
ON MESHFREE NUMERICAL DIFFERENTIATION
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Abstract. We combine techniques in meshfree methods and Gaussian process regressions to
construct kernel-based estimators for numerical derivatives from noisy data. Specially, we construct
meshfree estimators from normal random variables, which are defined by kernel-based probability
measures induced from symmetric positive definite kernels, to reconstruct the unknown partial deriva-
tives from scattered noisy data. Our developed theories give rise to Tikhonov regularization methods
with a priori parameter, but the shape parameters of the kernels remain tunable. For that, we pro-
pose an error measure that is computable without the exact values of the derivative. This allows
users to obtain a quasi-optimal kernel-based estimator by comparing the approximation quality of
kernel-based estimators. Numerical examples in two-dimensions and three-dimensions are included
to demonstrate the convergence behaviour and effectiveness of the proposed numerical differentiation
scheme.

1. Introduction. Numerical differentiation aims to reconstruct partial deriva-
tives of a function from its discrete values. Its applications can be found in many
branches of science and engineering. Image processing [15, 22], mechanical systems
[13], solving integral equations [4, 10] are a few examples besides of many other ap-
plications in scientific computing. Differentiation is a typical ill-posed process in the
sense that small errors in the data will be greatly amplified. However, the pres-
ence of noise in the data is unavoidable in many applications. Numerical methods
for stable numerical differentiation, which could be derived from the finite difference
method [14, 18, 23], wavelet regularization [1, 9] and etc., can be found in literature.

In this paper, we are interested in the meshfree kernel-based approach that allows
an easy treatment to scattered noisy data in higher dimensions. Existing algorithms
are mostly due to the work of Wei and collaborators that are based on cubic spline [24],
radial spline [27], thin plate spline [26], and a class of radial basis functions [25]
including the Gaussian, multiquadrics, radial splines, thin-plate splines, and Matérn
functions. In the following, we adopt a new approach based on the close connections
between meshfree methods and Gaussian process regressions, that is recently reported
in [20] and [29–31]. Materials discussed here are different from the classical meshfree
techniques (i.e., the ones used by Wei et al.). By beginning with a simple example in
Section 2, we help readers understand the fundamental ideas which are needed for this
work: meshfree interpolation and Gaussian process regression are identical. That is
the construction of kernel-based estimators and the related error analysis can be done
in the context of normal random variables and probability measures. In Section 3,
we generalize this equivalence via some kernel-based probability measures PK induced
from any sufficiently smooth symmetric positive definite (SPD) kernelsK : Ω×Ω → R

to deal with the scientific computing of numerical differentiation:
Let Ω ⊂ R

d be some bounded and regular domain and X ⊂ Ω be a

discrete set of data centers. For any smooth function f ∈ Cm(Ω),
we compute the α partial derivative of f from noisy data

(

X, fδ
)

→
Dαf(x), for any x ∈ Ω, with α ∈ N

d
0, |α| ≤ m, f := f(X), and

‖fδ − f‖∞ ≤ δ.
By making a detour to stochastic theories, we derive the Tikhonov-regularized

linear systems for identifying estimators for noisy data in Section 3. A priori regu-
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larization parameter within can be determined by the noise level of the data and the
degree of regularization can still be adjusted by the shape parameter of the employed
kernel. In other words, there is only one (shape) parameter to tune in the proposed
method, instead of two (shape and regularization) that is typically seen in regular-
ized meshfree approaches for inverse problems. In addition, the variance provide us
to obtain (function independent and pointwise) error estimates, which mimics the
power function in meshfree theories. In Section 4, we propose an error measure that
analogizes the pointwise error estimates in meshfree interpolation. Numerical exam-
ples are included to demonstrate the effectiveness of the proposed strategy for finding
quasi-optimal kernels.

2. Deterministic and Stochastic Interpolation. The theoretical connec-
tions between meshfree methods and Gaussian process regressions for the classical
interpolations were recently recognized [7, 20] and explored [29–31]. By seeing from
two different viewpoints, kernel-based approximation methods can be analyzed by
theories in approximation theories or probability theories. Here, we use such uni-
fied theoretical structure to study both the local geometric features of kernel-based
estimators and derive simple formulation for numerical differentiation in the latter
sections. We begin with a simple example to help readers get deeper insights into the
topics.

Consider the standard interpolation problem. Suppose that we have an ordered
set of observed data values f1, . . . , fn ∈ R given at an order set of distinct data
points x1, . . . ,xn ∈ Ω ⊆ R

d. Let f := (f1, · · · , fn)
T and X := {x1, . . . ,xn}. We

aim to estimate the “unknown value” at some other locations x ∈ Ω\X based on the
observed data at X ; see Figure 2.1 (a)for a schematic demonstration in Ω = [0, 1]
with n = 7 data.

From the deterministic point of view, the observed data is viewed as the evaluation
of an unknown function f : Ω → R, which generates the observed data by

f(x1) = f1, . . . , f(xn) = fn or f(X) = f ,

if we use a more compact vector notation. To obtain a meshfree interpolant smf to the
data (X, f), we can employ a symmetric positive definite (SPD) kernelK : Ω×Ω → R.
Then, the meshfree interpolant smf is given as a linear combination of the basis
functions K(·,x1), . . . ,K(·,xn) in the form of

smf (x) := c1K(x,x1) + · · ·+ cnK(x,xn), (2.1)

with the coefficients c := (c1, · · · , cn)
T
uniquely determined by the linear system







K(x1,x1) · · · K(x1,xn)
. . .

K(xn,x1) · · · K(xn,xn)













c1
...
cn






=







f1
...
fn






or K(X,X) c = f .

See [2,6,28] for more detailed discussions. Since the interpolation matrix K(X,X) is
SPD, the interpolant smf satisfies all interpolation conditions smf (x1) = f1, . . . , smf(xn) =
fn. In approximation theory, we use smf(x) to approximate the unknown value
f(x) for some x ∈ Ω\X and study its convergence behaviour. As a demonstra-
tion, Figure 2.1 (b) shows a meshfree interpolant smf using the Gaussian kernel
Kθ(x,y) := exp(−θ2‖x− y‖22).
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In the context of Gaussian process regression, we compute the estimator skg(x)
of the realization of the normal random variable Sx conditioned on the observations

Sx1
= f1, . . . , Sxn = fn or SX = f .

