an inverse inequality [20, Thm. 10] for
trial functions u ∈ UZ , i.e.,

‖u‖Hm(M) ≤ CM,Ψm,ρZh
−m
Z ‖u‖L2(M). (3.15)

Putting (3.15) into (3.14) completes the proof. �

The oversampling requirement in (3.13) specifies the condition on the denseness
of X with respect to Z that can ensure stability. A sufficient condition to satisfy
(3.13) is by taking hm−kX h−mZ < 1/2, which, however, may be unnecessary – as the
numerical experiments in Section 5 indicate.

The last piece of the technical details we need is about consistency that can be
obtained by using convergence estimates for kernel-based interpolation on manifolds
[13, Thm. 11].

Lemma 3.4. Suppose that A1 and A2 hold for some m ≥ 2 + dM/2. Then, for
any u ∈ Hm(M), we have

‖LMu‖L∞(M) ≤ C‖u‖W2
∞(M), (3.16)
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with some constant C depending on M and LM.

Proof. By a Sobolev embedding theorem [2, Prop.2.2], we know u ∈ W2
∞(M). We

pick a sufficiently small δ < δM so that Rcp(x) is of class Cm in Ωδ. Due to the
boundedness of the coefficients in LM, we have [17]

‖LMu‖L∞(M) ≤ ‖LE(u ◦Rcp)‖L∞(Ωδ) ≤ CM,LM‖u ◦Rcp‖W2
∞(Ωδ)

= CM,LM max
|α|≤2

ess sup
x∈Ωδ

∣∣∣Dα
x

{
u ◦Rcp

}∣∣∣. (3.17)

Using the fact that M has bounded geometry, applying chain rule yields
∣∣∣Dα

x

{
u ◦

Rcp

}∣∣∣ ≤ Cα,M‖u‖Wα
∞(M) for any x ∈ Ωδ and |α| ≤ m. Taking the maximum of all

Cα,M with |α| ≤ 2 yields (3.16). �

Lemma 3.5. Suppose that A1–A4 hold. Let IZu
∗ be the interpolant of u∗ from

the trial space UZ as in (1.2). Then

inf
u∈UZ

‖LMu− LMu∗‖`2(X) ≤ ‖LM(IZu
∗)− LMu∗‖`2(X) (3.18)

≤ Ch−dM/2
X h

m−dM/2−2
Z ‖u∗‖Hm(M) (3.19)

holds for some constant C depending only on M,Ψm,LM and ρX .

Proof. Since the interpolant IZu
∗ ∈ UZ of u∗ is a feasible solution to the minimiza-

tion problem, the inequality (3.18) is trivial. By Lemma 3.4 and an error estimate for
kernel-based interpolation on manifolds [13, Cor.13], we have

‖LM(IZu
∗)− LMu∗‖`2(X) ≤ n

1/2
X ‖LM(IZu

∗)− LMu∗‖L∞(M)

≤ CM,LMn
1/2
X ‖IZu

∗ − u∗‖W2
∞(M)

≤ CM,Ψm,LMq
−dM/2
X h

m−dM/2−2
Z ‖u∗‖Hm(M),

provided that m ≥ d3 + dM/2e as required in [13]. We arrive at (3.19) by the fact
that X is ρX -uniform. �

Proof (Theorem 1.1). We consider the approximation error in two parts:

‖UX,Z − u∗‖Hk(M) ≤ ‖UX,Z − IZu∗‖Hk(M) + ‖IZu∗ − u∗‖Hk(M). (3.20)

By the stability estimate in Lemma 3.3, we can bound the first term on the right side
of (3.20) by

‖UX,Z − IZu∗‖Hk(M) ≤ CM,LM,m,kh
dM/2−k+2
X ‖LM(UX,Z − IZu∗)‖`2(X).

By (3.18), we obtain

‖LM(UX,Z − IZu∗)‖`2(X) ≤ ‖LM(UX,Z − u∗)‖`2(X) + ‖LM(u∗ − IZu∗)‖`2(X)

≤ 2‖LM(u∗ − IZu∗)‖`2(X).

Then, the consistency estimate in Lemma 3.5 suggests that

‖UX,Z − IZu∗‖Hk(M) ≤ 2CM,LM,m,kh
dM/2−k+2
X ‖LM(u∗ − IZu∗)‖`2(X)

≤ 2CM,LM,Ψm,ρXh
−k+2
X h

m−dM/2−2
Z ‖u∗‖Hm(M).
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For m ≥ dk + 1 + dM/2e, we can use the convergence estimate in [13, Cor.13] to
bound the other term in (3.20) as follows:

‖IZu∗ − u∗‖Hk(M) ≤ CM‖IZu∗ − u∗‖Wk
∞(M)

≤ CM,Ψm,kh
m−k−dM/2
Z ‖u∗‖Hm(M).

