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SUMMARY

It is now commonly agreed that the global radial basis functions method is an attractive approach
for approximating smooth functions. This superiority does not come free; one must find ways to
circumvent the associated problem of ill-conditioning and the high computational cost for solving dense
matrix systems. We previously proposed different variants of adaptive methods for selecting proper
trial subspaces so that the instability caused by inappropriate shape parameters were minimized.
In contrast, the compactly supported radial basis functions are more relaxing on the smoothness
requirements. By settling with algebraic order of convergence only, compactly supported radial basis
functions method, provided the support radius are properly chosen, can approximate functions with
less smoothness. The reality is that end-users must know the functions to be approximated a priori in
order to decide which method to be used; this is not practical if one is solving a time evolving
partial differential equation. The solution could be smooth at the beginning but the formation of
shocks may come later in time. In this paper, we propose a hybrid algorithm making use of both
global and compactly supported radial basis functions with other developed techniques for meshfree
approximation with minimal fine tuning. The first contribution here is an adaptive node refinement
scheme. Secondly, we apply the global radial basis functions (with adaptive subspace selection) on
the adaptively generated data sites and lastly, the compactly supported radial basis functions (with
adaptive support selection) that can be used as a blackbox algorithm for robust approximation to a
wider class of functions and for solving partial differential equations. Copyright c© 2011 John Wiley
& Sons, Ltd.

Keywords: radial basis function; adaptive greedy algorithm; data refinement; convergence
proof; Burgers’ equation.

1. Introduction

Many problems in science and engineering require the determination of multivariate functions
which have specified properties. These properties may consist of finitely many prescribed
function values at certain points or of infinitely many conditions arising; e.g. from function
approximation to solving partial differential equations (PDE). To avoid meshing and re–
meshing, meshfree methods have been proposed; one of the simplest and easiest methods
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2 L. LING

is to work with functions of the form

u(−→x ) =

N∑

j=1

αjΦ(
−→x ,−→x j), (1)

with a kernel function Φ : R
d × R

d → R. The set of points XN = {−→x j} ⊂ R
d are called

centers and have no specific structure in order to guarantee a meshfree definition. A further
simplification is provided by scalar radial basis functions (RBF) φ (scaled by a shape parameter
c) which allow kernels of the form Φ(−→x ,−→y ) = φ(1c‖

−→x −−→y ‖2) leading to Euclidean invariance
of reconstruction problems.
In the title of this paper, we use the phrase RBF approximation instead of interpolation

as we will focus on overdetermined systems for approximation in the standard least-squares
sense. Before carrying on, the following brief discussion ensures that all RBF interpolation
theories can be applied to our setting. We will follow the ideas in [1] in which similar results
are proven for the modified Helmholtz PDE.

Definition 1. For each set of data sites XN := {(xi, yi)}Ni=1 ⊂ Ω. Define a partition
PN = {Ωi}Ni=1 of Ω by XN such that (xi, yi) ∈ Ωj if and only if i = j. The sequence {XN}∞N=1

is said to be getting dense quasi-uniformly if there exists two positive constants K1 and K2

independent of N such that

K1Area(Ω) ≤ N Area(Ωi) ≤ K2Area(Ω), for all i = 1, . . . , N. (2)

The purpose of the partition in the above definition is solely theoretical; the Voronoi diagram
can be one of such a partition. Using different partitions will affect the constants K1, K2, and
other constants in the convergence theory that depend on them.

Lemma 2. Suppose Ω ⊂ R
2 is regular and bounded. Let f ∈ C(Ω) be square Riemann

integrable over Ω and the sequence {XN}∞N=1 of sets of data locations is getting dense quasi-
uniformly. Define the ℓ2(XN )–norm as

‖f‖ℓ2(XN ) :=
∑

(xi,yi)∈XN

(
f(xi, yi)

)2
.

Then for sufficiently large N , there exist two positive constants K1 and K2 independent of N
such that

K1‖f‖L2(Ω) ≤ N−1/2‖f‖ℓ2(XN ) ≤ K2‖f‖L2(Ω).

Proof. The theorem obviously holds for ‖f‖L2(Ω) = 0. Consider ‖f‖L2(Ω) 6= 0. Under the
assumptions on f and XN , we have

lim
N→∞

N∑

i=1

(
f(xi, yi)

)2
Area(Ωi) = ‖f‖2L2(Ω). (3)

For any given ε > 0, if N is sufficiently large, then

∫

Ω

f2 dx− ε <

N∑

i=1

(
f(xi, yi)

)2
Area(Ωi) <

∫

Ω

f2 dx+ ε.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 0:1–25
Prepared using nmeauth.cls



ADAPTIVE–HYBRID MESHFREE APPROXIMATION 3

The Lemma is proven simply by picking ε = 1
2‖f‖2L2(Ω). 2

We focus our discussion on some symmetric (conditionally) positive definite radial basis
kernels Φ : Rd × R

d → R. If we take the reproducing kernel Hilbert space associated with Φ
(native space) as the trial space

U = NΦ := span{Φ(·, y) : y ∈ Ω}‖·‖Φ

, (4)

where ‖ · ‖U = ‖ · ‖Φ is induced from the inner product
〈∑

i

ciΦ(·,−→x i),
∑

j

djΦ(·,−→y j)
〉
=

∑

i,j

cidjΦ(
−→x i,

−→y j),

then the standard hβ-type error bound given in [2, 3], where h is the fill distance of the data
and β is the smoothness of Φ, can be used. For this work, we only require that the discretized
trial spaces Un have certain approximation power.

Definition 3. The discretized trial space Un is said to have ǫ–approximation power (for small
numbers ǫ > 0) if for all f ∈ U there are some approximations sf,ǫ ∈ Un with

‖sf,ǫ − f‖L2(Ω) ≤ ǫ‖f‖U , for all f ∈ U . (5)

The exact expression for ǫ depends on our assumptions on the function of interest f and the
chosen kernel Φ. In particular, an error bound [4] for compactly supported RBF (CSRBF)
is in the exact same form as (5). If one considers the multiquadrics (MQ) or Gaussian (GA)
RBF, then the exponential error bounds O(λc/h)-convergence (0 < λ < 1) given in [5, 6] with
respect to L∞(Ω) can be loosely employed as (provided f lies in the associated native spaces)

‖sf,ǫ − f‖L2(Ω) ≤ KΩ‖sf,ǫ − f‖L∞(Ω) ≤ ǫKΩ‖f‖U for all f ∈ U .

