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Abstract

This work aims to provide a numerical treatment to deal with PDEs on

surfaces with singularity along smooth curves. Previously, we proposed a low-

order localized meshless method for discretizing the surface Laplacian operator

on surfaces with folded. It is observed that the previously proposed strategy

of approximating surface Laplacian at fold does not work with a recently de-

veloped high-order embedding meshless method for smooth surface. In this

paper, we propose using the graph Laplacian to handel the surface singularity

and study how it can be used to solve PDEs on folded surfaces.

1 Introduction

Partial differential equations (PDEs) on surfaces (or manifolds) arise in a wide variety

of applications including mathematical biology , mathematical physics, imaging pro-

cessing and computer graphics, see [1, 2, 3, 4]. There are many methods in literature

developed for solving surface PDEs. These methods can be classified into two groups:

intrinsic methods and embedding methods. For intrinsic, it is typically required to

parameterize the surface. Discretization of surface differential operators are less triv-

ial and could lead to distortions and singularities on the surface [5, 6, 7, 8]. This

group of methods are generally of low order of accuracy and the dimension of the

discretization of the surface differential operator is identical to the original problem.

For the embedding types, it is necessary to embed the surface differential operator

into some subsets of the Euclidean space R
d. The solution of the original problem

is obtained by taking an appropriate restriction to the solution of the embedding

problem. Hence, the dimension of the discretization will be greater than the original

problem and naturally the computational cost could increase if no extra cares are

given. Ruuth. et al [9] proposed a closest point method, which is an embedding

method by means of a closest point mapping. The closest point method is simple
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and the order of convergence depends on the numerical method for the embedding

problem. Hence, it is not difficult to obtain a highly accurate method for solving

partial differential equation on smooth surfaces.

Kernel approximation are normally of high accuracy. With some modifications of

the closest point method, a kernel method using radial basis function was developed

for solving partial differential equation on surface [10]. This method is highly accurate

when applied to smooth surfaces. For those surface that are not smooth, a localized

meshless method to solve diffusion equation on folded surface was proposed in [11].

In this paper, we combine the ideas in these papers and propose a new embedding

condition for the surface Laplacian and surface gradient. This embedding condition

can be viewed as a limiting version of our previous approach. Hence, the new method

reduces the error induced from the operator embedding. In [10], the author also

provide a high order embedding condition for the surface Laplacian and the surface

gradient. However, the embedding condition requires the derivative of the normal

vector of the surface while our new embedding condition do not involve any derivative

of the normal vector. In particular, we solve diffusion equations by the method of line

by obtaining a differentiation matrix D as an approximation of the surface Laplacian

so that the semi-discrete form of the diffusion equation is given by ut = Du. Finally,

the solution will be obtained by applying some suitable numerical method for this

system of ODE.

2 Model formulation

In this section, we focus on solving diffusion equation on folded manifolds. Let S be

a folded manifold and assume S = ∪Si, where each Si is a smooth sub-manifold for

i ∈ N. Let us assume further that the curves Γij = Si ∩ Sj , on which the manifold S

folds, are piecewise smooth. Our objective is to solve

∂uS

∂t
= ∆SuS on S. (2.1)

Note that uS is defined on S and ∆S is the surface Laplace operator that will be

explained later.

The surface S in our consideration is a composition of many pieces of smooth

manifolds Si. In the interior of each Si, we can approximate ∆SuS of (2.1) by some

standard techniques for smooth manifold. For those points on the fold Γij of S, most

approaches for smooth surface fail. That is, it does not make sense to approximate

a non-smooth manifold by any approximation for smooth manifolds. Therefore, we

apply a special strategy for the approximation Laplacian. For x ∈ Si, we denote the

2



approximation of δx,Si
(∆SuS) by δx,Si

(D(uS)). Supose x ∈ Γij = Si∩Sj . Let xSi
∈ Si

and xSj
∈ Sj having the property that dist(x, xSi

) = h = dist(x, xSj
). Let xk

Γ
∈ Γ

such that dist(x, xk
Γ
) = h, k = 1, 2. We approximate the surface Laplacian at the fold

by δx,Γ(D(uS)) =
1

h2 (u(x
1

Γ
)+u(x2

Γ
)+u(xSi

)+u(xSj
)−4u(x)). This discrete Laplacian

is known as the Graph Laplacian. It is easy to see that it is identical to the finite

difference approximation of Laplacian when it is applied to a flat plane.

In the following, we briefly introduce the embedding method for solving diffu-

sion equation on folded manifolds and discretization of surface Laplacian by kernel

approxmiation.