Combining these two upper bounds yields the desired error estimate. �

4. Extrinsic meshless collocation methods and implementation. For nu-
merical computation of the least-squares solution UX,Z in (1.3), we must find means
to evaluate the term LMu. In this section, we present analytical and approximate
expressions of differentiation of the projector in (3.1). The latter completely avoid
differentiating the projector in (3.1), which is suitable when such information is un-
available.

4.1. Kansa-type Projection Method. If analytical information about the
derivatives of the projector P in (3.1) are available, it is possible to analytically
transform LM in (1.1) into the standard Cartesian coordinates. First, the manifold
gradient form of u, see (3.2), can be expanded as

∇Mu = P∇u =

P1 · ∇
...

Pd · ∇

u, (4.1)

where Pk is the kth column of P. Similarly, we can get the extrinsic formula of the
Laplace-Beltrami operator from its definition (3.3) as

∆Mu = (P∇) · (P∇)u

= trace
(
P · J(∇Mu)T

)
=

d∑
i=1

(
ζi
∂u

∂xi
+ Pii

∂2u

∂x2
i

)
+

d∑
i,j=1
i 6=j

Pij
∂2u

∂xi∂xj
, (4.2)

with coefficients ζi = trace(P · J(Pi)T ), for i = 1, . . . , d, where Pij denotes the ij-th
entry of P and J is the Jacobian operator. Using (4.1) and (4.2), we can transform
the operator in (1.1) into a collocation-ready form

LM = −a

 d∑
i=1

(
ζi

∂

∂xi
+ Pii

∂2

∂x2
i

)
+

d∑
i,j=1
i6=j

Pij
∂2

∂xi∂xj

+

d∑
k=1

bk(Pk · ∇) + c. (4.3)

A simple demonstration of such a transformation is given below.

Example. LetM∈ R3 be the unit sphere. We consider the differential operator
LM = ∆M −~1 · ∇M. Firstly, we compute the orthogonal projection operator

P =

−x2 + 1 −xy −xz
−xy −y2 + 1 −yz
−xz −yz −z2 + 1

 .
9



Simplifying with the fact that x2 + y2 + z2 = 1, we get the coefficients in (4.2):
(ζ1, ζ2, ζ3) = (−2x,−2y,−2z). Putting these coefficients into (4.3), we now express
the surface operator entirely in Cartesian coordinates as

LM =
(

(x− 1)2 + x(y + z)− 2
) ∂
∂x

+
(

(y − 1)2 + y(x+ z)− 2
) ∂
∂y

+
(

(z − 1)2 + z(x+ y)− 2
) ∂
∂z

+
(
− x2 + 1

) ∂2

∂x2
+
(
− y2 + 1

) ∂2

∂y2
+
(
− z2 + 1

) ∂2

∂z2

−2xy
∂2

∂x∂y
− 2xz

∂2

∂x∂z
− 2yz

∂2

∂y∂z
,

which no longer has any implicit dependency on M and can be used for collocation.
Note that, for the unit sphere, ∆M in (3.3) is the standard Laplacian-Beltrami in
the spherical polar coordinates. Because its canonical metric of sectional curvature is
constant when the radius is. �

In the coming section, we deal with the situation, in which the derivatives of P
are not available analytically.

4.2. Approximated Kansa Method. We adopt the meshless approach in [15]
to approximate the gradient of a function u ∈ Hm(M) based on its unknown nodal
values u(Z) at some given set of trial centers Z = {z1, · · · , znZ} ⊂ M. We use
the restricted kernels Ψm that satisfy A4 and can reproduce Hm(M). Let Ψm(Z,Z)
with ij-entry Ψm(zi, zj) be the interpolation matrix of Ψm on Z. The approximate
interpolant IZu in the trial space UZ in (1.2) can then be expressed by a linear
expansion

IZu = [Ψm( · , Z)][Ψm(Z,Z)]−1u(Z). (4.4)

Via (4.4), we define an approximate manifold gradient operator by

∇̃Mu := ∇M(IZu) =

P1 · ∇
...