Otherwise, the Lp(Ω) bound for MQ, radial powers and thin plate splines proven by [7] can be
used. For functions in certain Sobolev spaces but not the native space of the kernel, Sobolev
bounds for functions outside the native space with scattered zeros can be found in [8]. The
RBF convergence theory itself is a big topic to be included in the work; see for instance in
[9, 10, 11], and [12] for more results on RBF interpolation. Readers are also referred to the
research monographs on RBF authored by Buhmann [13], Fasshauer [14], and Wendland [15]
for recent reviews and details. The message is that the interpolant sf,ǫ allows us to bring all
RBF interpolation theories to RBF approximation.

Theorem 4. Define the numerical approximation fn on the given sets of collocation points
XN ⊂ Ω and radial basis centers Xn ⊂ XN , as

fn := arg min
s∈Un

‖s− f‖ℓ2(XN ).

Suppose that {XN}∞N=1 is getting dense quasi-uniformly and {Un}∞N=1 has decreasing ǫ(n)–
approximation powers as n → ∞. Then, for sufficiently large N , the error estimate is given
by

‖fn − f‖L2(Ω) ≤ K ǫ ‖f‖U ,
where K is a positive generic constant independent of N .
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4 L. LING

Proof. For simplicity, let K be a positive generic constant independent of n and N . By the
minimization property of fn, we have

‖fn − f‖L2(Ω) ≤ KN−1/2‖fn − f‖ℓ2(XN )

≤ KN−1/2‖sf,ǫ − f‖ℓ2(XN )

≤ K ‖sf,ǫ − f‖L2(Ω) ≤ K ǫ ‖f‖U .
In other words, RBF approximation in the least-squares sense is as good as RBF interpolation
(off by a constant factor) provided the set of N collocation points is dense enough. 2

The above convergence theories provide us certain degrees of confidence. Similar least-
squares convergence results on the unsymmetric RBF collocation method for PDE is
numerically verified in [16]. Even though the contour-Padé algorithm in [17] allows stable
computations of multiquadrics interpolants for all values of the shape parameter for moderate-
scale problems, the practical issues found in RBF methods remain. For example, the problem
of ill-conditioning is one of the biggest concerns to researchers; that is, the number of RBF
centers n cannot be too large. Different techniques were developed to circumvent the problem
of ill-conditioning; as examples, preconditioning [18], domain decomposition [19], matrix
decomposition [20], and the more recently proposed localized RBF approaches [21, 22]. On the
other hand, optimal RBF centers and data sites distribution are long open questions without
solid solutions yet. Since the strong–form PDE collocation method can be theoretically viewed
as a general interpolation method, we focus on the standard approximation problem in this
paper. This preliminary work, besides its immediate application to solving PDE (i.e., the
dual reciprocity method [23, 24] and the method of particular solution [25, 26]), provides us
the fundamentals in solving time-dependent PDEs with shock formation, moving front, or
complications of other sorts. But, first of all, the meshfree techniques must be made flexible
and robust.
We propose an adaptive-hybrid algorithm trying to overcome as many difficulties as possible.

Using the freedom provided by meshfree methods not only allows fast RBF evaluation as seen
in the paper by Johnson [27], it also allows us to freely place data sites where needed most.
In Section 2, an adaptive node refinement scheme is proposed to increase the density of data
sites where needed most regions with rapid variation. A boundary principle function, which
allows user-control over the density of near-boundary data sites, gives clear advantages over
the previously proposed wavelet-based approach.
Next, in Section 3.1, the adaptive greedy algorithm for global RBF (GRBF) trial subspace

selection is reviewed. In this paper, we use the the multiquadrics (MQ) φ(r) =
√
1 + r2 only. To

apply GRBF on the refined data sites, a level-dependent weight for each collocation condition is
needed. The greedy algorithm adaptively selects the trial space to provide a stable solutioning
process. This is carried out by searching a subset of GRBF centers (e.g. Xn) out of a larger
set (e.g. XN ). For a rapidly changing solution, e.g. interior or boundary layers problem, using
GRBF alone is certainly not sufficient. Moreover, the efficiency of the algorithm drops when
the set of GRBF centers is getting large. CSRBF meshless algorithms with full mathematical
support and easy implementation were, without a doubt, a breakthrough in the field in the
late 90’s. In Section 3.2, we call upon the CSRBF for further residual reduction. Strategies for
picking support radius are discussed. In our numerical simulations shown in Section 4, various
types of functions are being approximated by the proposed algorithm. The proposed method
is shown to be robust with two sets of suggested user-defined parameters.
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ADAPTIVE–HYBRID MESHFREE APPROXIMATION 5

2. Adaptive node refinement (ANR)

The objective of adaptive node refinement (ANR) is to find the set of nodes (or data sites,
collocation points, interpolation points) that capture important spatial information of a given
function. The basic idea is to determine if refinement in a small subdomain (or cell) is needed.
Repeat this step until no further refinement is needed. Collecting the corner points of all
subcells (subject to duplicates removal) yields a set of refinement nodes for imposing collocation
conditions. Similar approaches were commonly used with finite element methods and can also
be found in [28] for RBFs.
A user-supplied criterion, or the so-called principle function P (·), is required to tag

individual grid cells C for refinement. If the principle value of a cell P (C) is greater than
some tolerances τ , then the cell C is splittable and will be refined by splitting into four equally
sized quadrants (or subcells, children, leave). For each square cell C with side length h in Ω,
we employ the generic labeling of the cell’s corners and center in Figure 1 (Left). This section
contains two main parts: the first part is devoted to the splitting algorithm for interior nodes
and the second addresses that for cross-boundary nodes. The goal in this section is to design
an appropriate principle that works for both interior and cross-boundary cases.
Let f be the function we want to approximate over the domain Ω ∈ R

