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Abstract

Combining kernel-based collocation methods with time-stepping methods to solve parabolic par-
tial differential equations can potentially introduce challenges in balancing temporal and spatial
discretization errors. Typically, using kernels with high orders of smoothness on some suffi-
ciently dense set of trial centers provides high spatial approximation accuracy that can exceed
the accuracy of finite difference methods in time. The paper proposes a greedy approach for se-
lecting trial subspaces in the kernel-based collocation method applied to time-stepping to balance
errors in both well-conditioned and ill-conditioned scenarios. The approach involves selecting
trial centers using a fast block-greedy algorithm with new stopping criteria that aim to balance
temporal and spatial errors. Numerical simulations of coupled bulk-surface pattern formations,
a system involving two functions in the domain and two on the boundary, illustrate the effective-
ness of the proposed method in reducing trial space dimensions while maintaining accuracy.
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reaction-diffusion equations, Kernel-based collocation method, Radial basis functions
2000 MSC: 00A20, 00B10

1. Introduction

As kernel-based methods gain popularity, finding appropriate settings remains an open prob-
lem: how to stably solve the severely ill-conditioned linear systems that arise. Various strategies
have been employed to address instability issues in computations. Regularization, as demon-
strated in [1, 2], is effective in mitigating ill-conditioning problems. In this paper, we consider
selecting a trial subspace to achieve more stable solution approximations. The Greedy algorithm
was initially explored for symmetric kernel-based interpolation matrix systems by Schaback et
al [3] and remain an active topic. Traditional methods for adaptive trial subspace selection in-
clude the P-greedy algorithm, which applies to symmetric PDEs. For the latest developments
on power function-based P-greedy, see [4]. Additionally, [5] proposes the residual-based f -
greedy algorithm and combinations of the P- and f -greedy algorithms to achieve higher conver-
gence rates. The greedy algorithm has advantages for solving both time-dependent and time-
independent problems. In the context of time-independent problems, it is directly employed to
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choose trial subspaces for approximating solutions. Regarding time-dependent problems, we
first apply time-stepping methods and subsequently apply the selected trial subspaces for solu-
tion approximation at each time step. Following the pioneering work on greedy methods [6] for
solving time-independent partial differential equations (PDEs) using collocation methods, a.k.a.
Kansa methods, we proposed various sequential-greedy algorithms [7, 8] to select quasi-optimal
sets of trial subspaces that guarantee stable solutions. They built up nonsingular subsystems
iteratively by selecting a row and then a column in a greedy fashion. Although each version
brings improved accuracy, they suffer from high complexity. For instance, in a well-conditioned
system, a greedy algorithm might select subsystems that yield unexpectedly high accuracy. For
an n × n asymmetric collocation system, selecting k columns by any of these algorithms costs
O(k4 + nk2). The selection of multiple rows and columns results in large computations, clearly
reflecting the trade-off between achieving higher accuracy and managing algorithm complexity.
The block-greedy algorithm addresses the constraints of sequential algorithms [9] and can be
implemented in a matrix-free manner, offering a reduced complexity of O(nk2). It can also be
extended to a fully adaptive algorithm for boundary value problems [10] of elliptic type. It allows
new data points to be added gradually, dynamically refining the trial subspace without relying on
fixed data distribution and enhances the efficiency by solving least-squares problems.

A strategy ensures that fill distances of boundary/domain points are similar. Block-greedy
to address ill-conditioning from small minimum separating distances. Specifically, during the
subspace selection iterations of the block greedy algorithm, each iteration adds a set of new
data points according to the primal/dual residual criterion outlined in [8]. This criterion helps
avoid point clustering and maintains uniform fill distances among boundary and domain points,
as detailed in [9] Theorem 2.1. As the selection proceeds, the algorithm monitors the condition
number of the selected subsystem, and the greedy algorithm also checks whether the expanded
submatrix is well-conditioned to allow further expansion. The stability of these kernel-based
methods also heavily depends on the kernel’s shape parameter. In this paper, a data-driven shape
parameter generator fine-tunes this parameter through extensive testing to optimize system sta-
bility and numerical accuracy, enhancing the overall performance and reliability.

Sobolev kernels work well numerically, producing reasonable approximations with refine-
ment for increased accuracy. This fully automatic meshfree algorithm benefits Kansa method
users. While effective for elliptic PDEs, experimental evidence shows that using the greedy al-
gorithm with time-stepping methods for solving parabolic PDEs is not as numerically stable as
desired. We provide evidence with unstable numerical experiments in Example 3.1. One sig-
nificant reason for the instability observed here is the mismatch in the accuracy of spatial and
temporal discretizations of PDEs. To address this, we modified the original greedy algorithm by
introducing different tolerance values for residuals and condition numbers. This approach effi-
ciently handles issues arising from the accuracy mismatch problem. In Section 2, we overview
the block-greedy algorithm. In Section 3, we explore how to properly fine-tune the algorithm’s
stopping criteria to fix the problem. In this paper, we first discretize PDEs in time and then in
space, as a fixed time step is essential to ensure balanced convergence between time and spatial
dimensions. We thoroughly studied the least-squares, kernel-based collocation method of lines
in [11, 12]. These approaches have both theoretically and numerically demonstrated the impor-
tance of oversampling, which can also be achieved by using the block-greedy algorithm. But
this will not be considered in this paper. Numerical experiments verify the effectiveness of the
proposed algorithm, followed by conclusions.

2



2. Block-greedy algorithm for column subspace selections

From here on, greedy algorithm refers to the block-version in [9]. Although designed for
kernel-based collocation methods, it can be viewed purely in terms of linear algebra. The fol-
lowing overview is not meant to be exhaustive but rather provides sufficient details for this paper.
Consider the linear system Aλ = b, where A is an m × n matrix with full rank m. The greedy
algorithm is applied to the linear system and selects a column space of A that allows accurate and
stable computations, ensuring that provides an effective approximation of the vector b.

Suppose at a non-initial step, rows indexed by m ⊂ Nm := {1, 2, . . . ,m} and columns indexed
by n ⊂ Nn have been selected. Let A(m,n) denote the corresponding submatrix. The goal is to
expand the selections to m′ and n′ in batches rather than one by one, such that:

• |m′| ≳ 2|m| while |m′| ≤ m, and

• |n′| = 2|n| while |n′| < n,

to build an overdetermined subsystem as it iterates. Here |·| represents the size of the row/ column
set, and |m′| ≳ 2|m| indicates that the number of rows in m′ is greater than or approximately
equal to two times of the number of rows in m. When running out of unselected rows or columns,
the greedy algorithm will take all m rows or n columns.