Pd · ∇

 (IZu),

in which the gradient operator acts upon the variable of Ψm( · , Z). Thus, by using

the notation in [15], the kth component, for 1 ≤ k ≤ d, of ∇̃Mu is given by

[∇̃Mu]k = Gk( · , Z)u(Z) :=
(
PTk [∇Ψm( · , Z)][Ψm(Z,Z)]−1

)
u(Z), (4.5)

where Gk( · , Z) : M → R1×nZ is a row-vector function that can be evaluated at
any point on the manifold. For the sake of direct collocation, we require the values
∇̃Mu(X).

To approximate the manifold Laplacian without using any derivative of P, we
apply a similar pseudospectral technique to approximate the manifold divergence of
IZ(∇̃Mu), whose kth component is the expression IZ [∇̃Mu]k of [∇̃Mu]k from UZ .
We define an approximate Laplace-Beltrami operator as

∆̃Mu := ∇̃M · ∇̃Mu = ∇M ·

 IZ [∇̃Mu]1
...

IZ [∇̃Mu]d

 .
10



To simplify, we consider the interpolation operator in matrix form as that in (4.4) to
yield

∆̃Mu =
(
PT1 ∇, . . . ,PTd ∇

)
·

 [Ψm( · , Z)][Ψm(Z,Z)]−1
[
[∇̃Mu]1(Z)

]
...

[Ψm( · , Z)][Ψm(Z,Z)]−1
[
[∇̃Mu]d(Z)

]
 . (4.6)

Using (4.5), we can rewrite (4.6) as

∆̃Mu =

d∑
k=1

Gk( · , Z)Gk(Z,Z)u(Z).

Finally, we arrive at an approximation to (1.1), which allows collocation at any point
on M by

L̃Mu =

(
a

d∑
k=1

Gk( · , Z)Gk(Z,Z) +~bTG( · , Z) + c[Ψm( · , Z)][Ψm(Z,Z)]−1

)
u(Z).

(4.7)
Equation (4.7) allows us to assemble the collocation matrix system either in terms of
nodal values u(Z) or expansion coefficients λZ := [Ψm(Z,Z)]−1u(Z).

Note that when X = Z, the projection method developed by [15] is identical to
our approximated algorithm. It was proved that

‖LMu− L̃Mu‖L2(M) = O(ρZh
m−2
Z )

for m > 2.5 + dM/2 and sufficiently dense Z. Going from the square approach to
our least-squares one not only allows us to obtain error estimates for the numerical
solution, but also provides extra flexibility in the distribution of data points. In the
coming section, we will demonstrate that having more collocation points (i.e., more
information of the PDE) indeed helps find better approximate solutions from the trial
space.

5. Numerical demonstrations. In this section, we numerically test the pro-
posed extrinsic meshless collocation methods.

We focus on H2(M) convergent methods, i.e., k = 2 in Theorem 1.1, and use re-
stricted Whittle-Matérn Sobolev kernels given by (3.9) and (3.10) with various orders
m ≥ d3 +dM/2e of smoothness. Both sets of trial centers Z and collocation points X
are scattered and quasi-uniform on M. For one-dimensional cases, they are equally-
spaced on the curve. For two-dimensional surfaces, data points were generated by
using the algorithm in [43]. In cases when fill distances are not immediately available,
we do not compute them in order to avoid unnecessary computational overhead. In-
stead, we use the fact that data points are quasi-uniform and use the total numbers
of points as variables, i.e., hX/hZ ∼ (nZ/nX)1/dM , to control the ratio between fill
distances.

In our implementation, we seek for the least-squares minimizer of (1.3) in the
form of

u = [Ψm( · , Z)]λZ ∈ UZ

in terms of its expansion coefficients λZ ∈ RnZ . For the Kansa-type Projection
Method (KPM) in Section 4.1, we directly collocate LMu via (4.3) at X to obtain

LMu(X) = [LMΨm(X,Z)]λZ = f(X),

11



Table 1
Comparison of computational time(s) among KEM2, our KPM2, and AKM2 by using various

nX ≈ 2nZ , under the same settings as in Figure 1.

nZ 223 179 144 116 93
hZ 0.0282 0.0351 0.0437 0.0545 0.0679
KEM2 2.5565 1.4367 0.8713 0.6213 0.3833
KPM2 0.8828 0.4571 0.3289 0.2732 0.2097
AKM2 0.5142 0.3078 0.2499 0.1886 0.1626

where LMu(X) is a vector of size nX and the matrix [LMΨm(X,Z)] is nX ×nZ . For
the Approximated Kansa Method (AKM) in Section 4.2, we use nodal values (but it’s
λZ below) of the approximation in (4.7) at X to obtain the following:

L̃Mu(X) = [L̃MΨm(X,Z)]λZ = f(X).