2.1 Surface Laplacian

We solve diffusion equation on manifolds by an embedding method. With certain

embedding conditions, we can solve our problem on some subsets in the Euclidean

space R
d. Let n be the normal vector of the manifold S and ∇ be the cartesian

gradient operator, the surface gradient operator on S and the surface Laplacian,

a.k.a. the Laplace-Beltrami operator, are respectively defined as

∇S = ∇− nnT∇ (2.2)

and

∆S = (∇− nnT∇) · (∇− nnT∇). (2.3)

In order to embed the PDE to the Euclidean space, it is interesting to find some

embedding conditions so that ∇SuE = ∇uE and ∆SuE = ∆uE agree on S. Note that

uE is an extension of uS defined on R
d such that uE(x) = uS(x) for all x ∈ S. Based

on the closest point method [9], we previously proposed an embedding condition to

solve diffusion equation on manifolds. i.e.,

uE(x) = uE(x± δn), x ∈ S. (2.4)

By some simple calculations, (2.4) can be easily transformed to

uE(x+ δn)− uE(x) + uE(x− δn) = 0 (2.5)

uE(x+ δn)− uE(x− δn) = 0. (2.6)

If we assign (2.5) and (2.6) with some suitable weighings, they become

1

δ2

(
uE(x+ δn)− uE(x) + uE(x− δn)

)
= 0 (2.7)

1

2

(
uE(x+ δn)− uE(x− δn)

)
= 0. (2.8)
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We can see that (2.7) and (2.8) converge to ∂2uE

∂n2 and ∂uE

∂n
as δ → 0, respectively.

Hence, the embedding condition (2.4) is an approximation to the first and second

normal derivative. In this paper, we consider a new embedding condition for the

embedding:

∇uE · n =: E1uE = 0 (2.9)

nTH(uE)n =: E2uE = 0, (2.10)

where H(uE) is the Hessian matrix of uE. This embedding condition is induced from

the the embedding condition in [11]. Therefore, it remains to solve the embedding

PDEs in some tubular neighborhoods Ωδ ⊂ R
d by some suitable approximation:

{
∂uE

∂t
= ∆uE in Ωδ

0 = ∇uE · n = nTH(uE)n on S.
(2.11)

The solution of the original partial differential equation on manifold can be obtained

by taking restriction to uE on S. In the next section, we will discuss how to discretize

the Laplacian by kernel approximation.

2.2 Discretization of the surface Laplacian

Let Ωδ = {y ∈ R
d : dist(y,S) < δ} be the tubular neighborhood of manifold S. Let

X ⊂ S be a discrete set of N points on manifold S and Zδ = {y : y = x±δn} ⊂ Ωδ be

a discrete set of 3N points in Ωδ. LetK : Ωδ×Ωδ → R be a symmetric positive definite

kernel and VZδ,ϕ = span
(
{K(·, zj) : zj ∈ Zδ}

)
be the trial space which is spanned by

the basis functions K(·, zj) for zj ∈ Zδ. Let uZδ,K,λ =
∑

j λjK(x, zj) ∈ VZδ,K be

an approximation to uE in VZδ,K . The objective of this section is to discretize the

surface Laplacian on S. By the strategy for the approximated Laplacian on the fold,

we should consider a localized appproximation of Laplacian instead of a global one.

To discretize Laplacian locally, let Xi ⊂ X be a discrete subset of Ni points

of X such that Xi contains xi ∈ X and Ni − 1 nearest points of xi in X . The

analogous subset of Z and trial space are defined as Zi = {z + δn : z ∈ X} and

VZi,K = span
(
{K(·, zj) : zj ∈ Zi}

)
, respectively. For each xi ∈ X , let uZi,K,λ be the

approximation to uE. Hence, we solve the following system of equations for λ:




uE(Xi)

0Ni×1

0Ni×1


 =




K(Xi, Zi)

Ex
1
K(Xi, Zi)

Ex
2
K(Xi, Zi)


λ, (2.12)

where 0Ni×1 is an Ni × 1 zeros vector and the superscript in Ex
i means that the oper-

ator acts on the first variable of K(x, y). Therefore, the approximation uZi,K,λ(x) =
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∑
j λjK(x, zj) satisfies the embedding condition (2.9)-(2.10) and interpolates uE at

Xi. The approximated Laplacian is obtained by taking Laplacian L = ∆ of uZi,K,λ.

i.e.,

∆SuS(xi) ≈ LuZi,K,λ(xi) =
∑

zj

λjL
xϕ(xi, zj). (2.13)

Substituting λ of (2.12) into (2.13) yields

LuZi,K,λ(xi) =
∑

zj

λjL
xϕ(xi, zj)

= LxK(xi, Zi)λ

= LxK(xi, Zi)




LxK(Xi, Zi)

Ex
1
K(Xi, Zi)

Ex
2
K(Xi, Zi)




† 


uE(Xi)

0Ni×1

0Ni×1


 (2.14)

=:
[
wT w̃T ŵT

]



uE(Xi)

0Ni×1

0Ni×1


 =

∑

xj∈Xi

wjuE(xj).