Instead of searching all unselected rows in Nm \m and columns in Nn \ n, the greedy
algorithm shortlists candidates by sorting the residual magnitudes. To obtain the primal and dual
residuals, we formulate a constrained minimization problem. The objective function aims to
minimize the Euclidean norm of the solution vector η, subject to the linear constraint Aη = b.
To solve this constrained optimization problem, we employ the method of Lagrange multipliers.
The optimisation problem is transferred in the form of

L(η, ζ) =
1
2
ηTη + ζ(Aη − b), (1)

where ζ denotes the Lagrange multiplier. We take the partial derivatives of the Lagrangian func-
tion L(η, ζ) with respect to η and ζ to derive the primal-dual subsystem. The primal-dual sub-
system is defined in the form of

A(m,n)η = b(m), (2)
A(m,n)Tζ = −η. (3)

Then the primal and dual residuals are defined by

rprimal := A(Nm,n)η − b ∈ Rm, and rdual :=ER|n|→Rnη + A(m,Nn)Tζ ∈ Rn, (4)

whereER|n|→Rnη ∈ Rn is the extension of η ∈ R|n| with zeros patched into entries not in n. Then,
the greedy algorithm identifies and selects candidate rows and columns from those that remain
unselected, choosing those associated with the largest magnitudes of rprimal and rdual in the primal
and dual systems, respectively. The final selection is made from shortlisted candidates based on
these smaller submatrices.

The greedy algorithm is matrix-free because, as seen in (4), it only needs to store entries of
selected rows and columns, i.e., A(m,Nn) and A(Nm,n). The computational cost of the greedy
algorithm is determined by the size of the shortlisted candidate sets in each iteration. We refer
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readers to [9] for details on the complexity analysis. As mentioned in the introduction, the greedy
algorithm achieves O(n2k) complexity, where k denotes the number of total selected columns.

The greedy algorithm can be initialized with pre-selected rows/columns, i.e., input some m

and n. If none is specified, it begins with rows/columns associated with the largest primal/dual
residuals.

After each expansion that (roughly) doubles the number of selected rows/columns, the stop-
ping criteria of the greedy algorithm use two tolerance values, τr and τκ. Besides stopping by a
small enough residual, the greedy algorithm will check the condition number of A(m′,n′) to de-
termine whether it is well-conditioned for further expansion; otherwise, the expansion terminates
because of the ill-conditioning. In particular, the greedy algorithm stops when

• [SC-1] the condition number of the expanded system κ(A(m′,n′)) > 1/τκ exceeds the
tolerance, or

• [SC-2] the norm of the primal residual ∥rprimal∥∞ < τr is below the tolerance.

It is cheap to compute the residual and check the condition number since the algorithm updates
[13] QR factorizations of A(m,n) to A(m′,n′) in each iteration. Recall that in the block-
style greedy algorithm, the number of selected columns doubles at each iteration. When we
stop due to SC-1, a backtracking process is employed to prevent including too many columns,
which would lead to a condition number much larger than what the user tolerance allows. This
backtracking process uses the bisection method to select the first k indices in n′ to generate the
largest subset n′′ ⊂ n′ so that the final column subspace selection yields a condition number just
below tolerance, i.e., κ(A(m′,n′′)) ⩽ 1/τκ. In the case of SC-2, the greedy algorithm returns
n′ as its final selection. In the original article, a single tolerance τr = τκ = εmech, the machine
epsilon, was used as the default value, which works well in various time-independent elliptic
PDEs. To clearly demonstrate the column subspace selection process in the greedy algorithm,
the brief framework is outlined in Algorithm 1.

Algorithm 1 Column subspace selection algorithm
1: Inputs: A(Nm,Nn) ∈ Rm×n, b ∈ Rm τκ, τr

2: Initialize:
3: m← row index with the maximum primal residual
4: n← column index with the maximum dual residual
5: while |n| < n do
6: Solve primal-dual subsystems (2) and (3) by QR factorization of A(m,n)
7: Calculate rprimal and rdual
8: Break if rprimal < τr ▷ [SC-2]
9: Select rows m′ and columns n′ in batches, m←m′, n← n′

10: Estimate the condition number κ(A(m′,n′))
11: if κ(A(m,n)) > τκ then ▷ [SC-1]
12: Bisection method to select the first k indices in n′ to generate n′′

13: n← n′′

14: Break
15: end if
16: end while
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3. Controlling spatial accuracy in time-stepping methods

Before applying the block-greedy algorithm to solve the resultant matrix systems arising from
kernel-based collocation and time-stepping methods, we first walk through the main steps of this
discretization procedure. Consider second-order parabolic partial differential equations defined
in a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. The equations are complemented by
initial and boundary conditions that we assume are compatible.

As a demonstrative example, the heat equation with Dirichlet boundary conditions is defined
in the form:

∂u
∂t
= D∇2u + f in Ω × [0,T ]

u = g on ∂Ω × [0,T ]
u = u0 on Ω × {0}

(5)

with constant diffusion D > 0 and source function f . While this simple example illustrates the
approach, the proposed method applies more generally to quasi-linear parabolic PDEs of the
above form with variable coefficients.

We define a partition {tk}Kk=0 of [0,T] with time steps △tk = tk−tk−1. We denote the approximate
solution at time tk by Uk ≈ u(·, tk) for k = 0, 1, . . . ,K. The commonly used Crank-Nicolson
scheme semi-discretizes the PDE (5) in time and results in a sequence of elliptic PDEs of the
form

Uk − Uk−1

∆tk
=

1
2
(
D∇2Uk + f k + D∇2Uk−1 + f k−1) for k = 1, . . . ,K, (6)

where f k := f (·, tk). This paper also employs semi-implicit backward differentiation formulas
(SBDF) in [14], which use explicit schemes for reaction terms and implicit schemes for diffusion
terms. The system generated by the first-order SBDF (SBDF1) is

Uk − Uk−1

△tk
= f k−1 + D∇2Uk, for k = 1, . . . ,K, (7)

and that generated by the second-order SBDF (SBDF2) is

1
2△tk

(
3Uk − 4Uk−1 + Uk−2

)
= 2 f k−1 − f k−2 + D∇2Uk, for k = 2, . . . ,K, (8)

with U1 obtained by (7).
We solve the semi-discretized systems (6), (7) or (8) using a kernel-based collocation method.

We choose a radius basis kernel Φ on Rd giving rise to a positive definite kernel with a smooth-
ness order greater than 2. Common examples include the Gaussian and multiquadrics kernels.
Reproducing kernels of Sobolev spaces, like the Whittle-Matern-Sobolev (MS) kernel and com-
pactly supported Wendland functions, are also suitable choices that come with convergence the-
ory for elliptic PDEs [15, 16, 17]. The theoretical approximation powers of employing these
kernels on greedy points were addressed in [18].

Given a set Ξ := {ξ j}nj=1 ⊂ Ω, we define the finite-dimensional trial space

U := span
{
Φ(· − ξ)

∣∣∣∣ ξ ∈ Ξ}. (9)

We seek approximation to the solution Uk withinU in the form of
5



n∑
j=1

λk
jΦ(· − ξ j), for k = 1, . . . ,K, (10)

where λk = {λk
j}

n
j=1 are the unknown coefficients. We determine λk by imposing collocation at

points Z = ZΩ ∪ Z∂Ω = {zi}mi=1 ⊂ Ω ∪ ∂Ω for the governing equation and boundary conditions
respectively. Taking the CN scheme (6), we obtain an m × n matrix system:(

(2Φ − △tk[∇2Φ])(Z ∩Ω,Ξ)
Φ(Z ∩ ∂Ω,Ξ)

)
=

((
2Uk−1 + △t( f k + D∇2Uk−1 + f k−1)

)
(Z ∩Ω)

gk(Z ∩ ∂Ω)

)
, (11)

where gk := g(·, tk) and the data dependent matrix with entries

[Φ(ZΩ,Ξ)]i, j = Φ(zi − ξ j) for zi ∈ ZΩ and ξi ∈ Ξ.