Both systems of equations are solved by a direct QR-based solver.
In Section 5.1, we present two convergence studies on modified Helmholtz equa-

tions on manifolds with dM = 1. We compare the resulting errors obtained by our
methods (KPM and AKM) with those by others in literatures under different over-
sampling strategies. Next, in Section 5.2, we study the proposed approaches with two
examples in R3 with dM = 2. The first test aims to further verify the convergence of
KPM under different linear ratios of oversampling. In the second test, we numerically
compare the performance between oversampled KPM and AKM. Lastly, we end this
section with some simulations of reaction diffusion equations in Section 5.3.

5.1. Effects of oversampling. We now compare the proposed methods with a
kernel-based embedding method (KEM) in [8]. Various oversampling strategies are
examined; subscript 1 and 2 indicates linear ratio of oversampling with X = Z (no
oversampling) and nX ≈ 2nZ , respectively. The sufficient ratio hX ∼ h3

Z , which
ensures the stability in Lemma 3.3, is indicated by subscript c.

We consider 1D manifolds in dimensions d = 2, and run all methods with their
respective smallest value m required for convergence. For the proposed methods,
Theorem 1.1 asks for m ≥ 4; the projection method in [15], which is identical with
AKM1, also calls for m ≥ 4. KEM requires τ ≥ 4 for a convergence rate of τ − 3.5 in
H2(M).

In Figure 1, we show the H2(M) and L2(M) error profiles of the three methods
when solving a modified Helmholtz equation in [8, Exmp.2] on the unit circle. The
exact solution u∗ = y was chosen so that the right side of (3.13) with IZu

∗ is small.
Hence, Lemma 3.3 requires smaller hX to hold. Both KPMs and AKMs outperform
KEM in terms of accuracy and convergence rate. However, all tested methods con-
verge faster than their respective theoretical estimates. It is also interesting to see that
AKMs are slightly more accurate than KPMs; based on our numerical experiments,
this occurs when M is a conic section with small eccentricity.

Next, we compare our AKMs and KPMs with a Galerkin approach by means
of localized spherical bases [37]. In terms of L2(M) error, our method can achieve
accuracy of around 10−11 by only using 822 center points (see Figure 5.1(b)), but the
less computationally intense Galerkin one obtains at most 10−8 with nZ = 961 listed
in Table 1 of the literature.

In terms of numerical costs in the case of codimension r = 1, KEM actually
makes use of two extra extended copies of Z to fill up the embedding domain, i.e.,

12
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(a) H2(M)
hZ

2.8211

6.9301

KEM2

AKM1

AKM2

AKMc

KPM1

KPM2

KPMc

(b) L2(M)
hZ

3.8054

8.3910

Fig. 1. The H2(M) and L2(M) error profiles obtained by our proposed KPM and AKM
methods, using R2 restricted Whittle-Matérn-Sobolev kernels of smoothness order m = 4, and a
kernel-based embedding (KEM) method (with τ = 4) for solving a modified Helmholtz equation on
the unit circle. Subscripts 1, 2, and c indicate various oversampling with X = Z, nX ≈ 2nZ , and
nX ≈ n3

Z respectively.

E
rr

o
r

(a) H2(M)
hZ

0.5510

3.5816

(b) L2(M)
hZ

1.5833

4.5306

Fig. 2. The corresponding results on an ellipse with lx/ly = 5 under the same settings as in
Figure 1.

trial centers are {Z, Z± δ~n} for some small δ > 0. More copies are required in higher
codimensions. For fair comparisons, we consider the same settings of points in X and
Z on M for all tested methods. In Table 1, we list the corresponding computational
time of KEM2, KPM2, and AKM2 in solving this example. KEM2 takes almost twice
the time in solving the problem than our two methods do. Their difference of time
cost are near the double with nZ increasing, e.g. nZ ≥ 144, as listed in this table. In
this experiment, we see that the most cost effective KPM2 method is also the most
accurate among all.

We next perform the same test on an ellipse with the semi-major to minor ratio
of lx : ly = 5 : 1. It was shown in [8] that, if data points are non-uniform, the
projection method in [15] may yield highly oscillatory numerical solutions on this
ellipse. In Figure 2, we show the corresponding error profiles with both X and Z
being regular on the ellipse. We note that changing the geometry of M results in
big drops in accuracy. The estimated H2(M)-convergence rate of KPM drops from
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X = Z

(a) KPM1

hZ

7.0901

20.1957

m = 4
6
8

nX ≈ 2nZ

(b) KPM2

hZ

8.7357

22.8775

Fig. 3. The L2(M) error profiles of KPMs, with and without oversampling, when solving a
modified Helmholtz equation on the unit sphere with kernel of smoothness order m = 4, 6 and 8.