We aim to identify the unknown value of the realization of S at some other location
x ∈ Ω\X . In the Gaussian process regression [21], a.k.a the simple kriging method,
S is a Gaussian process with a mean 0 and covariance kernel K. We usually assume
that such covariance kernel K is SPD. The simple kriging method provides the best
linear unbiased estimator Ŝx of Sx in the form of

Ŝx := w1(x)Sx1
+ · · ·+ wn(x)Sxn ,

where the weightingw(x) := (w1(x), . . . , wn(x))
T
is uniquely determined by the linear

system







K(x1,x1) · · · K(x1,xn)
. . .

K(xn,x1) · · · K(xn,xn)













w1(x)
...

wn(x)






=







K(x,x1)
...

K(x,xn)






,

or in matrix form K(X,X) w(x) = K(x, X)T . Thus, the estimator skg(x) can be
written as

skg(x) := w1(x)f1 + · · ·+ wn(x)fn. (2.2)

Obviously, we also have all interpolation conditions skg(x1) = f1, . . . , skg(xn) = fn.
The unknown value is then approximated by skg(x). Figure 2.1 (c) shows the unbiased
prediction skg(x) and the associated 99% confident intervals obtained by the Gaussian
process S with the covariance kernel Kθ same as in Figure 2.1 (b).

If the meshfree kernel and the covariance kernel coincide, then (2.1) and (2.2)
suggest that

smf (x) = K(x, X)TK(X,X)−1f = (K(X,X)−1K(x, X))T f = skg(x).

It means that the meshfree estimator and the unbiased estimator shown respectively
in Figure 2.1 (b) and (c) are indeed identical. This equivalence was first observed
in [20]. So, we can recall smf and skg as sX . Moreover, by [28, Theorem 13.2], the
meshfree interpolant smf is the unique minimizer in the reproducing kernel Hilbert
space HK(Ω) of K, a.k.a. the native space of K, with respect to the associated native
space norm so that

smf = argmin

f∈HK(Ω)
‖f‖HK(Ω) subject to f(X) = f .

By the method of Bayesian estimation, we have that

Ŝx = argmin

U∈span{SX}
E |Sx − U |2 , (2.3)

and the minimization of mean squared errors can be written as

σX(x)2 := E|Sx − Ŝx|
2 = K(x,x)−K(x, X)TK(X,X)−1K(x, X). (2.4)

Here, the linear span span {SX} := span {Sx1
, . . . , Sxn}.
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In [29–31], we continue to explore the connections between meshfree methods
and Gaussian process regressions. Suppose that Ω is a regular compact domain and
K is any 2m continuously differentiable SPD kernel. By [29, Theorem 6.1] and [30,
Theorem 1], there exists a kernel-based probability measure PK defined on the Sobolev
space Hm(Ω) of the order m > d/2 such that a Gaussian process S with the mean 0
and the covariance kernel K is constructed by

Sx(ω) = ω(x) for all ω ∈ Hm(Ω), (2.5)

see [31, Definition 2.2] and [30, Definition 2] there for details. In other words, for
any sufficiently smooth kernel K, we have a probability space consisting the Sobolev
space Hm(Ω), its Borel σ-algebra as its sample space and set of events. The likelihood
of happening is given by the kernel-based probability measure PK as in probability
theories. Based on (2.5), any function ω ∈ Hm(Ω) can be seen as a sample path,
a.k.a. a trajectory, of the Gaussian process S. This shows that f(x) can be viewed
as the realization of Sx conditioned on SX = f . Since S is Gaussian, we also have
that E(Sx|SX = f) = E(Ŝx|SX = f). This means that skg(x) is the PK–average of Sx

given SX = f and skg can be viewed as the “center” with respect to the kernel-based
probability measure PK of the collection of all sample paths in Hm(Ω) satisfying the
interpolation conditions.

At this point, we have a compatible connection between the interpolation condi-
tions and the realizations of the Gaussian process. Let the map ΓK(V ) :=

∫

B ωV (ω)PK(ω)
for V ∈ HS , where HS is the completion of the linear span of the Gaussian process S
by the finite second moments (see [31, Section 3.3]). This shows that ΓK is a map from
HS into Hm(Ω). By [31, Theorem 3.15], the error of |f(x)− skg(x)| can be bounded
by σX(x) if f ∈ range(ΓK). Here is another connection, such as σX(x) is known as
the power function in meshfree method [28, Section 11.1], which gives an upper bound
for the error |f(x)−smf (x)| when f ∈ HK(Ω) and f(X) = f . Moreover, [31, Theorem
3.10] assures that skg(x) is also convergent to f(x) even if f ∈ Hm(Ω)\range(ΓK). In
general, the unknown function f ∈ Hm(Ω) does not guarantee f ∈ HK(Ω) unless K
reproduces some Sobolev spaces. In such cases, convergence analysis can be carried
out by the structure of scattered zeros [17].

3. Numerical Differentiation by Kernel-based Approximation Meth-

ods. We generalize the ideas in the previous section to the numerical differentiation
for exact data in Section 3.1 and extend the theories to noisy data in Section 3.2.
To begin, let us overview the notations used and assumptions needed for the ease of
reading. We suppose that Ω ⊂ R

d is regular and compact, such as a Lipschitz domain
and K ∈ C2m,1(Ω×Ω) with m > d/2 is a SPD kernel. We denote the exact and noisy
observed data at X := {x1, . . . ,xn} ⊂ Ω respectively by

f := (f1, · · · , fn)
T ∈ R

n or fδ :=
(

f δ
1 , . . . , f

δ
n

)T
∈ R

n.