2. Define the manifold
Sf,Ω = {(x, f(x)| x ∈ Ω ⊂ R

2} ⊂ R
3. A good distribution of nodes should be more or less

uniform on Sf,Ω. Hence, the principle function should contain information on the surface area.
Let fi,j := f(xi, yj) for i, j ∈ {0, 1

2 , 1}. The surface area
∫
C |f | dσ can be approximated

using the function values at the four corners of the cell. Next, to enhance the flexibility of
the algorithm, the semi-norm

∫
C
|∇f | dx is also taken into the principle function using a five-

point approximation scheme. For some user-defined interior principle parameters α ≥ 0, we

now define the principle function P
(int)
α (C) as

P (int)
α (C) :=

h

2

(√
h2 + (f0,0 − f0,1)2 + (f1,1 − f0,1)2

+
√
h2 + (f0,0 − f1,0)2 + (f1,1 − f1,0)2

)
(6)

+2α
∣∣∣f0,0 + f0,1 + f1,0 + f1,1 − 4f 1

2
, 1
2

∣∣∣

≈
∫

C

|f | dσ + α

∫

C

|∇f | dx.

Figure 1 (Right) shows the schematic illustration of the ANR scheme for the function
f(x, y) = ex+y. Note that the cells’ areas decrease as the gradient of f increases towards
the corner (x, y) = (1, 1). The cell-structure we see here is also used in the multiscale kernels
proposed by Opfer [29] and later be used in [30] for numerical differentiation.
When Ω is not rectangular, the use of square cells almost guarantees the existence of outside

Ω cells (or their corners). If the cell is completely out of Ω, no refinement is needed. We now

turn our focus to a cross-boundary cell C
⋂
Ω 6= ∅ in which P

(int)
α (C) is not well-defined (if f

is not defined outside Ω). Similar to the situation found in level set method, we assume that
any given points (x, y) ∈ R

2 can be classified as in-or-out of Ω by a signed function:

s
Ω(x, y) =






1 if (x, y) ∈ Ω,
0 if (x, y) ∈ ∂Ω,

−1 if (x, y) ∈ R
2 \ Ω.
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6 L. LING

We denote its values at a given cell’s corners and center, as in Figure 1, by s
Ω
i,j := s

Ω(xi, yj)

for i, j ∈ {0, 1
2 , 1}. For some user-defined boundary principle parameters β ≥ 0, we now define

the principle P
(bdy)
β (C) as

P
(bdy)
β (C) = Area(C)

(
1 + β sign

(
5− s

Ω
1

2
, 1
2

− s
Ω
1,1 − s

Ω
0,1 − s

Ω
1,0 − s

Ω
0,0

))
, (7)

where Area(C) denotes the area of cell C. In other words, the term sign(· · · ) in (7) measures
if all cell’s corners and centers are out of Ω. Using this boundary principle function alone will
refine nodes near the zero contour of sΩ that is, of course, independent of f . It is not difficult
to see that large β yields finer nodes near the boundary. Coupling the two principle functions,
we arrive at the desired principle function in the following form

Pα,β(C) =

{
P

(int)
α (C) if (xi, yj) ∈ Ω for all i, j ∈ {0, 12 , 1},

P
(bdy)
β (C) otherwise.

(8)

Under any circumstances, cell C is splittable if Area(C) > τ to ensure the desired resolution.
If Area(C) ≤ τ and if all sΩi,j = −1 (i, j ∈ {0, 1

2 , 1}), then cell C will be considered as exterior
and will not be split further. The proposed ANR scheme may fail to capture boundary changes
within an area smaller than τ .

In some situations, the function of interest f may in fact define well beyond Ω. For example,
in the dual reciprocity method used by Chen et al. [31, 32, 33], rectangular domains enclosing
the original (irregular) domain Ω are usually chosen for computation. Although one can simply
employ the interior principle function (6), it makes sense to take Ω into consideration in order to
avoid over-refinement outside of Ω. In this case, the level of boundary refinement (controlled by
β) should very well depend on f also. Such a goal can be easily achieved by choosing β = β(α)

adaptively in each cell such that P
(int)
α (C) = Area(C)(1 + β).

Figure 2 demonstrates four sets of nodes resulting from ANR scheme with principle function
(8) and different values of α and β. Here, we pick the tolerances τ = 1/122 for all runs.
The parameter pair [α, β] = [0, 0] is the control run to give readers an intuition on how the
parameters affect the ANR results. The next run, [α, β] = [1, 0] densely refines nodes around

the peak of f . However, near the peak of f , the high density nodes resulting from P
(int)
α (C)

are adjacent to very coarse cross-boundary nodes. This sudden change in point density arises

due to the lack of communication between P
(int)
α (C) and P

(bdy)
β (C). With [α, β] = [0, 100], the

ANR scheme puts lots of nodes near boundary. The adaptive β = β(α), ANR results in a more
uniform distribution and we see only two node-levels here. It is difficult to say which setting
is superior over the others; the answer depends on what one wants to do. For example, if one
is trying to measure maximum errors or capture delta-like functions, large α is desired. It is
shown in [34] that an additional set of collocation equations near boundary is beneficial to the
asymmetric RBF collocation method for solving PDEs. Or, if one is trying to track moving
boundary as in [35], then large β for dense cross-boundary nodes is desired.
Carefully implemented data structure is the key to the algorithm’s efficiency. To construct

a Q-tree (or quadtree), we start with an initial cell containing Ω. This initial cell is denoted as
the root node (or tree-level 0) of Q-tree . Starting from the root node, if cell C can be split into
four subcells, i.e. Pα,β(C) > τ , the splitting process is repeated on each leaf until no leaf can
be split again. This yields a Q-tree data structure. Out of boundary nodes identified by the

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 0:1–25
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ADAPTIVE–HYBRID MESHFREE APPROXIMATION 7

signed function s
Ω will be removed. Keep the Q-tree in memory; it will become useful again

later (see Section 3.2).

There are different ways to assign “levels” to the refined points. Here, we decide to go for
a non-nested assignment. The smallest tree-level associated with cells’ area less than τ will
be called cell-level 1 ; cell-level then increases as we step up the Q-tree structure. The node-
level of a given cell’s corner (or refined node) is defined to be the cell-level of the smallest
containing-cell.

