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1. Introduction. Evaluating derivatives of a function using only information
from discrete function values is a typical ill-posed problem. Small measurement er-
rors, including rounding errors, will be greatly amplified during the numerical differ-
entiation process. The problem of numerical differentiation arises in many branches
of science and engineering. Some practical examples are the identification of disconti-
nuities in image reconstruction [10, 13], resolution enhancement of spectra [17], solv-
ing Abel integral equations [7, 12], determination of peaks in chemical spectroscopy
[24], determination of discontinuous points of the exact solutions [33], solving integral
equations [8], determination of source parameter and diffusion coefficient in parabolic
differential equations [6, 14], simulation of constrained mechanical systems of parti-
cles [19], singular convolution [25], and many other inverse problems in Mathematical
Physics. The previous literature on numerical differentiation featured plenty of nicely
calculated practical solutions, but most research papers on this topic are limited to
one dimension or highly structured grids [4, 14, 20, 26, 27, 30, 33, etc.]. Numerical
methods for higher dimensions are very limited. In particular, many existing methods
are based on finite difference schemes [2], wavelet methods [5], and thin plate splines
approximation [34]. The goal of this paper is to supply a new, efficient and practical
alternative for scientists and engineers who need to compute numerical differentiation
from real-life, large-scale and noisy multivariate data.

Given some set of real-life data in any dimension, multivariate functions are re-
constructed from unstructured data by some specially designed multiscale kernels

Φ(x, ·) =

u∑

j=0

∑

k∈Zd

λj
σϕ(2jx − k)ϕ(2j · −k).

Since multiscale kernels are proven to be positive definite, for every set of data points
we can solve an interpolation problem and write the interpolant in the form of the
kernel representation:

s =
n∑

i=1

βiΦ(xi, ·). (1.1)
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The multiscale property, found in wavelet analysis, is considered a major breakthrough
in the development of kernel-based mesh-free methods. We can go one step further
and express (1.1) in its frame representation:

s =

u∑

j=1

∑

k∈Zd

λj
σcj

kϕ(2j · −k), (1.2)

where cj
k = cj

k({xi}, βi) are called the frame coefficients. The interpolant obtained
will have a frame representation on structured grids instead of the unstructured data.
The solution process involves solving a sparse matrix system if the multiscale kernel
is compactly supported. Once we determine the multivariate function that interpo-
lates the noisy data, this newly developed method has potential applications in many
branches of science and engineering. The well-developed wavelet techniques (e.g. de-
noising, compression, shape detection, and etc.) can be applied thereafter. In this
paper, we focus on a classical ill-posed numerical differentiation problem. The deriva-
tive of (1.2) can be obtained by replacing ϕ by Dγϕ. An overview of multiscale kernels
will be given in Section 2.

In Section 3, the instability of numerical differentiation is regularized by the
Tikhonov regularization method that seeks a stable approximate interpolant. Error
estimates in Section 3.1 show that the errors of numerical derivatives blow up when
the noise level is high or when the minimum separation distance of the data points
is small. This agrees with the ill-posed nature of numerical differentiation. On the
other hand, both errors in interpolation and in the derivatives can be minimized with
an optimal regularization parameter. In Section 4, the L-curve method is employed
to numerically located the optimal regularization parameter. Finally, two bivariate
examples are given in Section 5 to conclude the paper.

2. Finding Numerical Derivatives. Consider a symmetric function of the
form Φ : Ω×Ω → R for some Ω ⊂ R

d and let NΦ be the reproducing kernel of a native
Hilbert space [29] of Φ. It is proven in the same article that the native space NΦ for a
given symmetric positive definite kernel Φ is unique if it exists, and it coincides with
the closure of the space of finite linear combination of functions Φ(x, ·), x ∈ Ω under
the inner product defined via

(Φ(x, ·), Φ(y, ·))NΦ
= Φ(x, y) for all x, y ∈ Ω.