The other two matricesΦ(Z∂Ω,Ξ) and [∇2Φ](ZΩ,Ξ) are defined similarly. The right-hand side
vector is known; given λk−1, we can evaluate the approximate solution Uk−1 and its Laplacian
∇2Uk−1 using (10). In linear algebra notation, we can express the fully-discretized systems (11)
as

Aλk = b(λk−1), for k = 1, . . . ,K, (12)

with λ0 or b(λ0) determined from the initial condition. Using a greedy algorithm to select a
column subspace of A is equivalent to selecting a subset of trial centers from Ξ. In the following
numerical experiments, we implement the greedy algorithm based on the linear system only at
the initial time step, which makes sense for parabolic problems with slowly varying solutions.
Running the greedy algorithm at a later time is certainly a possibility for solutions that exhibit
more variation over time. However, doing so efficiently requires a reliable error indicator, which
is beyond the scope of this work.

Example 3.1 (Greedy Algorithm in action)
We compare the performance of the meshfree time-stepping method with and without the

greedy algorithm applied. Our comparison is based on a linear heat equation (5) with D = 1 and
Ω = [0, 1]2. The right-hand functions f and g were computed from the exact solution expressed
as:

u∗([x1, x2]T , t) = sin(2πx1) sin(πx2) exp (−2π2t) + (1 − exp (−2π2t))/2,

which exhibits the standard decay property of heat equations. The Crank-Nicolson scheme was
used for temporal discretization, and a fixed time step of △t was used for all k. For spatial
discretization, we employed the Halton sequence to generate a set of n = 300 data points, which
were used as both the trial centers and collocation points. This exactly determined setup will
become an overdetermined system if the greedy algorithm selects a proper subset of columns.
The kernel used in this example is the (unscaled) Gaussian kernel, which results in ill-conditioned
matrices in the fully discretised system. The relative root mean square error of solutions obtained
by the meshfree time-stepping method with various △t is shown in Figure 1.

The power of the greedy method is illustrated in Figure 1a. The solution obtained without
the greedy algorithm is unstable and diverges for most tested cases. By applying the greedy
algorithm (with default parameter values) to the matrix system Aλ1 = b(λ0) for the first time
step, we obtained a subset of columns of A indexed by n′. For all runs, SC-1 stopped the
algorithm with large condition numbers around 1/εmech. The resulting submatrix A(Nm,n

′) was
6



(a) PDE error with/without the greedy algorithm (b) Using different tolerances in SC-2

Figure 1: For Example 3.1, the relative root mean error profiles of solving a heat equation by meshfree time-stepping
method with various △t (1a) without and with the greedy algorithm in default settings; (1b) with greedy algorithm using
different tolerance in stopping criteria. Colored numbers in (1b) are the number of selected columns in A by the greedy
algorithm.

then used in the sequence of the fully-discretized system to update solutions in time. This process
regularizes the solution but does not fully prevent divergence, and it fails to achieve second-order
convergence. We labeled the number of selected columns by the greedy algorithm in Figure 1b
with black numbers and noticed that they do not show significant differences. Regarding the CPU
time for the greedy algorithm under different time step settings, note that all tested scenarios
concluded after a small number of iterations. Consequently, the CPU times were relatively low1

and provide limited value for comparative analysis. Reported runtime in MATLAB is obtained
from an Intel-i7 processor.

While in the greedy algorithm, we observe that SC-2 uses a default tolerance τr = εmech for
the residual, which is too small to effectively stop the greedy iteration. This forces the selection of
extra basis functions, inducing unnecessary ill-conditioning and instability. Therefore, choosing
appropriate stopping criteria for the greedy algorithm is important to prevent these issues. As a
test, we ran the greedy algorithm with various tolerance values 0.1 ≤ τr ≤ 0.7 to produce the
error profiles in Figure 1b. Compared to the default (black solid line), some runs with large τr

terminate earlier (as expected) by selecting fewer columns (numbers in the figure). Using fewer
columns resulted in 2-3 orders of magnitude accuracy improvement. However, we noted that
these settings’ errors lack stability; some runs with only 2 columns are inaccurate. If τr = 0.1
is too small to stop the iteration with SC-2, then SC-1 will stop the algorithm, yielding identical
errors as the default.

These observations indicate the greedy algorithm can stabilize solutions compared to meth-
ods without it. However, choosing appropriate stopping criteria is critical to achieving the desired
accuracy. ■

The kernel-based collocation method using greedy algorithms could efficiently solve semi-
discretized PDEs. However, when spatial and temporal discretization accuracies are mismatched,
the resulting fully discrete systems may become ill-conditioned, impacting solution accuracy.

1The CPU time of the greedy algorithm used in each point-selecting procedure is approximately 0.20 seconds.
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As demonstrated in Example 3.1, using a smaller τr results in more selected columns to achieve
higher spatial accuracy. When the order of spatial discretization significantly surpasses that of
temporal discretization, a substantial mismatch in the scales of numerical representation between
the two arises. This mismatch can lead to numerical instability.

In the rest of this section, we develop two stopping strategies for the greedy algorithm to
improve condition number and accuracy when solving fully-discrete systems. We propose to:

• [SC-1′] run a residual search within the newly added columns and output the trial sub-
subspace that minimizes the least-squares residual, when the greedy algorithm stops due
to a large condition number κ(A(m′,n′)) > 1/τκ with τκ, and

• [SC-2′] apply a backtracking process to reduce selected column set accuracy down to a
target residual τ′r when the greedy algorithm stops due to a small residual ∥rprimal∥∞ < τr.

These techniques enable the greedy algorithm to balance accuracy, stability, and efficiency based
on the conditioning properties of the resulting discrete systems. We implement new stopping
criteria by modifying lines 8 to 16 in algorithm 1:

Algorithm 2 Column subspace selection algorithm with new stopping criteria
1: Inputs: A(Nm,Nn) ∈ Rm×n, b ∈ Rm τκ, τr

2: Initialize:
3: m← row index with the maximum primal residual
4: n← column index with the maximum dual residual
5: while |n| < n do
6: Solve primal-dual subsystems (2) and (3) by QR factorization of A(m,n)
7: Calculate rprimal and rdual
8: if rprimal < τr then ▷ [SC-2′]
9: Run backtracking process, n′ ← columns set that makes the residual closest to

10: the target residual τ′r, break
11: end if
12: Select rows m′ and columns n′ in batches, m←m′, n← n′

13: Estimate the condition number κ(A(m′,n′))
14: if κ(A(m,n)) > τκ then ▷ [SC-1′]
15: Run residual search, n′′ ← columns set corresponding to the residual minimum
16: value
17: n← n′

18: Break
19: end if
20: end while

3.1. [SC-1′] Stop by large condition number

Figure 2a schematically illustrates the behavior of the residuals and the condition numbers
of the subsystem as selected columns are incrementally added. This progression continues until
the subsystem reaches ill-conditioning, at which point the original greedy method is stopped by
SC-1. The red curve shows the condition numbers of submatrices of A with rows m′ against
expanding columns from the index set n in the previous iteration to that of the current iteration
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1/τκ

(a) Using selected rows in computation (b) Using all rows in computation

Figure 2: Greedy algorithm stops by large condition number, 128 columns are selected in the column space – A schematic
demonstration of residual value and condition numbers of submatrices of A with expending columns n → n′ and (a)
selected rows m and (b) all rows Nm in the column space.

n′, denoted by n → n′. Its left endpoint satisfies κ(A(m,n)) < 1/τκ and so the iteration
continues; whereas its right endpoint satisfies κ(A(m′,n′)) > 1/τκ and so the greedy algorithm
stops. In the original SC-1, a backtracking process traces back along the same curve. It seeks the
point with κ(A(m,n)) < 1/τκ to identify the final number of column selection k, as discussed
in Section 2. The blue curve shows the ℓ∞-norm residual vectors of all rows for least-squares
subproblems similar to (2) with the selected rows in m and expanding n→ n′ columns in A.