Clearly, the proposed ANR scheme can generate sequential sets of collocation points XN

that getting dense quasi-uniformly as required by Theorem 1. We can see, also from Figure 2,
that the quasi-uniform data sites required in Theorem 4 cannot be achieved by increasing α
nor increasing β alone; it is obtained only by the tolerance τ ց 0 with all the other parameters
fixed. Letting the tolerance τ ց 0 ensures that the maximum partition sizes maxArea(Ωi) ց 0
in Definition 1. The minimum partition sizes depends on both f and Ω. When they are both
fixed (so as α and β in the principle function), it is straightforward to find a bound for
minArea(Ωi) in terms of τ .

3. Hybrid algorithm

Given a function f on Ω, one can generate a set of N data sites, denoted by XN . Simply by
looking at the distributions in Figure 2, experienced RBF users can already see the underneath
problems of ill-conditioning. Moreover, with minimal a priori knowledge about the function f ,
choosing basis functions is not obvious; for example, one may want to use GRBF for smooth
functions but Wendland’s CSRBF for the others. This motivates us to construct an algorithm
that can approximate a wide variety of functions f up to reasonable accuracy. The general
idea of such two-stage meshless approach date back to Schaback’s 1995 article [36].

The algorithm runs on the data locations obtained by the ANR procedure presented in
Section 2. We called the algorithm hybrid because both GRBFs and CSRBFs are used. Before
discussing each building block of the algorithm in details, we first specify the notations used
in Theorem 3 and in this section: the set of collocation points XN is the set of N data sites
output from the ANR scheme, the set of GRBF centers Xn1

is a subset of XN selected by
an adaptive greedy algorithm for a given GRBF kernel Φ1, the set of CSRBF centers Xn2

is
another subset of XN used as centers of CSRBF kernel Φ2, and the native spaces Un1

, Un2
are

the RBF trial subspaces, respectively, associated with the sets of centers Xn1
, Xn2

and kernels
Φ1, Φ2 that are obtained by (4) with Ω replaced by the set of RBF centers.

3.1. Stage I: Global RBFs

To overcome the problem of ill-conditioning due to the non-uniform node distributions in XN ,
we adopt the adaptive greedy technique to select good RBF centers (or Un1

) on-the-fly. The
basic rationale is as follows: we adaptively pick from a large set of N initial input candidates
XN = {(xi, yi)}Ni=1 and select a subset of n1 RBF centers Xn1

= {(xi, yi)}n1

i=1 most likely
with n1 ≤ N . There are different variants of adaptive greedy algorithms; for instance, see
[37, 38, 39, 40, 41]. Here, we are going to employ the improved primal/dual-residual version
found in the recent article [40]. The basic idea of this adaptive greedy algorithm is to make
sequential selections of points-pair based on the largest entry-wise residuals. An overview is

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 0:1–25
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8 L. LING

given below.
The number of input candidates (i.e. output from the ANR scheme) is usually large with no

a priori control. The large and dense original GRBF interpolation matrix A is of size N ×N .
The minimum norm solution, that is also the unique solution, can be obtained by the following
constrained minimization problem:

Minimize
1

2
dT Id, subject to Ad− b = 0. (9)

Using the method of Lagrange multipliers, the primal/dual formulation of Problem (9) can be
rewritten as [

I AT

A 0

] [
d

e

]
=

[
0
b

]
, (10)

where d ∈ R
N is the vector of unknown coefficients, e ∈ R

N is the vector of Lagrange
multipliers, I ∈ R

N×N is the unit matrix and 0 ∈ R
N×N . Since any RBF interpolation matrix

A can be completely determined by the data locations and the RBF centers, we denote any
sub-matrix of A by A(·, ·) : (R2)N ×(R2)N −→ R

N×N , as a matrix function taking sets of data
locations and sets of RBF centers, respectively, as the first and the second input arguments.
Similarly, b : (R2)N −→ R

N can be seen as a vector function taking sets of data locations as
input.
The adaptive greedy algorithm in [40] is built on (10). After step–k (k ≤ N), suppose

the adaptive algorithm selects the sets Pk = {p(1), · · · , p(k)} ⊂ XN of data locations and
Qk = {q(1), · · · , q(k)} ⊂ XN of RBF centers (p(·), q(·) ∈ R

2). The next iteration will select the

(k + 1)th pair of collocation point and RBF center from the following subproblem

{
A(k)d

(k) = b(k),

AT
(k)e

(k) = −d(k),
(11)

where A(k) := Area(Pk, Qk) and b := b(Pk). After solving (11) for d(k) and e(k), the primal–
residual in R

N can be computed by

r(k) = A(XN , Qk)d
(k) − b. (12)

Let Ek→Nd(k) ∈ R
N be the extension of d(k) by patching zeros into entries associated with

the non-selected RBF centers. The dual–residual in R
N is given by

q(k) = Ek→Nd(k) +A(Pk, XN )Te(k). (13)

The (k + 1)st data locations p(k+1) and RBF centers q(k+1) can now be greedily selected from
(12) and (13), respectively. This point-pair is then put into Pk and Qk to form two bigger sets
Pk+1 and Qk+1.
The iterations stop if either residual (12) or (13) is smaller than some tolerances, or if

severe ill-conditioning in (11) is detected. The adaptive greedy algorithm is said to be matrix-
free because evaluating (12) and (13) only requires submatrices of A. The original matrix A
will not be fully evaluated nor stored. Assuming the adaptive greedy algorithm terminates in
n1 = O(1) iterations, then the total work required is O(n2

1(n1 + 2N)) = O(N) and the total
storage requirement is O(n1N) = O(N). Readers can refer to [40] and references therein for
more implementation details.
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3.1.1. Weights of collocations Although the convergence results in Section 1 hold for the
standard least-squares approach (asymptotically), it makes sense to apply some appropriate
collocation-weights to improve the performance in each discrete run. More importantly, the
collocation-weights are introduced to avoid over-emphasizing the region of rapid variation in
the collocation system.