That is, for every fixed point x ∈ Ω and function Φ(x, ·) belongs to NΦ, every f ∈ NΦ

can be recovered by an inner product of the form f(x) = 〈f, Φ(x, ·)〉, x ∈ Ω. For a
detailed treatise of reproducing kernel Hilbert spaces see Aronszajn [3] or Meschkowski
[21].

To begin, we reconstruct multivariate functions from unstructured data by a
multiscale technique. The basic concepts of this technique were first investigated by
Opfer [23]. The implementation of MSK is out of the scope of this paper and the
developments of MSK are only sketched here. We refer the reader to the original
dissertation of Opfer for the details.

A function ϕ : R
d → R is called refinable if there is a sequence {hk}k∈Zd of real

numbers such that

ϕ =
∑

k∈Zd

hkϕ(2 · −k). (2.1)
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For every level-j ∈ Z we define the shift invariant space

Vj :=
{ ∑

k∈Zd

ckϕ(2j · −k) : ck ∈ R,
∑

k∈Zd

(ck)2 < ∞
}
. (2.2)

By standard wavelet arguments it follows from (2.1) that the spaces {Vj}j∈Z form a
nested sequence, i.e. V0 ⊂ V1 ⊂ · · · ⊂ Vu. The main idea here involves several levels
of Vj in one reconstruction scheme.

Let ϕ : R
d → R be a function in L2(Rd) with decay ϕ(x) = O

(
(1+‖x‖)−(d+1)/2

)
.

Let u ≥ 0 be a fixed integer, σ > d/2 be a positive real number. Then the kernel
Φσ : R

d × R
d → R given by

Φσ(x, y) :=

u∑

j=0

λj
σ

( ∑

k∈Zd

ϕ(2jx − k)ϕ(2jy − k)
)

︸ ︷︷ ︸
Φσ,j

where λσ := 2d−2σ, (2.3)

is called a multiscale kernel (MSK).
Theorem 2.1. [23, Theorem 5.4] Every MSK in the form of (2.3) is positive

semidefinite. Let Bρ(c) be a ball of radius ρ with center c ∈ R
d such that supp(ϕ) ⊂

Bρ(c). If the point set X ⊂ R
d satisfies

hX,min := min
i6=j

‖xi − xj‖2 > ρ 2−u+1, (2.4)

then the matrix AX :=
(
Φσ(xi, xk)

)
1≤i,k≤n

is positive definite.

In this paper, we are mainly interested in compactly supported refinable functions
ϕ that clearly satisfy the decay condition required in the Theorem 2.1. The resulting
MSK are therefore positive definite.

We can find to any given data Y an interpolant of the form (1.1) by solving a
sparse symmetric linear collocation system for β ∈ R

n,

yj =

n∑

i=1

βiΦσ(xi, xj), 1 ≤ j ≤ n. (2.5)

Theorem 2.1 implies that (2.5) has a unique solution if the integer u = u(hX,min) is
large enough with respect to the density of the data points X . The MSK scheme
is based on the following idea: The kernel representation can be decomposed into a
frame representation due to the specially designed structure of Φσ. Firstly, s ∈ NΦ is
decomposed into a sequence of functions sj ∈ Vj ,

s =

n∑

i=1

βiΦσ(xi, ·) =

n∑

i=1

βi

u∑

j=0

λj
σΦσ,j(xi, ·) =

u∑

j=0

λj
σ

n∑

i=1

βiΦσ,j(xi, ·)

︸ ︷︷ ︸
sj

=

u∑

j=0

λj
σsj ,

(2.6)
such that each sj ∈ Vj can be further decomposed into

sj =

n∑

i=1

βiΦσ,j(xi, ·) =
∑

k∈Zd

( n∑

i=1

βiϕ(2jxi − k)
)

︸ ︷︷ ︸
cj

k

ϕ(2j ·−k) =
∑

k∈Zd

cj
kϕ(2j ·−k). (2.7)
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Combining (2.6) and (2.7) gives us the frame representation in the form of (1.2).
Functions in lower levels capture the smooth structure of f while the higher levels
contain the fine structure of f , including noise. Furthermore, the refinability of the
function ϕ allows the frame coefficients cj

k for 0 ≤ j ≤ u − 1 to be computed via

cj
k = λ−j

σ

∑

µ∈Zd

hµ−2kcj+1
µ , k ∈ Z

d.