We remark that the observed large residual is not the true approximation of the trial subspace.
Large error is expected at the remaining rows in Nm\m

′ whose information was left out from the
least-squares subproblems. The greedy method is used for columns (or trial functions) selection
and PDEs were solved with all rows (or collocation points).

For the new stopping criterion SC-1′, we stop the greedy iteration using the same mechanism:

κ(A(m,n)) < 1/τκ and κ(A(m′,n′)) > 1/τκ.

For small τκ, we are dealing with ill-conditioned subsystems and should take a stability-first
approach. The goal of the greedy algorithm is then to select column subspaces that are computa-
tionally stable.

Figure 2b corresponds to Figure 2a but uses all rows in the submatrices. Note the different y-
axis ranges in these figures. First, using more rows has a minimal effect on the condition numbers
and the red curves are similar in both figures. The blue curve shows the ℓ∞-norm error of using
all rows and expanding the n to n′ columns in A to least-squares approximate b, i.e.,

A(Nm,n→ n′)λ = b.

This residual curve shows the true approximation power of trial subspaces. We also observe that
the trial subspace that yields the smallest approximation error in approximating b is not easy to
detect from the curve of the condition number. We propose searching this residual curve instead
and having the greedy algorithm return k columns at which the residual is minimum and the
corresponding column index set n′′.
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τr

(a) Using selected rows in computation (b) Using all rows in computation

Figure 3: Greedy algorithm stops by small residual, 128 columns are selected in the column space –A schematic demon-
stration of residual value and condition numbers of submatrices of A with expending columns n → n′ and (a) selected
rows m, and (b) all rows Nm in the column space.

The computational overhead is the difference in cost of QR factoring the greedy selected
|m′| × |n′′| submatrix and the |m′| × |n′| that allows us to compute the whole residual curve in
Figure 2b. The estimate is O(|m′| × (|n′|2 − |n′′|2)).

3.2. [SC-2′] Stop by small residual
This is an aspect the original greedy algorithm largely ignores. The greedy algorithm only

runs on residual values using the selected rows and columns, see equations (2)–(3). Setting
τr = εmech means the greedy algorithm almost never stops because of this small residual criteria.
Even in the case when the discretized matrix system is well-conditioned, the greedy algorithm
in the default setting will select the whole column space (but without a huge overhead in the
block version) to yield the best possible accuracy. Figure 3 were the counterpart of Figure 2 but
the greedy algorithm was stopped by a small residual for some given (large) tolerance τr. In
Figure 3, the condition numbers are all well below the dangerous zone 1/εmech. In Figure 3a,
we once again observed that the residual values obtained using the selected rows are large and
do not reflect the true approximation power of the trial subspace. The residual using all rows in
Figure 3b is not a quantity that exists within the greedy algorithm. Yet it could be way smaller
than the tolerance value τr.

Suppose the greedy algorithm selected column index set n′ after stopping by small residual
(based on selected rows indexed by m′), ∥rprimal,m′∥∞ < τr. The original greedy algorithm does
not have any postprocessing. In the new SC-2′, we propose to run the stopping criteria using
residual from all rows when

∥rprimal,Nm∥∞ < τr.

That is, we use the blue curve in Figure 3b instead of that in Figure 3a to stop the greedy iteration.
Then we apply a backtracking process, similar to the one presented in Section 2, to select the
first k indices in n′ to generate the largest subset n′′ ⊂ n′ so that the final column subspace
selection yields a residual for the A(Nm,n

′′) subsystem is just below another tolerance τ′r. If
the residual using all rows and n′ is above τ′r, we simply set n′′ = n′ and return all selected
columns. Like in SC-1′, the QR factorization of A(Nm,n

′) allows us to evaluate any data point
10



(a) ϵ = 1 (b) ϵ = 3 (c) ϵ = 6

Figure 4: Example 3.2, error profiles for solving a 2D heat equation using a meshfree time-stepping method with greedy
algorithm and the MS kernel with µ = 6. Different values of ε and △t were used, and the shaded areas in each plot show
the error range for n ∈ [500, 1000] data points, with the median as a dashed line. The stopping criteria that terminate
the greedy algorithm are shown as black circles for all columns being selected, red circles for SC-1′, and blue circles for
SC-2′.

on the residual curve. Since we double the number of selected columns in each (block-version)
greedy iteration, the overhead of SC-2′ is the extra QR factorization to intermediate submatrix
A(Nm, 1→ n) in the previous iteration that costs O(mk2).

In the context of meshfree time-stepping schemes, a highly accurate spatial scheme is waste-
ful in terms of computational cost when the overall error is dominated by temporal discretization.
It makes sense to greedily select just enough spatial approximation power to match the tempo-
ral error in order to reduce spatial accuracy and compensate for computational efficiency. The
tolerance τ′r should be based on the finite difference scheme and time step △t used in tempo-
ral discretization, which yields the semi-discrete systems. For the second-order scheme in this
paper, we propose:

τκ = O(εmech/△t), τr = O(△t), and τ′r = O(△t2). (13)

In the rest of this paper, we use 1 as the Big-Oh constant, yielding satisfactory results in 2D and
3D test problems.

Example 3.2 (New stopping criteria in action) We utilize SC-1′ and SC-2′ into the greedy
algorithm and solve the heat equation in Example 3.1 again. For temporal discretization, we still
use the CN scheme. For spatial discretization, we use the MS kernel in dimension d = 2 with
smoothness order µ = 6

Φµ(x − y) := ∥x − y∥µ−d/2
2 Kµ−d/2(∥x − y∥2) for x, y ∈ R2 (14)

and scale input argument of this translation-invariant kernel by Φ(r)← Φ(ϵr) with shape param-
eters ϵ = 1, 3, and 6. We take n = 500, 550, . . . , 1000 Halton points to form the sets of trial
centers and collocation points.

Instead of one curve per tested n, we show the range of relative root mean errors in Figure
(4) along with the median of all tested n against different △t. Note that the △t value determines
all greedy tolerance by (13). The red circle for SC-1′ and blue circle for SC-2′ in the figures
indicate the active stopping criteria that terminate the greedy algorithm in that particular run. If
the greedy algorithm selects all columns without activating any stopping criteria (usually when n
is small and the system matrix A is well-conditioned), it is labelled by black circles in the figure.
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(a) (b)

Figure 5: Example 3.2, (a) error profiles for the solution of a 3D heat equation using a meshfree time-stepping method
with the new greedy stopping criteria for different numbers of data points n. (b) error function for n = 7000, △t = 0.01.