In the first stage of the hybrid algorithm, we make use of the adaptive greedy algorithm to
choose the set of n1 RBF centers, denoted by Xn1

, for the global RBF approximation. The
Stage I approximation is defined by

s1(x, y) =
∑

(xi,yi)∈Xn1

diΦ1,i(x, y) such that d := arg min
d∈Rn1

‖f − s1‖ℓ2(XN ;WXN
),

where WXN
= {wi}Ni=1 denotes the level-dependent collocation weights. The weighted ℓ2(XN )-

norm ‖ · ‖ℓ2(XN ;WXN
) means that the i-th collocation condition in ‖ · ‖ℓ2(XN ) is multiplied by

the weight wi (i = 1, . . . , N).

In Figure 3, we consider a function f consisting a smooth exponential background and a
spike. The ANR scheme is run with α = 1, β = 0, and τ = 5−2. The reason we choose the
non-nested levels assignment will now be made clear. From the node-level, we can see that the
data sites under the spike are between node-level 3 to 6. If, and this is a big-IF, one can look
at the plot of f and decide to remove the spike from the collocation system, then this can
be done simply by assigning zero-weights to collocation conditions in node-levels 3 to 6. The
adaptive greedy algorithm is shown to be highly efficient in approximating smooth function;
the approximation s1 shown in Figure 3 is obtained by the MQ basis as Φ1 with a constant
shape parameter c = 1. The residual f − s1 contains only the spike now. The residual will be
taken care of in Stage II of the hybrid algorithm with CSRBF.

If we want the proposed hybrid algorithm to become a care-free blackbox, the look-and-
decide approach we just used is not feasible. Solely depending on the node-levels to zero out
some collocation conditions will lead to unsatisfactory results in general. For example, applying
the ANR scheme with exactly the same setting to the Matlab’s PEAKS functions yields five
levels of data locations. Zeroing-out all points in node-levels 3 to 5 will disable 98.8% of
the collocation conditions. Clearly this is bad and we omit the numerical demonstrations. Of
course, point density or other relevant means can be taken into account; the “zero-out” idea
may still be useful (Figure 3 is one of the examples). For the sake of this work, however, we
decide to take a more neutral approach.

Due to the Q-tree structure and the non-nested levels assignment, the spacings between
ANR outputs are very systematic and predictable. Take Figure 3 as an example again. The
minimum separating distances of points in node-level 1 is h = 2−3 meaning that they are
corners of some leaf-cells with area h2. The minimum separating distances of points in node-
level 2 is h/2; that of node-level 3 is h/4 and so on. If all collocation conditions are treated
equally, then the number of imposed conditions per unit area is much higher in region with
high data density; i.e., under the spike of Figure 3. Following the same logic, we impose a
level-dependent weight: wℓ = 22(1−ℓ) for all node-level ℓ in XN . In this case, there is no bias
towards different levels of data locations and the advantages of the adaptive greedy algorithm
on smooth functions are well preserved.
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10 L. LING

3.2. Stage II: CSRBFs

To initialize Stage II of the hybrid algorithm, we use the Stage I GRBF approximation s1 to
define the residual function f − s1. With a user-defined residual tolerance γ > 0, the set of
CSRBF centers is defined as

Xn2
:=

{
(x, y) ∈ XN : |(f − s1)(x, y)| ≥ γ

}
.

In practice, the value of γ should be set to a specific application-dependent (acceptable)
accuracy-level. Intuitively, if Stage I cannot complete the job within the desired accuracy
given by γ, then Stage II will be activated for further residual reduction.
In general, we are going to see n1 ≪ n2 unless the function of interest is so smooth that it

can be well approximated solely by the global RBFs in Stage I. The well-known advantage of
using CSRBF is that the collocation matrix can be made sparse by scaling the support radius.
Let Φ2 be the selected CSRBF kernel. The Stage II approximation is defined as

s2(x, y) =
∑

(xi,yi)∈Xn2

d̃i Φ2,i(x, y) such that d̃ := arg min
d∈Rn2

‖s2 − (f − s1)‖ℓ2(XN ),

where the i-th basis function with support radius ρi is given as

Φ2,i(x, y) = Φ2

(
1

ρ i

∥∥(x, y)− (xi − yi)
∥∥
2

)
, for (xi, yi) ∈ Xn2

.

Recall the observations from Figure 3, the distribution in Xn2
is expected to be highly non-

uniform. Most likely, data sites in Xn2
are dense in the region where f changes rapidly. This

hints us that the support radius ρi should not be too large. Using the inherent tree structure,
the support radius ρi for each CSRBF center (xi, yi) ∈ Xn2

can be estimated providing the
desired “bandwidth” of the collocation matrix. Such spatially variable shape parameters have
been used successfully; interested readers can find more in the articles [28, 42, 43] and the
references in the book [14].
Using the nearest neighbors search can avoid computation of the already-known zero entries

in the sparse collocation matrix (and also for efficiently evaluating s2). This is essential
for efficient implementation of the CSRBF scheme. Although most researchers use kd-trees
(downloadable from the MATLAB CENTRAL File Exchange), in our situation, the Q-tree is
already available from the ANR computation; it is a byproduct of the ANR scheme. When the
support size is relatively small compared to the number of points in XN , both Q-tree and kd-
tree are equally efficient (see for instance [44]). Moreover, with very minor tweaks, the search of
nearest neighbors and the search of support radius (providing the desired number of points to
be covered) can be done simultaneously. Implementing Stage II of the hybrid algorithm should
be straightforward due to numerous references available in the recent book by [14]. However,
assigning support radius solely by the number of covered data sites may yield oversized basis
near boundary. Suppose (xi, yi) ∈ Xn2

is in level-ℓ whose corresponding leaf-cell area is h2
i .

If we set ρi = khi, then the CSRBF Φ2,i will cover about 1
4π(2k + 1)2 points in XN ; this

estimation becomes more accurate in higher node-levels.

4. Numerical examples

The proposed hybrid algorithm, contains three main routines: the ANR scheme for finding
data sites XN for collocation, Stage I for finding centers of GRBF and approximation s1, and
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ADAPTIVE–HYBRID MESHFREE APPROXIMATION 11

Stage II for finding support radius of CSRBF and approximation s2. The proposed algorithm
will be applied to approximate various functions. Numerical errors are measured in the relative
means with respect to the L2(Ω)–norm:

E2 :=
‖f − (s1 + s2)‖L2(Ω)

‖f‖L2(Ω)
.