6.9 to 3.6, both of which are still higher than the 1.5 rate suggested by Theorem 1.1.
The convergence rate of KEM drops from 2.8 on the unit circle to around 0.55 on this
ellipse, which indeed is quite near the theoretical predicted rate of 0.5. All AKMs
show similar H2(M) convergence, but AKMs with oversampling (i.e., AKM2 and
AKMc) yield more accurate solutions than KEM in terms of L2(M) errors.

5.2. Smoothness of kernels. In this example, we further verify the conver-
gence behaviour of the proposed methods when solving PDEs onM∈ R3 with kernels
of higher smoothness orders m = 4, 6 and 8.

The results from [15] have already shown that AKM performs well with X = Z
on the unit sphere. Figure 3 shows the L2(M) convergence profiles of KPMs that
solves a modified Helmholtz equation with X = Z and nX ≈ 2nZ . Although they are
higher than the theoretical rates, the numerically observed convergence rates increase
with the smoothness smoothness m. We observed that the tested KPMs converge
faster than m in L2(M). For all tested m, utilizing oversampling improves accuracy.

To thoroughly compare KPM and AKM, we consider M being a torus and a
cyclide. On the torus, we use nX ≈ 2nZ quasi-uniform collocation points. Because of
the cyclide’s non-antisymmetric geometry, it is difficult to maintain a constant ratio
of nX to nZ for all tested hZ ; the actual ratio ranges from 1.5 to 6 and a certain
degree of oversampling is always imposed.

The resulting L2(M) convergence profiles are given in Figures 4 and 5. First, all
numerical convergence rates are higher than m, but the value of m does not affect
the AKMs’ convergence rates as much as it affects KPMs. When both methods are
feasible, KPM should be given a higher priority due to its higher orders of convergence
and accuracy. As for the selection of m, AKM with m = 6 yields smaller error than
that with m = 8. The error functions corresponding to m = 8 and the smallest tested
hZ were also shown in Figures 6. A uniform error distribution on the torus can be
seen; whereas the maximum error occurs on the cyclide, where curvature is high.

5.3. Pattern formations and robustness. The reaction diffusion equations
(RDEs) [8, 15, 45, 48] are benchmarks for testing numerical methods for surface PDEs.
Here, we employ our proposed KPM and AKM to generate Turing spot patterns by
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(a) KPM hZ
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15.8546

m = 4
6
8

(b) AKM hZ

12.5019

Fig. 4. The L2(M) convergence profiles of the proposed KPM and AKM with kernels of
different smoothness order m and with nX ≈ 2nZ oversampling when solving a modified Helmholtz
equation on a torus.
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(a) KPM hZ

8.3972

15.1601

m = 4
6
8

(b) AKM hZ

8.1226

12.9402

Fig. 5. The corresponding L2(M) convergence results on a cyclide under the same setting as
in Figure 4 and oversampling nX/nZ ∈ [1.5, 6].

Fig. 6. The error functions of KPM with m = 8 and hZ = 0.11 and 0.44 in Figures 4 and 5
respectively.
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solving the following system of equations: ∂tu = µ∆Mu+ αu
(
1− τ1v2

)
+ v (1− τ2u)

∂tv = ν∆Mv + βv

(
1 +

ατ1
β
uv

)
+ u (γ + τ2v)

for x ∈M, t ∈ [0, T ], (5.1)

which models the interaction of an activator activator u and an inhibitor v. We use the
parameters in [8] and some random initial conditions to obtain steady-state solutions
on on the Bretzel2 shape, see Appendix for its parametric equation. In particular,
we set µ = 0.516ν. Smaller values of ν yield more spots. Our aim is to study the
robustness of our methods under a very economical setting in this application. We use
the second-order semi-implicit backward differentiation method (SBDF2) in [3, 45] to
discretize (5.1). In this approach, nonlinear terms are treated explicitly whereas the
diffusion process is handled implicitly. Our proposed methods are then used to find
solutions to this implicit parts in the least-squares sense.