Our experimental results show that the new stopping criteria generate more stable solutions with
a wide range of meshfree setups, as evidenced by the fluctuation range of the error in Figure 4. In
the case of ϵ = 1, the MS kernel quickly leads to an ill-conditioned matrix in the fully-discretized
system as n increases. We observe in Figure 4a that most runs were stopped SC-1′ by large con-
ditioned numbers. With everything else fixed, increasing ϵ yields a system matrix with a smaller
condition number. We choose to show the results for ϵ = 3 since it clearly demonstrates errors
of similar magnitude when greedy is terminated by either stopping criteria. The errors using all
columns are generally smaller since SC-2′ is designed for the sake of computational cost. Se-
lecting all columns yields the highest possible approximation power in the full discretization and
the lowest error, though at a higher computational cost.

We set up a similar test problem in 3D with the following heat solution:

u∗([x1, x2, x3]T , t) = sin(2πx1) sin(πx2) sin(πx3) exp (−2π2t) + (1 − exp (−2π2t))/2.

Using the MS kernel (14) with d = 3 and ϵ = 3 centered at n = 5000 to 8000 Halton points in
[0, 1]3 as trial centers and collocation points, we solve the heat equation (as in the 2D case) with
various time step △t (hence, various tolerance for the greedy algorithm). The resulting relative
root mean squared errors are shown in Figure 5a. Similar to Figure 4b, we see that the blue circle
for SC-2′ is more likely to yield smaller errors for any △t. Figure 5b shows the error function for
n = 7000 and △t = 0.01 with the greedy algorithm.

■ The previous examples have provided motivation and insights into the effectiveness of the

new stopping criteria across different setups. However, a more thorough investigation through
extensive numerical experiments is needed to verify the robustness of our proposed stopping
criteria and tolerance selection strategies.

4. Coupled bulk-surface pattern formations

Semi-linear coupled bulk-surface reaction-diffusion equations are crucial in modeling phe-
nomena where processes at the surface significantly influence or are influenced by the dynamics
occurring in the bulk. Such models find applications in various fields including biology, chem-
istry, materials science, and environmental engineering. These equations consist of reaction-
diffusion terms in the bulk and on the surface, with coupling typically occurring through bound-
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ary conditions linking the fluxes or concentrations between the bulk and the surface. For ex-
ample, in developmental biology, it is crucial to understand how polarized states arise and are
maintained, characterized by uneven distributions of chemical substances such as proteins and
lipids [19, 20]. Another application of the bulk-surface reaction-diffusion equation is in develop-
ing solid-state hydrogen storage materials using metal hydrides, where slow kinetics of hydro-
gen uptake and release involve adsorption and dissociation of hydrogen, its diffusion through the
solid, and a phase transition in the metal-hydride from lower to higher hydrogen content [21].
This section explores the application of these equations in developmental biology, specifically in
the area of pattern formation.

Let Ω ⊂ Rd be some bounded (bulk) domain and S = ∂Ω be its smooth boundary with well-
defined normal vector field n : S → Rd. We verify the new greedy stopping criteria with the
following semi-linear coupled bulk-surface reaction-diffusion equations in both 2D and 3D for
pattern formation:

∂u
∂t
= Du∇

2u + f1(u, v),

∂v
∂t
= Dv∇

2v + f2(u, v),
in Ω × [0,T ]


∂w
∂t
= Dw∇

2
S

w + f1(w, s) − h1(u,w),

∂s
∂t
= Ds∇

2
S

s + f2(w, s) − h2(v, s),
on S × [0,T ]

(15)

with coupling boundary conditionsDu∇u · n = h1(u,w),
Dv∇v · n = h2(v,w).

on S × [0,T ]. (16)

The surface equations in (15) contain differential operators on surfaces, that can be defined via a
projection to the tangent space of S

P := Id − nnT ,

where Id denotes the d × d identity matrix. The surface gradient and the Laplace-Beltrami oper-
ator, a.k.a. surface Laplacian, are defined respectively by

∇S = P∇ and ∇2
S
= ∇S · ∇S = (P∇) · (P∇),

using the standard gradient operator ∇ for functions defined in Rd.
The source functions in (15)–(16) are given by the nonlinear reaction kinetics and the cou-

pling of the internal bulk dynamics in Ω to the surface dynamics on S. The interaction between
unknown functions u, v : Ω → R and w, s : S → R yields Turing patterns in the bulk and on the
surface. The nonlinear reaction kinetics are:

f1(u, v) = γ(a − u + u2v), f2(u, v) = γ(b − u2v).

The coupling of the internal dynamics to the surface dynamics is:

h1(u,w) = α1w − β1u, h2(v, s) = α2s − β2v,
13



Table 1: Parameters for Turing’s pattern formation used in coupled bulk-surface reaction-diffusion equations (15)–(16).

a b α1 α2 β1 β2 Dv Ds q γ

Fig. 6–9 ...
...

...
...

...
...

2 2 1/12 30
Fig. 9 1 1 1/12 30
Fig. 10 1/10 9/10 5/12 5 5/12 5 5 5 1/10 500

Fig. 11–12 3 3 1/12 40
Fig. 13 ...

...
...

...
...

...
6 6 1/12 30

Fig. 14 3 3 1/12 30

with parameter values listed in Table 1 with Du = qDv, Dw = qDs. As shown in [22], the coupled
bulk-surface PDEs (15) has a unique homogeneous equilibrium state when

f1(w, s) − h1(u,w) = 0 and f2(w, s) − h2(v, s) = 0. (17)

For any γ, solving (17) yields corresponding (constant) function values at equilibrium as(
a + b,

b
(a + b)2 , a + b,

b
(a + b)2

)
= (u0, v0, w0, s0). (18)

We set the initial conditions (u0, v0, w0, s0) for the coupled bulk surface PDEs (15) to be the
homogeneous equilibrium state with a, b as shown in Table 1. Small approximation errors in
these initial conditions then serve as sources of perturbations. According to Turing instability
theory [23], in the absence of diffusion a uniform steady state remains stable. However, it be-
comes unstable to small spatial perturbations. In our meshfree context, minor disturbances from
numerical approximation error can cause an otherwise stable homogeneous equilibrium state to
become unstable, resulting in the formation of patterns.