The maximum errors are sometimes used for comparison with previous literatures. Before
running the hybrid algorithm, the following parameters’ values are suggested. For Ω ⊆ [−1, 1]2

(scale if necessary),

• Principle tolerance: Take τ = 2−k (k > 0), reduce if necessary, to yield around
N = 1000 to 2000 data sites,

• Interior principle parameter: 0 ≤ α ≤ 0.5 to avoid over-concentrated data sites; that
is, the term

∫
C |∇f | dx is disabled in the principle,

• Boundary principle parameter: To obtain quasi-uniform data sites, select β = β(α)

adaptively such that P
(int)
α (C) = Area(C)(1 + β(α));

• Residual tolerance: γ = 10−5; residuals at data sites larger than γ will be past from
Stage I to II,

• GRBF: Φ1(r) =
√
1 + r2, i.e. the multiquadrics basis with shape parameter 0.1 ≤ c ≤ 1.

• Collocation weights: wℓ = 22(1−ℓ) for collocations at data sites in node-level ℓ,

• CSRBF: Φ2(r) = (35r2 + 18r + 3)max(0, (1− r))6, i.e. the Wendland’s C4–basis,

• Support radius: ρi such that each interior CSRBF Φ2 covers about 100 points in XN ;
in our implementation, we take ρi = 5hi.

All numerical demonstrations in this section make use of the same set of parameters with either
(c, α) = (1.0, 0.0) or (0.1, 0.5). To avoid overrunning, some examples only come with short
discussions. We provide results of surface approximation to six different types of functions
and of Burgers’ equation. This, hopefully, will provide more confidences to use the proposed
algorithm as blackbox. The conclusion we are going to draw is as follows: (c, α) = (1.0, 0.0)
is suitable for most function approximations whereas (c, α) = (0.1, 0.5)—using larger n1—is
not as efficient but it will be shown stable enough for solving time-dependent PDEs.

4.1. Example: Smooth–Octopus

In the first example, we justify the selection of MQ shape parameter c = 1 and interior principle
parameter α = 0. To show that the hybrid algorithm works ideally on smooth functions in this
setting, we consider the following tilted exponential function

f(x, y) =
x+ y

10
+ exp

(
10(−(x+ 0.1)2 − y2)

)
,

on an asterisk-shape domain given in polar coordinates as

r(θ) = 1 + cos(4θ)2, θ ∈ [0, 2π]
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12 L. LING

to make a smooth-octopus. We let the principle tolerance τ go down as k−2 (k = 3, 4, . . .).
Stage II is activated only in cases when c = 1.5 and c = 2; the other runs (with smaller c)
completed successfully after Stage I with residual less than the residual parameter γ. It has
been previously reported that, although the adaptive greedy algorithm can prevent numerical
instability caused by large shape parameters, a reasonable c value can still be beneficial to the
accuracy.
In Figure 4 (Left/Lines), the RMS errors associated with various values of c are shown in

lines verse the number of data sites N (i.e., ANR output refined points). We can clearly see the
improvement in accuracy when c increases from 0.1 to 1.0. Larger shape parameters (i.e. c = 1.5
and 2.0) result in relatively poor accuracies. Note, the numbers of input collocation points are
not the most important factor here. Instead, the degrees of freedom (DoF) or numbers of basis
used in numerical expansions s1 + s2 are directly related to the speed of the algorithm. The
DoF for c = 1.5 and c = 2.0 are large due to the introduction of CSRBF in s2; whereas, all
DoF in the case of c = 0.1 are due to s1. In Figure 4 (Left/Markers), we show the RMS errors
against the degrees of freedom. In terms of both accuracy and efficiency, using shape parameter
c = 1 seems to be better than the others values of c (in here and a few other unreported tests)
for approximating smooth functions.
Running a similar test with various interior principle parameters, we can see in Figure 4

(Right) that α = 0 is superior over other choices when approximating smooth function in
terms of computational cost; that is, achieving the same accuracy with smaller N (see lines in
the figure) and in terms of the DoF (see markers).
Lastly, in Figure 5, a numerical approximation and the associated residual function obtained

by the proposed Hybrid algorithm (with c = 1 and α = 0) are shown as demonstration. The
error distribution is fairly uniform except at the tips of the octopus’ arms. We see that some
interior errors (on the body of the octopus) and the maximum errors are in the same order of
magnitude. In this example, the boundary refinement in ANR is satisfactory.

4.2. Example: PEAKS

In the second example, the hybrid algorithm is used to approximate the Matlab’s PEAKS
function, another smooth function. Since the function contains some flat regions, from the
design of the ANR scheme, we know that the coarse grids will not be refined until the principle
tolerance τ is reduced to the next power of 2.
The relative error profiles of both (c, α) = (1.0, 0.0) and (0.1, 0.5) are shown in Figure 6.

The numerical approximation in Figure 6 (Left), for the former setting, may appear that the
error along the boundary is relatively high. However, this is related to the residual tolerance
γ. Reducing γ can, with no doubt, tag more data sites to be passed onto Stage II. Better
accuracy can be obtained with more work in the second stage. Accuracies of the proposed
method clearly outbid the results shown in the paper by [38] using a determinant–based
adaptive greedy algorithm. In terms of convergent behaviors, Figure 6 (Right)—especially for
(c, α) = (0.1, 0.5)—is more monotonic and less oscillatory compared to the results reported
in [40].

4.3. Example: (Elongated) Near-Singularities

We now turn our focus to functions with rapid variations and further investigate the numerical
performances of the suggested parameters (c, α). For the sake of easy comparison to literatures,
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ADAPTIVE–HYBRID MESHFREE APPROXIMATION 13

we only consider square domains hereafter. In this example, we consider a standard test
function with multiple regions of rapid variations for adaptive methods found in [45, 46]

f(x, y) = 1 + exp
(
− ((x′)2 + (y′)2)/2µ1

)
+ exp

(
− ((x′′)2/2µ2)− ((y′′)2/2µ3)

)
,

where µ1 = µ2 = 10−3, µ3 = 10−1, x′ = x− 0.5, y′ = y − 0.5, [x′′, y′′]T = R [x+ 0.1, y + 0.1]T

with rotation matrix

R =

[
cosπ/3 sinπ/3

− sinπ/3 cosπ/3

]
.