The exact data (X, f) consists evaluations of some unknown function f ∈ Hm(Ω) at
X , i.e., f = f(X). We reserve the subscript n to denote the number of observed data
throughout the paper and omit it for simplicity unless confusion may arise. For any
noise level δ > 0, we assume that the noise is additive and

‖f − fδ‖∞ = max
k=1,...,n

|fk − f δ
k | ≤ δ. (3.1)

It is straightforward to modify the theorems to come to work on multiplicative noise
by replacing δ by δ‖f‖∞ provided ‖f‖∞ is bounded away from zero.
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(a)
x

(b)

smf,X
≈ f(x)

(c)

skg,X
≈ f(x)

Fig. 2.1. Example 1: Schematic demonstration for deterministic interpolation and Gaussian
process regression. (a) Observed data values f (red) at the given data points X (blue). (b) Meshfree
interpolant, (c) Gaussian process regression and the normally distributed 99% confidence intervals
obtained by the Gaussian kernel Kθ with the shape parameter θ = 6.

Denote Hm(Ω) to be the standard L2–based Sobolev space of the order m. For
any multi-index α = (α1, · · · , αd) ∈ N

d
0 of nonnegative integers with |α| < m − d/2,

we denote the partial differentiate operator of the order α by

Dα :=
∂|α|

∂α1 · · · ∂αd
.

We use the notations Dα
1 and Dα

2 to indicate that Dα acts on the first argument x

and second argument y of a kernel K(x,y), respectively.
By the Sobolev imbedding theorem, the linear functional δx ◦ Dα is continuous

on Hm(Ω) whenever |α| < m− d/2. Using the construction technique in [29–31], we
can obtain the kernel-based probability measure PK on the Sobolev space Hm(Ω) and
get a framework similar to the one shown in Section 2. To be precise, there exists a
kernel-based probability measure PK defined on the Sobolev space Hm(Ω) such that
the Gaussian process Sα equipped with the mean 0 and the covariance kernelDα

1D
α
2K

has the representation

Sα
x
(ω) := Dαω(x), for ω ∈ Hm(Ω). (3.2)

More details of the proofs of the above constrictions can be found in [29, Theorem
6.1] and [30, Theorem 1].

We denote a multiple normal random vector composed of Sx1
, . . . , Sxn as

SX := (Sx1
, · · · , Sxn)

T .

Clearly S0 = S and equation (3.2) is a generalization of (2.5). For the ease of
computing the means, we want to have a matrix formula similar to the one in (2.4)
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and need a well-defined vector function

kα
X(x) := DαK(x, X)T = (Dα

1K(x,x1), · · · , D
α
1K(x,xn))

T ∈ R
n, (3.3)

and the covariance matrix of the normal random variables (Sα
x
,SX) given as

A
α
X(x) :=











Dα
1D

α
2K(x,x) Dα

2K(x1,x) · · · Dα
2K(xn,x)

Dα
1K(x,x1) K(x1,x1) · · · K(x1,xn)

...
. . .

Dα
1K(x,xn) K(xn,x1) · · · K(xn,xn)











∈ R
(n+1)×(n+1).

(3.4)
For convenience, we extend definitions (3.3) and (3.4) to α = 0 by kX(x) := K(x, X)T

and AX := K(X,X) ∈ R
n×n is the covariance matrix of SX . Clearly E(Sα

xSX) =
kα
X(x) = DαkX(x) and

A
α
X(x) =

(

Dα
1D

α
2K(x,x) kα

X(x)T

kα
X(x) AX

)

for all 0 < |α| ≤ m−
d

2
.

3.1. Numerical Derivatives of Exact Data. We now extend the technique of
the kernel-based probability measure in Section 2 to estimate the partial derivatives
of f from exact data (X, f). The noise-free results in the section serve as points of
reference to ensure that our proposed method for noisy data has the proper asymptotic
behaviour as the noise level δ goes to zero.

Using the arguments in Section 2, we can relate the value of its partial derivative
Dαf(x) at some x ∈ Ω to the realization of a random variable Sα

x
conditioned on

SX = f . Since the meshfree and simple kriging estimators are identical, we can safely
omit the subscripts mf and kg to simplify the notation from here onwards. Same as
(2.3), we obtain the estimator Ŝα

x
of Sα

x
by the mean squared errors so that

Ŝα
x
= argmin

U∈span{SX}
E |Sα

x
− U |2 . (3.5)

Thus, the estimator sαX(x) is constructed by the realization of Ŝα
x conditioned on

SX = f . It is expected that sαX(x) is related to some kernel-based functions; the
following theorem asserts that this condition mean is simply the α derivative of the
interpolant sX in Section 2.

Theorem 3.1. The estimator sαX(x) is the Dα partial derivative of the kernel-

based interpolant sX(x) = kX(x)T c, in which the coefficients c ∈ R
n is uniquely

determined by the linear system AXc = f .

Proof. We know that the normal random variables (Sα
x
,SX) have the mean 0 and

the covariance matrix A
α
X(x).

For any U ∈ span {Sxk
}nk=1, there exists a c ∈ R

n such that U = cTSX . Since
E (Sα

x
Sα
x
) = Dα

1D
α
2K(x,x), E (Sα

x
SX) = kα

X(x), and E
(

SXST
X

)

= AX , we have that

E |Sα
x − U |2 = Dα

1D
α
2K(x,x) − 2cTkα

X(x) + cTAXc. By using Lagrange multipliers

and seeking the extremum of the Lagrangian, the minimizer Ŝα
x can be written as

Ŝα
x = wα

X(x)TSX ,

where

wα
X(x) = A

−1
X kα

X(x).
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Therefore, we have that

sαX(x) = wα
X(x)T f = Dα

(

kX(x)TA−1
X f
)

= DαsX(x).

The proof is completed.
Within native spaces, approximation theory guarantees that sαX(x) → Dαf(x) as

the fill distance of X shrinks. The following theorem ensures the convergence of the
kernel-based estimators to the function f ∈ Hm(Ω).