4.1. Discretizing PDEs for the greedy algorithm
We use the SBDF2 scheme in equation (8) for temporal discretization, where all nonlinear

reaction terms in equation (15) were evaluated at the previous time step. Let Uk,Vk,Wk, S k

represent the semi-discretized solutions as in Section 3. We also use an explicit scheme for
bulk-surface dynamics. The semi-discretized equation for the bulk function u is given by:

1
2△tk

(
3Uk − 4Uk−1 + Uk−2

)
= 2 f1(Uk−1,Vk−1) − f1(Uk−2,Vk−2) + Du∇

2Uk in Ω, (19)

subject to the boundary condition

Du∇Uk
· n = h1(Uk−1,Wk−1) on S, (20)

which is decoupled from the other solutions. The semi-discretized equation for the surface func-
tion w is

1
2△tk

(
3Wk − 4Wk−1 +Wk−2

)
= 2 f1(Wk−1, S k−1) − 2h1(Wk−1, S k−1)

− f1(Wk−2,Vk−2) + h1(Wk−2,Vk−2) + Dw∇
2
S

Wk on S. (21)
14



We obtain the semi-discretized systems for Vk and S k similarly to the equation for Uk and Wk. In
the end, this yields four sequences of linear elliptic PDEs that incorporate solution history only
through the right-hand source functions.

For spatial discretization, we construct two trial spaces to approximate the solutions in the
bulk and on the surface, respectively, using the MS kernel in (14) that reproduces the Sobolev
space Hµ(Rd). Let µΩ ≥ max(2, d/2) be the smoothness order used in the bulk kernel ΦµΩ . When
we restrict the kernelΦµS+1/2 on the surfaceS for any µS ≥ max(2, (d−1)/2), the restricted kernel
ΨµS := ΦµS+1/2

∣∣∣S : S × S is a Sobolev space HµS−1/2(S) reproducing kernel with smoothness
µS, as shown in [24]. Based on convergence estimates for meshfree least-squares collocation
for elliptic PDEs in the bulk [17] and on the surface [15], it is suggested [25] to choose the
smoothness orders of the kernels such that[SO-1] µS ⩾ µΩ + d/2 − 2, µΩ ≥ (9 + d)/2, or

[SO-2] µΩ ⩾ µS − d/2, µS ≥ 3 + d,
(22)

in order to balance error estimates in the bulk and on the surface. Condition SO-1 arises from
the error estimate for meshfree least-square collocation methods solving elliptic PDEs in the
bulk and the error of surface functions treated as perturbations. A second condition results from
reversing the roles of the bulk and surface functions within the same framework.

To simplify notations, we use two sets of data points ΞΩ ⊂ Ω and ΞS ⊂ S for the bulk and
surface functions, respectively, i.e.,

Uk,Vk ∈ UΞΩ,Ω := span{ΦµΩ (· , ξ) | ξ ∈ ΞΩ},

and
Wk, S k ∈ UΞS,S := span{ΨµS (· , ξ) | ξ ∈ ΞS} = span{ΦµS+1/2(· , ξ) | ξ ∈ ΞS}.

For the upcoming 2D and 3D simulations, we simply use µΩ = 6 and µS = 5.5 which satisfy the
first condition SO-1 in (22). Consequently, we will use the MS kernel Φ6 in constructing both
the bulk and surface collocation systems.

We use sets of collocation points ZΩ ⊂ Ω ∪ S and ZS ⊂ S for bulk and surface func-
tions respectively to set up the meshfree collocation matrix system, as discussed in Section 3.
Specifically, for bulk functions Uk,Vk, we can obtain matrix equations similar to (11) except
with different constant factors and a new boundary part in the matrix, namely Φ(ZΩ ∩ S,ΞΩ) ←
[∇ΦµΩ · n](ZΩ ∩ S,ΞΩ).

We assume prior analytical knowledge of the normal vector field n and use the convergent
Kansa-type analytical projection method in [15] to approximate the surface Laplacian operator.
This extrinsic approach allows collocations directly on surfaces and can fully discretize the sur-
face equations. The elliptic PDE in (21) for semi-discretized surface function Wk leads to the
following meshfree collocation matrix when fully-discretized:

Aw(△tk) =
[(

3ΦµS+1/2 − 2△tk[Dw∇
2
S
ΦµS+1/2]

)
(ZS,ΞS)

]
,

depending on the step size. The meshfree collocation matrix for Vk looks almost identical but
with a different diffusion coefficient Dv. If we use an equal time step △t, then all four meshfree
collocation matrices (denoted by AU , AV , AW , and AS ) remain fixed for all time, which is a cost-
effective approach that we will take in the following calculations. Now we have a sequence of
matrix equations in the form of (12) for each unknown functions sequence Uk, Vk, Wk and S k

for k = 1, . . . ,K.
15
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(a) n = 717 + 100, △t = 0.005 (b) Bulk solution u (c) Surface solution w

Figure 6: Example 4.1: Spot pattern formation by solving a 2D coupled bulk-surface reaction-diffusion equation, using
the meshfree time stepping method, but without using the greedy algorithm. The meshfree method uses n = nΩ + nS =
717+ 100 data points and a time step of △t = 0.005. (a) Bulk and surface solutions together are shown in 3D, (b) pattern
formed in the bulk solution u, and (c) pattern formed in the surface solution w.

Because our initial conditions (18) correspond to the homogeneous equilibrium state, ana-
lytically applying SBDF1 at the first time step yields constant functions U1,V1,W1, S 1. This
implies that, in the second time step, the right-hand side vector of the SBDF2 matrix system is
a constant vector. In this case, we can run the greedy algorithm to select columns for each of
the four unknown functions without needing to spend time computing the actual right-hand side
vector. It is worth noting that the original greedy algorithm also runs with an all-one right-hand
vector as part of the patch test procedure in the absence of a specified input vector. Next, we
obtain solutions in the second time step by solving the SBDF2 matrix system with all rows but
only the greedily selected columns. This is where the perturbation comes into play. Solving
the reduced system (or the full system in cases without the greedy algorithm) introduces small
errors that serve as perturbations, allowing patterns to form according to the Turing instability
mechanism described earlier.

In summary, here is the main numerical setup described above: We use the MS Φ6 kernel in
(14) with smoothness order µΩ = 6 and µS = 5.5. The tolerances of the greedy algorithm are
set according to (13) with a Big-Oh constant of 1. All examples use an exactly determined setup
with identical sets of trial centers Ξ· and collocation points Z· = Ξ· in bulk domain and surface,
respectively. The number of data points n = |Ξ| varies for different examples due to different
domain volumes and will be reported individually.

Example 4.1 (Robustness verifications in 2D) Let Ω be the 2D unit ball. We solve the coupled
bulk-surface pattern formation partial differential equations (15) in bulk Ω and surface S = ∂Ω
subject to the boundary condition (16) and initial condition (18). Under this simple setting, even
in the absence of an analytic solution, we can use symmetry to gain insight into the interfacial
patterns and identify pattern defects in the numerical solutions. Such interfacial patterns would
not form in isolated bulk or surface systems; patterns in the bulk and on the surface are expected
to be highly correlated.