There is no theory to ensure the matrix in (2.12) is invertible. Hence, we use pseudo-

inverse † in (2.14). Now, the approximated Laplacian can be written as a linear

combination of the function values of uE around xi. It is easily to obtain w by

solving the linear system




K(Xi, Zi)

Ex
1
K(Xi, Zi)

Ex
2
K(Xi, Zi)




T 


w

w̃

ŵ


 = LyK(Zi, xi). (2.15)

Note that in the above linear system, w̃ and ŵ are unnecessary for the Lapacian

approximation. It is because ∆uZi,K,λ(xi) = wTuE(Xi) + w̃T0Ni×1 + ŵT0Ni×1 =

wTuE(Xi).

In the above discretization of surface Laplacian, we obtained a set of weight-

ing for the approximated surface Laplacian at xi. The final step is to construct a

differentiation matrix D for the surface Laplacian at X such that

∆SuS(X) ≈ DuE(X), (2.16)

where D is a sparse matrix having Ni non-zero elements at i-th row. The advan-

tage of local approximation is the resulting matrix is sparse. It takes NO(NN3

i ) +

O(Nlog(N)) to form D while the global approximation requires O(N3). Since Ni ≪

N , the computational cost of local discretization is much more lower than that of

global discretization. However, the order of convergence of this local approach is usu-

ally much lower than global approximation. It is remarked that discretizing Laplacian
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using embedding condition (2.9)-(2.9) with the strategy in [11] for the fold Γij is not

stable with the above discretization. This is the reason why we propose using the

graph Laplacian on the fold.

It remains to discretize the diffusion equation on manifold S. By the discretiza-

tion of surface Laplacian described above, the semi-discrete form of diffusion equation

is given by:
∂uE(X)

∂t
= DuE(X). (2.17)

The semi-discrete form (2.17) is a system of ordinary differential equation and can be

solved by some suitably chosen time-integration method.

3 Numerical demonstration

We consider solving diffusion equation on two types of folded surfaces, i.e., flatted

sphere and punch in sphere, see Figure 1. Let X ∈ S be a discrete set of N points on

the folded surface S. Then we apply the proposed method to dicretize the Laplacian

so that ∆uS(X) ≈ DuS(X) where D is a matrix of discrete Laplacian. The result-

ing system of ordinary differential equation d
dt
uS(X) = DuS(X) is solved by second

order backward differentiation formula (2-BDFs). In all of our numerics, a scaled

multiquadric is used as our kernel K.

Example 1

In this numerical example, we show the convergence behavior when solving diffusion

equations by the proposed method. Suppose the unit sphere is parameterized by the

spherical coordinate (φ, θ). i.e., x = sin(θ) cos(φ), y = sin(θ) sin(φ), z = cos(θ). It

is easy to show by direct calculation that uS(t, θ, φ) = e−2tcos(φ) is the analytical

solution of the diffusion equation on unit sphere. For our case, since S is a punch-in

sphere, we assume the solution of diffusion equation on the punch-in sphere equal to

that of unit sphere. Assume (θsphere, φsphere) and (θ, φ) be the parameterizations of

unit sphere and punch-in sphere, respectively. The solution of the diffusion equation

on the punch-in sphere is given by uS(t, θ, φ) = cos(φsphere). In Figure 2, The slope

1.00416 indicates that our method converges to the solution linearly. In this case, the

number of local neighboring points is set to 15. Generally, the order of convergence

will increase as the number of local neighboring points increase. However, increas-

ing the number of local neighboring points will result in instability for the ordinary

differential equation. One should apply a hyperviscosity operator for stabilization

[12].
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Figure 1: Left: Flatted sphere. Right: punch-in sphere.

Example 2

We demonstrate some simulations of diffusion equation on flatted sphere and punch-

in sphere with different initial condition. The initial condition are set as follows; first,

we assign one on the folded Γ and zeros otherwise. Second, we assign one on half

portion of the folded Γ and zeros otherwise. Finally, we assign one on the half portion

of the surface S and zeros otherwise. For comparison, we simulate both flatted sphere

and punch-in sphere with the same type of initial condition. In Figure 3, 4 and 5,

simulations of flatted sphere are placed on the left column while that of punch-in

sphere are placed on the right column. It is easy to see that diffusion property are

seen in all of the simulations.

4 Conclusion

We proposed a localized meshless method to solve diffusion equation on folded sur-

faces. It is an embedding method based on the closest point method with some

modifications. We previously proposed a embedding condition for its special data

allocation, In this paper, we modify its embedding condition to obtain a higher order

embedding condition. This new embedding condition does not require to differenti-

ate the normal vector field of the surface. At the folded of surface, the Laplacian

is approximated by a graph Laplacian. Numerical evidence show that our proposed

method is convergent linearly.
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Figure 2: Convergence plot of diffusion on punch-in sphere.
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Figure 3: Numerical simulation for different time t = 0.01, 0.05, 0.1, 0.2.
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Figure 4: Numerical simulation for different time t = 0.01, 0.05, 0.1, 0.2.
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Figure 5: Numerical simulation for different time t = 0.05, 0.1, 0.2, 1.
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