Theorem 3.2. Suppose that the sequence of data points X1 ⊆ · · · ⊆ Xn ⊆ · · · is

getting dense in Ω in the sense that their fill distance1 hn → 0 as n → ∞. Suppose

further that the observed data values fn := f(Xn) are evaluated by some function

f ∈ Hm(Ω) at Xn for all n ∈ N, then the estimator sαXn
(x) converges pointwise to

Dαf(x) as n → ∞.

Proof. The Sobolev spaceHm(Ω) can be imbedded into C(Ω). Since the separable
points X∞ :=

⋃∞
n=1 Xn are dense in Ω, the compactness of Ω guarantees that for

any ω ∈ C(Ω), we have that ω (X∞) = f∞ if and only if ω = f . Let AX(f) :=
{ω ∈ Hm(Ω) : ω(X) = f}. Then the sequence of collections satisfies

AX1
(f1) ⊇ · · · ⊇ AXn (fn) ⊇ · · · ⊇

∞
∩

n=1
AXn (fn) = AX∞

(f∞) =
{

f
}

.

Therefore, [31, Theorem 3.10] assures that the sequence of sαXn
(x), that can be seen

as a sequence with respect to data (Xn, fn), satisfies that

lim
n→∞

sαXn
(x) = lim

n→∞
E
(

Sα
x

∣

∣ SXn = fn
)

= Dαf(x).

If f ∈ range(ΓK), then [31, Corollary 3.15] shows that we can analyze the square

error |Dαf(x)− sαX(x)|2 by using the averages of |Sα
x − sαX(x)|2 conditioned on SX =

f computed by the kernel-based probability measured PK , such as the variance

σα
X(x)2 := E

(

|Sα
x
− sαX(x)|2

∣

∣

∣ SX = f
)

.

Theorem 3.3. The variance σα
X(x)2 has the form

σα
X(x)2 = Dα

1D
α
2K(x,x)− kα

X(x)TA−1
X kα

X(x). (3.6)

Proof. Since Sα
x
and SX have the multivariate normal distributions, we have that

E
(

|Sα
x
− sαX(x)|2

∣

∣

∣ SX = f
)

= E

(

∣

∣

∣Sα
x
− Ŝα

x

∣

∣

∣

2 ∣
∣

∣ SX = f

)

= E
∣

∣

∣Sα
x
− Ŝα

x

∣

∣

∣

2

.

Moreover, the constructions of Sα
x and Ŝα

x show that

E
∣

∣

∣Sα
x
− Ŝα

x

∣

∣

∣

2

= Dα
1D

α
2K(x,x)− kα

X(x)TA−1
X kα

X(x).

1Denote that h is the fill distance of the data points X for the domain Ω, i.e., h :=
sup

x∈Ω mink=1,...,n ‖x− xk‖2 (see [28, Definition 1.4]). In another word, the fill distance h is the
radius of the largest ball which is completely contained in Ω and which does not contain a data site.
Obviously the data points X become a collection of densely separable points of the domain Ω when
h → 0.
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Therefore, we complete the proofs.
Clearly, the variance is consistent with the power function given in [28, Defi-

nition 11.2]. Interested readers can find the native space analogy of Theorem 3.3
in [28, Chapter 11]. Moreover, the recent papers [3,16] generalized the universal krig-
ing for uncertainty propagation by the gradient of the Gaussian process, which can
be viewed as a special case of Theorem 3.1. The difference of meshfree method and
Gaussian process regression is the analysis of continuous and discrete features, re-
spectively. The meshfree method is to solve the optimal function by the global norm,
such as the minimization of the native norm. The Gaussian process regression is to
estimate the local unknown value by the observation of the random variable, such as
the minimization of the conditional variance. By the concept of kernel-based prob-
ability introduced here, we show that the classical results of meshfree methods for
differentiation and the generalized algorithms of Gaussian process regression for gra-
dients are strongly connected in a natural form of approximation theory. By the same
idea, we can investigate the open problem of meshfree method using the technique of
statistics. For examples, we can measure the quality of the meshfree estimator by the
kernel-based probability measure.

3.2. Numerical Derivatives of Noisy Data. By equation (3.1), we know that
fδ = f + ξδ where ‖ξδ‖∞ ≤ δ. Since the noise ξδ is usually unknown, we naturally

suppose that ξδ has the uniform distribution, such as ξδ := (ξ1, . . . , ξn)
T composed

of the independent and uniform random variables ξ1, . . . , ξn ∼ i.i.d.Unif [−δ, δ]. Here,
we mainly look at the uniform noises. Actually, many general noises can be handled
by the same method of this section. Let Vδ

X := SX + ξδ. By the construction of SX ,
the noisy data fδ can be viewed as the observation of Vδ

X . Same as (3.5), we compute
the estimator Sδ,α

x of Sα
x to minimize the mean squared errors based on Vδ

X , such as

Ŝδ,α
x

= argmin

U∈span{Vδ
X}

E |Sα
x
− U |2 . (3.7)

The realization of Ŝδ,α
x conditioned on Vδ

X = fδ will give rise to the estimator sδ,αX (x)

for the noisy data fδ and we will show that sδ,αX (x) approximates Dαf(x). First,

we provide a formulation to compute sδ,αX (x) by the Dα partial derivative of the
approximate function sδX(x).

Theorem 3.4. The estimator sδ,αX (x) is the Dα partial derivative of the kernel-

based approximate function sδX(x) = kX(x)T cδ, in which the coefficients cδ is uniquely

determined by the linear system
(

AX +
δ2

3
In

)

cδ = fδ,

where In is the identity matrix.

Proof. Since we have a normal distribution (Sα
x ,SX) ∼ N (0,Aα

X(x)) and a uni-
form distribution ξδ ∼ Unif [−δ, δ]n, the random variables Sα

x
and Vδ

X have the mean
0 and the covariance matrix

A
δ,α
X (x) :=

(

Dα
1D

α
2K(x,x) kα

X(x)T

kα
X(x) AX + δ2

3 In

)

.