Using Turing’s pattern formation parameters in [26] for spots pattern formation, as shown
in Table 1, we solved the 2D coupled bulk-surface reaction-diffusion equations to study pattern
formation, using a meshfree time stepping method. Firstly, without the greedy algorithm, Fig-
ure 6 shows the meshfree solutions u in the bulk and w on the surface obtained by employing
n = nΩ + nS = 717 + 100 data points and a time step of △t = 0.005. Here nΩ and nS denote
the number of basis functions in Ω and on S. To ensure that the solutions converge to steady
states, we solve the reaction-diffusion until a sufficiently long time, say, T = 1000. Figure 6a
shows the bulk and surface solutions together in 3D, revealing their complex spatial interactions.
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Table 2: The number of selected basis functions and the stopping criteria corresponding to the solutions corresponding
greedy cases in Figure 7.

n = 717 + 100 n = 1031 + 120
n′
Ω

(717) n′
S

(100) SC(Ω) SC(S) tCPU n′
Ω

(1031) n′
S

(120) SC(Ω) SC(S) tCPU

△t = 0.01 341 23 SC-2′ SC-2′ 7.27 186 39 SC-2′ SC-2′ 5.74
△t = 0.005 451 23 SC-2′ SC-2′ 5.90 465 24 SC-2′ SC-2′ 5.58

Figures 6b and 6c show bird’s eye views of the bulk solution u and surface solution w, respec-
tively. The bulk solution exhibits a spotted pattern while the surface solution develops a wavelike
pattern around the circular domain.

We implement the greedy algorithm to determine if the patterns can be generated with fewer
basis functions. To ensure numerical convergence, we vary the time steps and the number of
data points. Figure 7 displays overlaid bulk and surface solutions of △t = 0.01, △t = 0.005, and
n = 717 + 100, n = 1031 + 120, with and without the greedy algorithm. Upon initial inspection,
all four meshfree parameter sets, irrespective of whether the greedy algorithm was used, generate
similar bulk patterns, characterized by 7 spots in the bulk and either 6 or 7 peaks on the surface.
We also examine the interfacial patterns. In Figure 8, we plot all eight (non-unique) surface
patterns w, shifted so that the first peak coincides. The numerical solutions for the surface exhibit
less consistency than those in the bulk. Notably, the greedy surface solutions with small n, say
n = 717+100 exhibit a distinct characteristic from the other solutions, displaying only a six-peak
wave-like pattern. We plot these special solutions in red, while all other solutions are plotted in
blue. Figure 7e and 7g correspond to these solutions showing that the bulk and surface solutions
are coupled together. We recorded the CPU times used to select the trial space for all variables
using the greedy algorithm in Table 2. To reduce random variability, we counted the average
CPU time of executing the greedy algorithm ten times and represented it by tCPU (seconds).

In Table 2, we present the stopping criteria and the number of basis functions selected for the
greedy solutions corresponding to Figure 7 and Figure 8, with varying values of nΩ and nS. For
both functions u and w, fewer basis functions are selected to produce consistent patterns. Using
smaller △t results in more basis functions being selected. We remark that all kernels use ϵ = 6
and run to T = 1000. Figures 6–7 is kept at the same range for the sake of fair comparison of
spot size.

We present additional experiments that demonstrate how the greedy algorithm can rectify
unstable numerical results that arise due to poor numerical settings. Figure 9 shows the solutions
obtained with the greedy algorithm under different parameter settings. Specifically, building
upon the scenarios depicted in Figure 7, we take more data points wherein n was set to 1612 +
150 with △t being 0.01 and 0.005 in Figure 9a-9b. Additionally, in Figure 9c-9d, we varied
the diffusion coefficients from Dv = Ds = 2 to Dv = Ds = 1 with △t = 0.005, n = 717 +
100, and n = 1031 + 120. While there remains some uncertainty regarding whether the greedy
algorithm accurately captures the distribution of the patterns, particularly in cases where Dv =

Ds = 1, it is worth noting that the appearance of the patterns is indicative of the success of
the greedy algorithm in comparison to the blow-up solution without the greedy algorithm under
these settings.

Before tackling 3D problems, we also attempt to solve the numerically more challenging
stripe pattern formation problem. We do this by simply changing the parameters for Turing’s pat-
tern formation, as shown in Table 1. Since generating stripe patterns typically requires a higher
level of spatial and temporal resolution than spot patterns due to their more complex and dynamic

17



W
ith

ou
t

G
re

ed
y

n = 717 + 100
△t = 0.01

(a) 7 spots, 7 peaks

n = 1031 + 120

(b) 7 spots, 7 peaks

n = 717 + 100
△t = 0.005

(c) 7 spots, 7 peaks

n = 1031 + 120

(d) 7 spots, 7 peaks
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(e) 7 spots, 6 peaks (f) 7 spots, 7 peaks (g) 7 spots, 6 peaks (h) 7 spots, 7 peaks

Figure 7: Example 4.1: Bulk and surface solutions obtained by solving the 2D coupled bulk-surface reaction-diffusion
equation with and without the greedy algorithm. The meshfree method uses n = 717 + 100, n = 1031 + 120 data points
and △t = 0.005, △t = 0.01 time steps. The number of bases used and stopping criteria in the greedy cases are in Table 2.

w
(θ
+
△
θ)

θ

Greedy on n = 717 + 100all other

Figure 8: Example 4.1: The surface solutions from Figure 7 are individually shifted (with different △t) to align the
location of the first peak and plotted against θ.
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Dv = Ds = 2

(a) △t = 0.01,
n = 1612 + 150

(b) △t = 0.005,
n = 1612 + 150

Dv = Ds = 1

(c) △t = 0.005,
n = 717 + 100

(d) △t = 0.005,
n = 1031 + 120

Figure 9: Example 4.1: Corresponding to the greedy cases in Figure 7, bulk and surface solutions by solving 2D coupled
bulk-surface reaction-diffusion equation using Dv = Ds = 2 and Dv = Ds = 1.
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n = 4477 + 250

18 cycles

Figure 10: Example 4.1: Stripe pattern formation by solving a 2D coupled bulk-surface reaction-diffusion equation,
using the meshfree time stepping method and the greedy algorithm. The meshfree method uses n = 2869 + 200 and
4477 + 250 data points and a time step of △t = 0.001. For each test case, the bulk and surface patterns formed are shown
together in 3D view and bird’s eye view.

nature, we take a smaller time step as △t = 0.001 and more data points as n = 2869 + 200 and
n = 4477 + 250 in this case. The run time here is still taken as T = 1000. Initially, we attempted
to solve for stripe patterns under these settings without utilizing the greedy algorithm. How-
ever, as we had anticipated, the solution experienced a blow-up in the first few iterations. Then
we employ the greedy algorithm, which selects fewer bases to obtain reasonable stripe patterns.
Figure 10 showcases both solutions in the bulk and on the surface, which successfully capture
the formation of stripe patterns in the bulk domain and exhibit very high-frequency wavelike
surface solutions. The amplitudes of surface solutions appear uniform and consistent. In both
patterns, the bulk solution at the boundary and the surface solution demonstrate high-frequency
oscillations and are perfectly synchronized2

Example 4.2 (Coupled Bulk-Surface Pattern formations in 3D)
Moving forward with our simulation efforts, we now explore 3D coupled bulk-surface pattern

formation. Our aim is to test whether the greedy algorithm can produce patterns with relatively
fewer basis functions in the cases when the solution is less oscillatory and smoother, i.e., spot
formation. Compared to the 2D domain, generating patterns in 3D requires more accurate dis-
cretization due to the higher dimensionality. To simplify our approach, we focus on larger spot
patterns in 3D domains instead of small patterns or slim stripes as seen in 2D cases.