Firstly, we consider ν = ν1 := 8.4 × 10−3 that gives rise to the spots on the
Bretzel2 shape in Figure 7. We fixed m = 6 and T = 500 in this experiment. We then
gradually decrease nZ , and increase 4t to determine a minimal numerical setting for
the KPM and AKM in generating this particular pattern. Namely, we use nZ = 2082
trial centers and a time stepping size of 4t = 0.5. Visually, the patterns in Figure 7
generated with 4t = 0.5 are indistinguishable from the ones obtained with smaller
4t. Our economical setup is far less computational demanding than those used in [8]
and comparable to those in [48]1.

To verify robustness, we run KPM and AKM with the above-found economical
setup to simulate two additional higher-density spot patterns with smaller values of
ν2 > ν3. Figure 8 shows that both methods successfully generate more Turing spots
that are smaller in size. Continuing with ν3, Figure 9(a) shows that KPM can generate
an even more complicated pattern with such a large 4t. In contrast, AKM fails to
form perfectly round spots in Figure 9(b), but the algorithm does not blow up and
remains stable. By refining the trial space with nZ ≈ 3000 basis functions, AKM can
stably produce the last pattern.

We remark that Figures 7–9 are expected to look qualitatively similar, but not
quantitatively due to the use of random initial conditions. This is a property that
allows similar-but-different patterns to be modeled in theoretical biology [49]. We
believe the robustness of our proposed methods can help develop efficient solvers for
coupled bulk-surface systems, whose applications include characterization of electro-
spun membranes [41], proton diffusion along biological membranes [36], bulk mediated
surface diffusion [6], and a topological insulator [16]; all of which are helpful in the
development of cell biology. We leave this topic to our future study.

6. Conclusion. We establish a theoretical convergence analysis of a class of
extrinsic kernel-based collocation methods for solving the second-order strongly ellip-
tic PDEs on some smooth, closed, connected and complete Riemannian manifolds.

1 In [8] and [48], discretization parameters used are (T, nZ ,4t) = (400, 5000, 0.05) and
(700, 12100, 0.01) with 31-point stencil, respectively. In this example, we used (500, 2082, 0.5) and our
simulations is clearly faster than [8] due to lower computational complexity. We can compare with
the finite difference approach in [48] using the above ballpark figures as follows. For any nX × nZ

linear system, a direct solver requires O(n2
XnZ) = O(n3

Z); the total complexity is then O(n3
ZT/4t)

that is in the order of ∼ 1012 flops. In a finite difference approach with a stencil size of ns, solving
the nZ × nZ system matrix with an iterative solver would cost O(nsnZ) per step or O(nsnZT/4t)
in total. Using a conservative guess that the iterative solver converges after 10 iterations, the cost
per in the order of ∼ 1011 flops.
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We prove that the proposed methods are H2(M)-convergent at the rate of at least
m− dM/2− 2 and numerically observed rates are usually much higher in R2 and R3.
Our numerical experiments also show that our proposed methods outperform a kernel-
based embedded collocation method, and oversampling is beneficial to accuracy and
convergence. When applied to problems of Turing pattern formations, our methods
are numerically stable even with large time steps and fill distances. The meshless han-
dling of scattered data allows easy treatment to irregular surfaces. When it comes to
real-life models for cells, this is precisely what makes the proposed extrinsic methods
in this paper attractive. The theoretical requirements for the methods to converge
will become a useful guidebook for numerical method selection.

Appendix: parametric equations for all tested manifolds.

• Ellipse:
{(x, y) ∈ R2|x2/lx

2 + y2/ly
2 − 1 = 0, lx, ly > 0}.

• Cyclide:
{(x, y, z) ∈ R3|(x2 +y2 +z2−1+1.92)2−4(2x+

√
4− 1.92)2−4(1.9y)2 = 0}.

• Torus:
{(x, y, z) ∈ R3|(x2 + y2 + z2 + 12 − (1/3)2)2 − 4(x2 + y2) = 0}.

• Bretzel2:
{(x, y, z) ∈ R3|(x2(1− x2)− y2)2 + 1/2z2 − 1/40(x2 + y2 + z2) = 1/40}.
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(a) KPM (b) AKM

Fig. 7. Model patterns associated with ν1 for identifying a large 4t = 0.5 that allows the KPM
and AKM to complete the Turing spot formations successfully.

(a) KPM (b) AKM

Fig. 8. The KPM and AKM simulated results with ν2(< ν1) under the same economical setting
as in Figure 7.
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Fig. 9. The KPM and AKM simulated results with ν3(< ν2 < ν1) under the same economical
setting as in Figure 7.
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