This assures that the minimum-mean-square-error estimation of Sα
x

on the space
spanned by

{

V δ
xk

}

has the form

Ŝδ,α
x

= w
δ,α
X (x)TVδ

X ,
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where

w
δ,α
X (x) =

(

AX +
δ2

3
In

)−1

kα
X(x).

Therefore, we have that

sδ,αX (x) = w
δ,α
X (x)T fδ.

Moreover, since

DαsδX(x) = DαkX(x)

(

AX +
δ2

3
In

)−1

fδ,

we conclude that

sδ,αX (x) = DαsδX(x).

Now, we show that the proposed estimator for noisy data is δ–stable in the sense
that the noise-free estimator is the limit when the noise vanishes.

Theorem 3.5. For any data site X ⊂ Ω, the kernel-based estimator sδ,αX (x)
converges pointwise to the estimator sαX(x) as δ → 0.

Proof. Using the formulas of c and cδ given in Theorems 3.1 and 3.4, we know
that

(

AX +
δ2

3
In

)

(

c− cδ
)

= f − fδ +
δ2

3
c.

Thus, based on our assumption of the noisy data in (3.1), we have that

∥

∥c− cδ
∥

∥

∞
≤

∥

∥

∥

∥

∥

(

AX +
δ2

3
In

)−1
∥

∥

∥

∥

∥

∞

(

∥

∥f − fδ
∥

∥

∞
+

δ2

3
‖c‖∞

)

≤
3δ + δ2 ‖c‖∞

3λmin (AX) + δ2
,

where λmin (AX) denotes the minimum eigenvalue of the SPD matrix AX .

Theorems 3.1 and 3.4 provide that the both estimators sαX(x) and sδ,αX (x) are the
linear combinations of functions in kα

X(x) but with coefficients c and cδ respectively.
Thus, the desired pointwise convergence is proven.

Theorem 3.6. Suppose all the assumptions in Theorem 3.2 hold. Further suppose

that the sequence of noise levels δm := ‖fδmn − fn‖∞ decreases monotonically to 0 as

m → ∞ for all n. Then, the estimator sδm,α
Xn

(x) converges pointwise to Dαf(x) as

m,n → ∞.

Proof. Combining Theorems 3.2 and 3.5, we immediately complete the proofs.
We now extend the results for noise-free data in Theorem 3.3 to sδ,αX (x). This

allows us to evaluate the “approximate quality” a posteriori error without the knowl-
edge of the unknown function f ∈ range(ΓK).

Theorem 3.7. If f ∈ range(ΓK), then the estimator sδ,αX (x) has the error bound

∣

∣

∣Dαf(x)− sδ,αX (x)
∣

∣

∣

2

≤ Cσδ,α
X (x)2,

where C is the positive constant independent of X, δ, α and the noisy power function

σδ,α
X (x)2 := Dα

1D
α
2K(x,x) − kα

X(x)T
(

AX +
δ2

3
In

)−1

kα
X(x). (3.8)

9



Proof. Since f ∈ range(ΓK), there exists U ∈ HS such that f = ΓK(U). By
the structure theorem of Gaussian measures, we have that Dαf(x) = E(Sα

x
U) and

f = f(X) = E(SXU). Since the noise ξδ is independent of U and S, there exists
a random variable Λ independent of U and S such that E(Λ2) < ∞ and fδ − f =
E(ξδΛ). Therefore, we have that Dαf(x) = E(Sα

x
U) + E(Sα

x
Λ) = E(Sα

x
(U + Λ)) and

fδ = E(SXU) + E(ξδΛ) = E((SX + ξδ)(U + Λ)) = E(Vδ
X(U + Λ)). This shows that

∣

∣

∣Dαf(x)− sδ,αX (x)
∣

∣

∣

2

=
∣

∣

∣Dαf(x)−w
δ,α
X (x)T fδ

∣

∣

∣

2

=
∣

∣

∣E(Sα
x
(U + Λ))−w

δ,α
X (x)TE(Vδ

X(U + Λ))
∣

∣

∣

2

≤
∣

∣

∣E
(

Sα
x (U + Λ)−w

δ,α
X (x)TVδ

X(U + Λ)
)∣

∣

∣

2

≤
(

E|U + Λ|2
)

(

E
∣

∣

∣Sα
x
−w

δ,α
X (x)TVδ

X

∣

∣

∣

2
)

.

Moreover, we denote the positive constant C := E|U + Λ|2. Thus, C is independent

of X, δ, α. Finally, we compute the noisy power function σδ,α
X (x)2, such as

E
∣

∣

∣Sα
x −w

δ,α
X (x)TVδ

X

∣

∣

∣

2

= E(Sα
x
Sα
x
)− 2wδ,α

X (x)TE(Sα
x
Vδ

X) +w
δ,α
X (x)TE(Vδ

XVδT
X )wδ,α

X (x)

= Dα
1D

α
2K(x,x)− 2wδ,α

X (x)Tkα
X(x) +w

δ,α
X (x)T

(

AX +
δ2

3
In

)

w
δ,α
X (x)

= Dα
1D

α
2K(x,x)− kα

X(x)T
(

AX +
δ2

3
In

)−1

kα
X(x) = σδ,α

X (x)2.

The proof is completed.
Corollary 3.8. The noisy power function σδ,α

X (x)2 is the sum of the noise-free

power function σα
X(x)2 and some noise-induced residual term as

σδ,α
X (x)2 = σα

X(x)2 + ̺δ,αX (x)2, (3.9)

where

̺δ,αX (x)2 := δ2kα
X(x)T

(

3A2
X + δ2AX

)−1
kα
X(x) ≤

δ2Dα
1D

α
2K(x,x)

3λmin (AX) + δ2
, (3.10)

and λmin (AX) denotes the minimum eigenvalue of the SPD matrix AX . Thus, the

noisy variance vanishes as O(δ2).
Proof. Note that the power functions (3.6) and (3.8) share an identical first term.