We implement the greedy algorithm approach as before without modification. Our initial
experiments involve a torus with a simple geometrical structure, and we provide sufficient nu-
merical solutions to verify the robustness of our approach. Subsequently, we will extend our
experimentation to other 3D shapes, namely Dupin’s cyclide and ellipsoid, to further validate
our findings.

Observation 1: The greedy algorithm recovers from unsuccessful runs
As in the 2D demonstration, we obtain bulk and surface solutions by solving the three-

dimensional coupled bulk-surface reaction-diffusion equation was achieved by applying the mesh-
free time stepping method both with and without the greedy algorithm in Figure 11. We still
use the MS Φ6 kernel in 3D experiments. For the meshfree method, the value of n was set to
2644 + 1430, ϵ was fixed at 1 and the time step △t was allocated as 0.005 until the final time
T = 1000. We observe that in the absence of the greedy algorithm, faint and irregular pat-

2Similar to the peak-to-trough matching seen in cases of 7 spots in the bulk in Figure 7, there is a similar matching
in these stripe patterns.
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Figure 11: Example 4.2: Bulk and surface solutions by solving the 3D coupled bulk-surface reaction-diffusion equation,
using the meshfree time stepping method with and without the greedy algorithm in/on a torus. The meshfree method
uses n = 2644+1430, ϵ = 1 and time step △t = 0.005. Without the greedy algorithm, faint and irregular patterns emerge,
while using the algorithm produces clearer, symmetric and well-separated spot patterns.

Table 3: The number of selected basis functions and the stopping criteria corresponding to the solutions corresponding
greedy cases in Figure 12.

ϵ = 4 ϵ = 5
n′
Ω

(2644) n′
S

(1430) SC(Ω) SC(S) tCPU n′
Ω

(2644) n′
S

(1430) SC(Ω) SC(S) tCPU

△t = 0.01 753 116 SC-2′ SC-2′ 130.56 771 222 SC-2′ SC-2′ 61.86
△t = 0.005 776 125 SC-2′ SC-2′ 115.96 2039 208 SC-2′ SC-2′ 79.79

terns materialized, whereas the employment of the algorithm produced clearer, symmetric and
well-separated spot configurations.

Observation 2: The greedy algorithm improves efficiency in successful runs
Next, we implement the experiments on the torus with some larger values of the shape pa-

rameter, say, ϵ = 4 and ϵ = 5. We fix the number of basis functions as n = 2644 + 1430 and use
time steps as △t = 0.01 and △t = 0.005. As seen in Figure 11, the patterns of u and v, as well as
w and s, are reversely correlated. Accordingly, we focus our discussion on the solutions of u and
w for both the bulk and surface functions.

Figure 12 displays the bulk and surface function solutions in/on torus under different RBF
shape parameters and time step settings. We observe that the patterns obtained with and without
the greedy algorithm are nearly identical. Across all solutions, the spots tend to converge to the
same pattern, with 4 spots in the bulk and 8 spots on the surface. This trend suggests that even
with different numbers of basis functions, the greedy algorithm can facilitate pattern formation.

Additionally, we list the stopping criteria and the number of selected basis functions out of
n = 2644 + 1430 in Table 3 provided by the greedy algorithm. Except for the situation when
taking ϵ = 5 on the surface, taking △t = 0.005 tends to select more basis than taking △t = 0.01.
Since using a different number of basis functions produces nearly identical patterns, it nearly has
no effect on pattern formation compared to a solution without a greedy algorithm. Therefore, the
larger time step △t = 0.01 with the greedy algorithm appears to be the most effective setting for
generating patterns in this experiment.

Observation 3: The greedy algorithm performs robustly in various domains
In our continued exploration of the effectiveness of our approach, we further examine the

solutions of (15) on additional 3D domains. Figures 13 and 14 present solutions of u and w in a
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Figure 12: Example 4.2: Bulk and surface solutions by solving the 3D coupled bulk-surface reaction-diffusion equation
corresponding with Figure 11 with time steps △t = 0.01 and △t = 0.005 and larger RBF shape parameters ϵ = 4 and
ϵ = 5. The number of bases used and stopping criteria in the greedy cases are in Table 3.
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Figure 13: Example 4.2: Solutions by solving the 3D coupled bulk-surface reaction-diffusion equation with and without
the greedy algorithm in/on a Dupin’s cyclide. The meshfree method uses n = 6760 + 2956 and ϵ = 4. The time steps are
taken as △t = 0.005 and △t = 0.01.
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Figure 14: Example 4.2: Solutions by solving the 3D coupled bulk-surface reaction-diffusion equation with and without
the greedy algorithm in/on an ellipsoid. The meshfree method uses n = 3395 + 1164 and ϵ = 6. The time steps are taken
as △t = 0.005 and △t = 0.01.

Dupin’s cyclide and an ellipsoid. For the cyclide, we use ϵ = 4, and the time stepping method
with △t = 0.01 and △t = 0.005. Due to the complex geometry, the spots formed in/on the
cyclide are not as uniformly distributed as in the torus. Nonetheless, we observe that the greedy
algorithm produces the same number of clear and separated spots as the non-greedy solutions,
both in the bulk and on the surface. Specifically, there are consistently 6 spots in the bulk and 10
on the surface. However, under different settings, the distributions of spots may not always be
identical. For example, when applying the greedy algorithm with △t = 0.01, the solution in the
cyclide domain appears different from other solutions. This difference is due to the fact that the
positions of the spots are influenced by the number and position of the selected basis functions.

Likewise, the solutions on the ellipsoid with the greedy algorithm also exhibit slight differ-
ences when compared to those without. Specifically, when we apply the greedy algorithm with
△t = 0.005, the spots on the top of the ellipsoid appear different from the patterns in other solu-
tions. Nonetheless, despite using or not using the greedy algorithm, the number of spots in the
bulk and on the surface remains almost the same.
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5. Conclusion

We present two stopping criteria for the block greedy algorithm to improve stability and accu-
racy when solving fully-discrete matrix systems of a meshfree time-stepping method for solving
parabolic PDEs. When stopped by a large condition number, we propose a minimum residual
search within newly added columns to maximize the approximation power. When stopped by
a small residual, a backtracking process is used to reduce selected columns while keeping the
residual below a threshold. Together with suggested time step-dependent tolerance selection
strategies, these stopping criteria enable the greedy algorithm to balance accuracy and stabil-
ity. This is demonstrated in solving 2D and 3D heat equations, where the solutions’ accuracy is
somewhat independent of which stopping criteria is used. We applied the greedy algorithm to
coupled bulk-surface pattern formation as a practical first step. We use symmetry arguments on
interfacial patterns to identify numerical defects.

The numerical examples presented in both 2D and 3D demonstrate that, under appropriate
temporal and spatial conditions, utilizing the greedy algorithm along with varying numbers of
basis functions can lead to the emergence of reasonable patterns. We have made improvements
to the greedy algorithm to enhance its stability when solving PDEs using meshfree and time-
stepping methods. The patterns efficiently simulated using the greedy algorithm successfully
maintain the general characteristics of the original configurations. In our future work, we will
explore the possibility of combining our approach with variably scaled RBF [27, 28] to enhance
the stability of the system even further. We may also consider combining our approach with [29,
30] in solving the coupled bulk-surface reaction-diffusion equations on domains with moving
surfaces.
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