In Figure 7, the numerical approximations and point distributions for three different values of
principle tolerances τ are shown for the case (c, α) = (1.0, 0.0).
From τ = 1/62 to τ = 1/102, the coarse grids are refined and we can see a significant

improvement in accuracy from E2 = 9.01E − 3 with N = 484 down to E2 = 1.31E − 3 with
N = 1543. From τ = 1/102 to τ = 1/142, refinements are added to the near-singularities only.
The relative error further drops to E2 = 9.34E − 4 with N = 1902. In all three shown cases,
the numbers of GRBF used are very similar: 204, 252, and 240, respectively, for τ = 1/62,
1/102, and 1/142. The main difference is the numbers CSRBF used: they are, respectively,
483, 1540, and 1899. The observed accuracy here, in terms of maximum error, is about one to
two orders of magnitude better than the variable shape parameters MQ approach employed
by [45]. Note that our approach only uses full matrices with about 200 columns in Stage I and
sparse matrices in Stage II in contrast to the N ×N full matrices encountered by Libre et al.
Even though the ANR scheme locally refines data sites around the rapid variations, we can
see in Figure 8 that the number of nonzero entries in the Stage II collocation matrices only
increases linearly with the number of data sites.
Figure 9 shows a numerical approximation and convergent profiles. Using (c, α) = (1.0, 0.0),

the rounded spike is very well approximated in Figure 9 (Left). Errors near the elongated spike
are slightly higher—mostly concentrated near the valley of the spike. Similar to the PEAKS
function, the test function here is completely flat near the boundary. We observe that the
maximum error occurs again near the boundary; more specifically, it is at (x, y) = (1, 1). The
oscillatory convergent pattern for (c, α) = (1.0, 0.0) in Figure 9 (Right) is quite obvious here,
but present in other tests too. For (c, α) = (0.1, 0.5), the convergent profile starts from larger
N indicating that the number of data sites is larger in this case. It is solely due to the way
ANR works: as briefly mentioned before, coarse cells in the flat region are refined only when
the principle tolerance τ gets smaller than the next power of 2. As τ decreases in between two
powers of 2, coarse cells stay while numbers of fine cells increases. Although the collocation-
weights are designed to minimize the effect, the accuracy of Stage I seems to be affected by the
unbalance of coarse/fine cells (or data sites) distributions. Hence, in the suggested parameters
set, we suggest taking τ = 2−k, k > 0.

4.4. Example: Boundary-Layers

To make further comparison to the variable shape parameters MQ approach, we consider
another example of theirs,

f(x, y) = exp
(
− 50(x+ 1)2

)
+ exp

(
− 50(y + 1)2

)
.

Convergent results can be found in Figure 10. For (c, α) = (1.0, 0.0), it takes N = 501 data
sites to obtain better a maximum error than that reported by [45] with N = 1201 yielding a
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14 L. LING

maximum error of 6.21E-2. In this setting, the hybrid algorithm results in accuracy a magnitude
smaller than those reported in [45]. When we apply the less efficient setting (c, α) = (0.1, 0.5),
another magnitude of improvement can be achieved.
There are many factors that cause the higher errors along the lines x = −1 and y = −1.

These lines, respectively, are the turning points of the exponential functions in f that are
locally flat. The employed ANR scheme, without the curvature term (i.e. α = 0), is unable
to detect the high curvatures at the turning points. The desire of refining these appealingly
flat regions is low. Looking closely at the ANR refinement process, one can see that data sites
are refined one-cell away from the boundary when α = 0. This is the limitation of the current
blackbox; enforcing too many data sites near boundary or re-activating the curvature in the
interior principle function just for this test (with α = 0.5) will reduce efficiency in other cases.
If, however, we know beforehand that we are dealing with a boundary layer problem, then
there are loads of tweaks one can apply to improve accuracy here.

4.5. Example: Shock-Formation

We consider the C0–function

f(x, y) = exp
(
1− 20max(0.04, x′ − y′ − 0.4)(x′ − y′ − 0.4)2 − 4(x′ + y′)2

)
,

where x′ =
√
2x and y′ =

√
2y. The shape of f can be commonly seen in articles solving

Burgers’ equations or other types of nonlinear transport. To avoid giving advantages to the
ANR scheme’s tensor product structure, rotation is applied so that the shock front does not
align with either the x– or y–axis. Numerical results are shown in Figure 11. Even though
f clearly lies outside the native spaces of the MQ and the CSRBF (despite the fact that we
use multi-supports), the convergence and accuracy here are better than the C∞ case in the
previous examples. Note also that the advantages of using (c, α) = (0.1, 0.5) are clearly shown
in Figure 11 (Right).

4.6. Example: Moving-Front

Our last example on function approximation, taken from the book by Fasshauer [14], mimics
the heavystep function or situations seen in moving front. Consider the function given as

f(x, y) =
tanh(9(y − x)) + 1

tanh(9) + 1
.

If we compare the results here with the those reported in [14] for the Hermite interpolation,
Lagrange interpolation and clustered Lagrange approaches, it is obvious that Hermite
interpolation is still the most accurate method for this example. But our results are comparable
with the other Lagrange-based methods.
If we turn our focus to the error distribution, the maximum errors of all tested methods in

[14] occur somewhere at the moving front. In Figure 12, however, we see that the maximum
error of the hybrid algorithm is at the flat region near the boundary. This further confirms
that our proposed method has slight bias towards the interior and regions of rapid variation.

4.7. Application to Burgers’ Equation

Up to this point, we observe the pros and cons for the suggested (c, α); that is, using (1.0, 0.0) is
highly efficient and yields good approximation for smooth functions, whereas using (0.1, 0.5)
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ADAPTIVE–HYBRID MESHFREE APPROXIMATION 15

gives better accuracy on nearly-singular functions. In this demonstration, we consider the
following Burgers’ equation:

∂u

∂t
+△

(
1

2
u2

)
= 0, t ∈ R

+, (x, y) ∈ [−1, 1]2; (14)

with x′ = x+ 0.4 and y′ = y + 0.4, the nonsmooth initial condition is given as

u(x, y, 0) =





exp

(x′)2 + (y′)2

(x′)2 + (y′)2 − 0.25
, (x′)2 + (y′)2 < 0.25,

0, Otherwise.