It is straightforward to verify (3.9). By the eigen-decomposition of the SPD matrix
AX , we can rewrite and bound the exact residual term in (3.10) as

kα
X(x)TA−1

X kα
X(x)− kα

X(x)T
(

AX +
δ2

3
In

)−1

kα
X(x)

= δ2kα
X(x)T

(

3A2
X + δ2AX

)−1
kα
X(x) = ̺δ,αX (x)2.

This indicates another upper bound of the residual terms

̺δ,αX (x)2 ≤

(

δ2

3λmin (AX) + δ2

)

kα
X(x)TA−1

X kα
X(x) ≤

δ2Dα
1D

α
2K(x,x)

3λmin (AX) + δ2
. (3.11)

10



It is now obvious that ̺δ,αX (x)2 → 0 as δ → 0.

The noisy power function σδ,α
X (x)2 can be controlled by making σα

X(x)2+̺δ,αX (x)2

small. An appropriate kernel selection strategy (i.e., our regularization strategy)
should have λmin(AX) bounded away from zero in order to avoid the residual term

̺δ,αX (x) from blowing up. This idea will be further elaborated in the coming section
By the classical meshfree method, the kernel-based approximate function sδX is

the optimizer of the regularization problem defined in the reproducing kernel Hilbert
space HK(Ω), i.e.,

sδX := argmin

f∈HK(Ω)
‖f(X)− fδ‖22 +

δ2

3
‖f‖2HK(Ω).

If there exists a function f δ ∈ HK(Ω) such that f δ(X) = fδ, then, by the reproducing
property, we have that

|Dαf(x)− sδ,αX (x)| ≤ |Dαf(x)− sαX(x)| + |sαX(x)− sδ,αX (x)|

≤ σα
X(x)‖f‖HK(Ω) + ̺δ,αX (x)ℓX(f) +Dα

1D
α
2K(x,x)

1

2 ℓX(f − f δ),

where ℓX(g) :=
(

gT
A
−1
X g

)1/2
for g := g(X) can be viewed as the approximate norm

of the native norm ‖g‖HK(Ω) for g ∈ HK(Ω); more discussions can be found in the
coming section. According to Corollary 3.8, the noisy power function can be seen as
the extended error bound of the classical error bound of the meshfree estimator. This
shows that the stochastic approach can supplement the knowledge of the unknown
area of meshfree method.

4. Identifying quasi-optimal kernels. In practice, we need to fix a kernel
before constructing any kernel-based estimator. The aim of the section is to “identify”
a quasi-optimal kernel from a family of some continuously differentiable SPD kernels

Ξ :=
{

Kθ(x,y) : θ > 0
}

, (4.1)

based on the noisy data (X, fδ). To do so, a computable strategy is needed. The
noise-free and noisy power functions in the previous section could be such a tool.
However, as discussed in Section 2, the power function is only dependent on the data
points X but independent of the observations fδ. For a reliable strategy, we proposed
a data dependency quasi-optimization strategy.

In classical meshfree method, the pointwise error [28, Theorem 11.4] of the kernel-
based estimator is bounded by

|Dαf(x)− sαX(x)|2 ≤ σα
X(x)2 ‖f‖2HK(Ω) for all f ∈ HK(Ω).

This motivates us to include the native norm of f from the observed data. Then, we
use some objective functions like σδ,α

X (x)2 ‖f‖2HK(Ω) or in some other equivalent forms

(denoted by ∼) to search for a quasi-optimal kernel Kθ∗ ∈ Ξ. Since the exact value
f(X) is unavailable, we must use a statistical analogy to approximate ‖f‖HK(Ω).

By the optimal recovery property of the meshfree interpolant of f ∈ HK(Ω),
we have ‖sX‖HK(Ω) ≤ ‖f‖HK(Ω) for all f ∈ HK(Ω). Instead of ‖f‖2HK(Ω), the first

approximation we make is to minimize ‖sX‖HK(Ω), which makes sense for all f ∈
Hm(Ω). Based on the probability density function pX of SX , i.e.,

pX(z) =
1

√

det (2πAX)
exp

(

−
1

2
zTA−1

X z

)

, for z ∈ R
n,

11



we can rewrite

‖sX‖2HK(Ω) = fTA−1
X f = − log det(2πAX)− 2 log pX(f).

Note that the magnitude of log det(2πAX) depends heavily on λmin(AX) that is al-

ready controlled by ̺δ,αX (x)2 in (3.11). For the exact data, f(X) = f and PK(SX =
f) ∼ pX(f). For the noisy data, f(X) ∈ fδ + [−δ, δ]n. To obtain a computational
formula, we integrate the probability density function over the set fδ + [−δ, δ]n, i.e.,

PK

(

SX ∈ fδ + [−δ, δ]n
)

=

∫

fδ+[−δ,δ]n
pX(z)dz,

which allows us to work with the kernel-based probability measure. Then, we approx-
imate the probability by the Taylor expansion as in

∫

fδ+[−δ,δ]n
pX(z)dz =

∫

A
−1/2
X (fδ+[−δ,δ]n)

1

(2π)n/2
exp

(

−
1

2
zT z

)

dz

=
2nδn

(2π)n/2
exp

(

−
1

2
fδTA−1

X fδ
)

+O
(

δn+2
)

,

where the covariance matrix AX = K(X,X) is related to the kernel K ∈ Ξ of choice.
Altogether, this yields the sequence of approximations

σα
X(x)2 ‖f‖2HK(Ω) ∼ σδ,α

X (x)2 (− log pX(f)) ∼ σδ,α
X (x)2fδTA−1

X fδ,

and we define the following minimization problem for finding a pointwise quasi-optimal
kernel for any x ∈ Ω, such as

K∗
x
:=argmin

K∈Ξ

(

Dα
1D

α
2K(x,x) − kα

X(x)T
(

AX +
δ2

3
In

)−1

kα
X(x)

)

fδTA−1
X fδ. (4.2)

Here, the native norm of f is approximated by the observed data, i.e., ‖f‖2HK(Ω) ≈

fδTA−1
X fδ. Since σδ,α

X (x)2 → σα
X(x)2 and fδTA−1

X fδ → fTA−1
X f when δ → 0, the

minimization problem (4.2) is consistent with the minimization of the classical upper
bound of meshfree method.

To identify a quasi-optimal kernel for Ω, the corresponding minimization problem
can be defined by integrating (4.2) over Ω, such as

K∗
Ω :=argmin

K∈Ξ

∫

Ω

(

Dα
1D

α
2K − k

α,T
X

(

AX +
δ2

3
In

)−1

kα
X

)

fδTA−1
X fδdx, (4.3)

or by minimization in the L∞–sense, such as

K∗
Ω :=argmin

K∈Ξ
sup
x∈Ω

(

Dα
1D

α
2K − k

α,T
X

(

AX +
δ2

3
In

)−1

kα
X

)

fδTA−1
X fδ, (4.4)

Both (4.3) and (4.4) can be computed without any knowledge of the exact f .
In the area of machine learning, one can find many algorithms to learn the optimal

parameters dependent of stochastic variables. In this section, we mainly use the
combination of minimum variance estimation and maximum likelihood estimation to
solve the quasi-optimal kernel.
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Fig. 4.1. Example 1: Unknown function f : [−2, 2]2 → R and its gradient field in [−0.5, 0.5]×
[−0.5, 0.5].
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Fig. 4.2. Example 1: Three sets of scattered data point X used for testings.

4.1. Numerical examples. Now we investigate the numerical performance and
the accuracy of the proposed quasi-optimal estimator. We focus on the family of
Gaussian kernels

Ξ =
{

Kθ(x,y) : θ > 0
}

with Kθ(x,y) = exp(−θ2 ‖x− y‖22),

with different shape parameter θ. The n exact data in f are evaluated by test functions
(used in [24, 25] for 1- and 2-D, see Figure 4.1) in the form of

f(x) = e−‖x‖2

2

d
∏

j=1

sin(πxj) for x = (x1, . . . , xd) ∈ Ω = [−2, 2]d,

at some sets of scattered data points X generated by Halton sequences; see Figure 4.2
for examples.

The L∞(Ω) norms of f are 0.66 and 0.54 for d = 2 and d = 3 respectively.
The n noisy data in fδ are generated (for each tested n) by the uniform random
noise ξδ composed of uniform random variables ξ1, . . . , ξn ∼ i.i.d.Unif [−δ, δ], that is,
fδ := f + ξδ. Reported L∞(Ω) errors are approximated using a set of (denser than
all tested X) regularly distributed evaluation points. To identify the optimal kernel,
we search the set Ξ for θ from 0.5 by 0.05 to 8.0. The true “optimal” (for each tested
case) is the one that yields the smallest L∞(Ω) error. Numerical experiments show
that the numerical performance of quasi-optimal kernels selected by (4.3) and (4.4)
are similar. In this section, all quasi-optimal kernels are selected based on the L∞–
minimization given in (4.4) whose functional is evaluated at the set of points used for
error evaluation.
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Fig. 4.3. Example 1: The absolute L∞ error profiles of various kernels verse different noise
levels δ.

Example 1: Two dimensional gradient. We compare our proposed method
and the numerical methods proposed in [24,25] by solving the same test problem, that
is, to find ∇f from noisy data. Figure 4.3 show the δ–convergence of five different
kernel-based estimators based on the three sets of scattered data Xn in Figure 4.2.
The Real-Opt is the true optimal in Ξ, which is available only if we know f . The
Quasi-Opt is obtained by (4.4). Note that both estimators use adaptive shape pa-
rameters θ(δ) that change with δ. For comparison, we also include the results of three
estimators with fixed θ = 0.5, 1.0 and 3.0 respectively. Here are two worth noting
observations:

• adaptive shape parameters are of a higher necessity for small numbers of data
n, and

• using more data could be harmful to both efficiency and accuracy for large
noise level δ.

To see the first point, we can focus on the curve for θ = 1.0. The larger the n the
longer it can stay close to the optimal. For the second, we can carefully compare the
accuracies of Real-Opt and Quasi-Opt for different n in the range of δ between 10−2

to 100 (approx. 1.5% to 15% noise). The Quasi-Opt result of using n = 113 data
is very close to the optimal. By comparing the errors of Real-Opt estimations for
different n, we can actually see that n = 113 yields more accurate approximation.
The accuracy of our method is competitive with those obtained by other meshfree
numerical differentiation methods, see [24, Tab.2] and [25, Exmp.2]. Note that the
presented numerical results in these papers are not resulted from uniform random
noises; the added noises are generated either by the sin function or random numbers
following the normal distribution N (0, 0.01). Moreover, the number of data points
there, n, were about 600 and 900 and the reported errors in both are root mean
square (RMS) norm, which is always smaller than our reported L∞(Ω) errors. Most
importantly, they use thin plate and cubic splines while we are using infinitely smooth
Gaussian kernels. The RMS errors of our quasi-optimal estimators obtained from
noisy data with δ = 10−3 are 0.138, 0.0658, and 0.0457 respectively, for n = 113, 161,
and 217.

For n = 217, the performance of our quasi-optimal estimators deteriorates and
the accuracy could be an order larger than the true optimal. Figure 4.4 shows some
details in the quasi-optimal search. In each snapshot, we show the exact error (in
blue) and a posteriori estimator (in red), i.e., the functional in (4.4). Starting from
the left, the case of n = 113 and δ = 10−3 shows a typical behavior for “small”
noise, in which we can see both curves are convex (up to some oscillations due to
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Fig. 4.4. Example 1: The absolute L∞ error profiles (y-left in blue) and the proposed posteriori
error measure (y-right in red) of various Xn and δ verse different shape parameter θ.
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Fig. 4.5. Example 1: Gradient fields in [−0.5, 0.5]×[−0.5,0.5] obtained by quasi-optimal kernels
associated with Figure 4.4.

the problem of ill-conditioning). When the noise level increases, say to δ = 10−1 in
the middle plot, the exact error is no longer convex in such a way that as if a region
near the minimum is being flipped upside down. Yet, our proposed estimator remains
convex and hence, select the local maximum. The noise level for such phenomenon
is relative; when n = 217, δ = 10−3 is not “small” enough. This explains the gap
between the red and blue curves in Figure 4.3(n = 217) for 10−2 ≤ δ ≤ 100. We omit
the graphic presentation for the case δ < 10−2; in such case, both the red and blue
curves are similar in shape. The selected quasi-optimal θ is at most 0.5 away from
the true optimal shape-parameter; such a difference in shape parameter results in one
order of accuracy loss.