Our numerical treatment is as follows: the backward Euler method is applied to discretize
(14). Next, we linearize and obtain a nonlinear modified Helmholtz equation. To adaptive
place collocation points in each time update, the proposed node refinement scheme is applied
to the numerical solution un. This set of points will be used for solving un+1 that is done in
two-stage—similar to what we discuss in the previous chapter with minor modifications.
As the solution evolves in time, we see a shock formation whose profile is very similar to the

problem of approximation shown in Example 4.5. Although the setting (c, α) = (1.0, 0.0) yields
reasonable accuracy in a single-run for surface approximation, it turns out to be unstable as
we iterate over time. In Figure 13, numerical results obtained by parameters (c, α) = (0.1, 0.5)
and time step dt = 0.02 are shown at different time t = 0.12, 0.48, 0.84, 1.2. On the right, the
data sites are shown with contour lines of the numerical solutions. We can see that the number
sites remains relatively small over all the snapshots. The maximum norms of our numerical
solutions show nice agreement with that reported in [47]. Other meshless or localized-meshless
approaches for the problem are discussed in [48, 49, 50, 51, 52]; some of them require larger
sets of collocation points and relatively small time step (around dt = 0.005).

5. Conclusion

A hybrid algorithm for meshfree approximation, with mixed global and compactly supported
radial basis functions along with different available techniques, is proposed. An adaptive node
refinement scheme, which is both function– and domain–dependent, is proposed to generate
data sites for collocation. The primal/dual-residual adaptive greedy algorithm is employed for
trial subspace selection that circumvent the problem of ill-conditioning in the solution process
of global radial basis function. Constant shape parameter used in global radial basis functions
ensure efficiency when one is dealing with smooth functions, whereas variable support radius
are used in compactly supported radial basis functions to ensure that for the less-smooth. A
wide range of functions, including smooth exponential, PEAKS, near-singular, boundary-layer,
shock-formation, and moving-front functions are studied either on irregular or rectangular
domain. By a fixed set of suggested parameters’ values (c = 1, α = 0), a balance is made for
the hybrid algorithm to work on all these functions/domains of different types. The proposed
algorithm is also applied to solve shock-forming Burgers’ equations as a demonstration to its
application to PDEs.
From our numerical results, we believe there is still a lot of room for future work to improve

the strategy for picking the boundary principle parameter β. For example, with the extra
computational cost, we could re-run ANR on the residual functions or run ANR after running
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16 L. LING

Stage I on regular grids. Simpler and more cost-efficient options include: use P
(int)
α (C) +

P
(bdy)
β (C) (as boundary principle) or pick β(α) so that P

(int)
α (C) = ǫArea(C)(1+β), 0 < ǫ < 1

to refine along the whole boundary, or use max
(
P

(int)
α (C), P

(bdy)
β (C)

)
to ensure certain

boundary sites density. All of the above can artificially enforce finer boundary refinement
without a huge overhead to the computational cost. Moreover, we sometimes observe that the
refinements of coarse cells lack-behind those of the fine cells. When this happens, maximum
errors are usually in smooth region. The extra computation costs in handling more “fine-level”
data sites is therefore spent in vein. Instead of disabling the curvature terms in the principle
functions, we can impose an upper-bound to the node-levels. This will serve the same purpose
to prevent over-concentrated data sites. Using smaller collocation-weights in higher node-levels
could also be a solution. At the same time, function information can be better captured.
With more fine tuning of user-parameters for specific-types of functions, the proposed

method will always yield better results than what is shown in this paper. However, running
the hybrid algorithm with our suggested user-parameters as a blackbox algorithm is generous
and robust enough to handle a wide range of functions.
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Figure 1. (Left) Generic labeling for each individual cell; split cell if the principle P (C) > τ . (Right)
Schematic illustration of cells splitting in 2D and 3D views.
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Figure 2. Effects of α and β in the principle function Pα,β when applying ANR to f(x, y) =
(x+ y)/10 + exp(10(−(x+ 0.1)2 − y2)).
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Figure 3. Non-nested level structures on the ANR output refined nodes. Approximation s1 to
f = exp(x+ y)/5+exp(−1000((x− 3/4)2 + y2)) obtained by assigned nonzero weights to the first two

node-levels only.
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Figure 4. Example 4.1: RMS errors against different numbers of data cites and degrees of freedom
in the numerical approximations, respectively, given in lines and markers. (Left) various MQ shape

parameters c with fixed α = 0; (Right) various interior principle parameters α with fixed c = 1.
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Figure 5. Example 4.1: (Left) Numerical approximation to the smooth-octopus and (Right) associated
residual function.
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Figure 6. Example 4.2: (Left) a numerical approximation to the PEAKS function; (Right) relative
L2(Ω) errors E2 with different (c, α) against the number of data sites N .

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 0:1–25
Prepared using nmeauth.cls



22 L. LING

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ=1/62

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ=1/102

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ=1/142

Figure 7. Example 4.3: Hybrid approximations and the corresponding adaptive nodes distributions
(before greedy selections) for various principle tolerances τ .
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Figure 8. Example 4.3: (Left) Number of nonzero entries in State II against the numbers of data sites;
(Right) sparsity pattern of the collocation matrix in Stage II with τ = 1/142 .
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Figure 9. Example 4.3: (Left) a numerical approximation to the elongated near-singularities; (Right)
relative L2(Ω) errors E2 with different (c, α) against the number of data sites N
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Figure 10. Example 4.4: (Left) a numerical approximation to the boundary layers; (Right) relative
L2(Ω) errors E2 with different (c, α) against the number of data sites N .
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Figure 11. Example 4.5: (Left) a numerical approximation to the shock formation; (Right) relative
L2(Ω) errors E2 with different (c, α) against the number of data sites N .
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Figure 12. Example 4.6: (Left) a numerical approximation to moving front; (Right) relative L2(Ω)
errors E2 with different (c, α) against the number of data sites N .
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Figure 13. Example 4.7: (Left) Numerical solutions to the Burgers’ equation; (Right) Adaptively placed
data sites and solution contours for various time t.
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