The goal of this test problem is to obtain an approximation to the gradient of
f . We end this example by showing the gradient fields obtained by our quasi-optimal
kernels in Figure 4.5 associated with the three settings in Figure 4.4. We zoom-in to a
smaller region near the origin where the function f varies most to enhance resolution.
Readers can compare these results with the exact one shown in Figure 4.2. Even with
δ = 10−1 (approx. 15% noise), the resulting vector field shows great resemblance to
the exact one with a noticeable error in the region near (−0.5, 0).

Example 2: Three dimensional Laplacian. Meshfree methods are more com-
petitive in higher dimensions. This example aims to approximate the Laplacian of
f : R3 → R from noisy data. We construct noisy data on a set of 1115 scattered data
in [−2, 2]3 with noise level 0.01 and 0.05 (approx. 2% and 10% noise, respectively).
All other settings are similar to those in Example 1. To visualize the volumetric data,
all slice-plots in the example show the orthogonal planes that slice at the x1−, x2−,
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n = 1115, δ = 10−2, θ = 1.75 n = 1115, δ = 0.05, θ = 2.15

Fig. 4.6. Example 2: The absolute L∞ error profiles for the quasi-optimal estimators associated
with two different noise level δ.

x3−coordinates at which the maximum error of the estimator is attainted.

Figure 4.6 shows the maximum error profiles of the quasi-optimal estimators
for the two test cases. The maximum errors are 4.12 and 9.43 respectively, where
as ‖∆f‖L∞(Ω) ≈ 18. The corresponding RMS errors are much more impressive:
0.0631 and 0.120 respectively. In Figure 4.6, we can see that the error function is
very localized. This reflects the fact that the estimators cannot capture the exact
“amplitude” of the Laplacian with the presence of noise.

To see how well the proposed quasi-optimal estimator can approximate ∆f , Fig-
ures 4.7–4.8 show the exact and approximated values of the Laplacian. Readers should
focus at the intersection of the interior slices where the maximum error occurs. The
approximation associated with δ = 0.01 in Figure 4.7 matches closely with the exact
one. A noticeable numerical error can be seen near the bright yellow spot on the
right side where ∇f is large. The quasi-optimal estimator can capture the shape but
not the amplitude. The approximation associated with δ = 0.05 in Figure 4.8 is not
accurate up to fine details, but it certainly can capture all the basic features.

5. Conclusions. We derive and analyze kernel-based estimators that approxi-
mate partial derivatives of an unknown function from scattered noisy data. We obtain
some statistical error estimates for a class of estimators that can be obtained by solving
a simple regularized meshfree linear system with a fixed a prior regularized param-
eter depending on noise level. Instead of tuning the regularization parameters, the
problem of parameter selection is transferred to selecting a parameter of the employed
kernel. By interacting with various meshfree and probability theories, we propose an
a posteriori strategy for finding quasi-optimal kernels that depend on all the inputs of
numerical derivatives problems (i.e., data location, noise level, noisy data, etc.) but
not the exact solution. Numerical examples show that the proposed quasi-optimal
estimator is particularly powerful when the number of data is small.

When more data is available, we can modify the proposed method and adaptively
select a subset for numerical differentiation. Such adaptive technique is already avail-
able for direct problem [19]. Using the generalized power function we developed, it
is hopeful that a scientific computing problem analogy can be developed. Although
the presented numerical results focus on the Gaussian kernel and we use brute-force
approaches for finding the quasi-optimal, more efficient algorithms can be developed
for some kernels. For the Gaussian and Sobolev kernels, one could begin with the
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Exact Laplacian Approximation

Fig. 4.7. Example 2: The exact and approximated Laplacian using the quasi-optimal estimators
associated with δ = 10−2 (approx. 2% noise) around the point where the maximum error occurs.

Exact Laplacian Approximation

Fig. 4.8. Example 2: The exact and approximated Laplacian using the quasi-optimal estimators
associated with δ = 0.05 (approx. 10% noise) around the point where the maximum error occurs.

decomposition for stable evaluation [8] and develop a fast algorithm to solve linear
systems with different shape parameters. For compactly supported functions, powers
and thin-plate splines (note: the latter two are conditionally SPD), one can make use
of the polynomial-type upper and lower bounds for their power functions and mini-
mum eigenvalues of interpolation matrices to get fast algorithm. We leave both ideas
open for now as possible future research.

This work is the first attempt to develop meshfree algorithms and theories for
numerical differentiation from a stochastic point of view. We focus on the problem
of numerical differentiation with integer order as it is closely related the meshfree
interpolation. It is straightforward to extended the presented framework to frac-
tional orders [15]. We believe the mixed meshfree and stochastic techniques used in
this paper can be generalized to other scientific computing problems, such as inverse
problems. The quasi-optimal method, which is difficult to introduce in the determin-
istic models, is well-defined by the kernel-based probability measures. This shows
that the kernel-based probability measure gives a new direction of meshfree method
to solve the open problems of classical approximation theory. The technique has high
potential values in new research areas for identifying the quasi-optimal kernels for
scientific computing problems by different learning methods. By the same discussions
in [5, 11, 12] of learning with the regularization schemes, the meshfree method is a
numerical tool of a scaling parameter on machine learning. Since the complexities of
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equations (4.3) and (4.4) are dependent of the global meshfree algorithm, it is diffi-
cult to compute the quasi-optimal parameter for the large size of data. It is a good
research topic to investigate the large-scale data of numerical differentiations by the
local meshfree technique.
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