Computation of frame coefficients cj
k requires a nearest neighbor search, e.g. kd-tree

[35, Chapter 14], to locate all x ∈ X inside the support of ϕ(2u · −k). Note that the
number of nonzero cj

k is finite due to the fact that |X | is finite and ϕ is compactly
supported. The native space NΦ and each Vj in (2.2) can be equipped with a norm,
respectively,

‖s‖2
NΦ

=

u∑

j=0

λ−j
σ ‖sj‖

2
Vj

and ‖sj‖
2
Vj

=
∑

k∈Zd

(cj
k)2.

Let hX,Ω denote the fill distance of the data points X ⊂ Ω given by

hX,Ω := sup
y∈Ω

inf
xi∈Xh

‖y − xi‖2.

If ϕ satisfies certain smoothness and decay properties, then NΦ ≃ W σ,2 are norm
equivalent and the interpolant obtained by MSK satisfies the standard native space
error bound:

Theorem 2.2. [23, Theorem 5.21] Let the multiscale kernel Φσ be constructed
with a scaling function ϕ of an r-regular multiscale analysis of L2(Ωd) with r > d/2.
Fix an σ with d/2 < σ < r. Further we assume that X := {x1, . . . , xn} ⊂ Ω is a set of
points with fill distance hX,Ω where Ω ⊂ R

d is a compact set with Lipschitz boundary
which satisfies an interior cone condition. Let f ∈ Hσ(Rd) and s be the interpolant.
Let 1 ≤ q ≤ ∞ and γ = (γ1, . . . , γd) be a multi-index such that |γ| < ⌊σ⌋−d/2. Then,
there is a constant C > 0 independent of f and hX,Ω such that

‖s − f‖W |γ|,q(Ω) ≤ C1h
σ−|γ|−d

(
1/2−1/q

)
+

X,Ω ‖f‖NΦ
,

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0.

2.1. Noise Data. Let us assume we have points X := {x1, . . . , xn} ⊂ Ω ⊂ R
d

and noisy data

Yη := {ỹ1, . . . , ỹn} ⊂ R,

where

ỹi = yi + δi = f(xi) + η(xi),

and δi are random noise. The noise function η here is not necessarily classically
differentiable or even continuous. Assume that we obtain an interpolant in the frame
representation

sδ,X =

u∑

j=0

λj
σsδ,X,j =

u∑

j=0

∑

k∈Zd

λj
σcj

kϕ(2j · −k), (2.8)

for some noisy data (X, Yη) by MSK with the following conditions satisfied.
Assumption 2.3. The MSK in (2.3) is constructed by
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1. σ ≥ 2 and σ > d
2 ,

2. a r-regular ϕ smooth enough such that r >
(
2 + d

2

)
, i.e., ϕ ∈ Cr(Ω) with

compact support up to order r, and

3. for any given data points X, u =
⌈
1 + log2

ρ
hX,min

⌉
where hX,min is given in

(2.4) and ρ as in Theorem 2.1.

The reasons for the above assumptions will soon become clear when we look at the
error estimates in Section 3.1. Throughout the paper, let γ with |γ| = γ1+. . .+γd = 1
be a multi-index. Our interest is to approximate or reconstruct the derivatives of f
from the noisy data Yη via

(X, Yη) −→ Dγf.

From the frame representation (2.8), the numerical derivatives are given by

Dγsδ,X =

u∑

j=0

λj
σ Dγ sδ,X,j =

u∑

j=0

∑

k∈Zd

λj
σcj

k Dγϕ(2j · −k). (2.9)

This numerical procedure is highly unstable. Since the input data Yη contains noise,
the resulting approximated derivatives Dγsδ,X will contain large error and therefore

are not trustworth. We select a subset of frame coefficients {rj
k} ⊂ {cj

k} to regularize
the numerical derivatives.

Any regularized interpolant g to sδ,X is in the form of

g =
u∑

j=0

∑

k∈Zd

λj
σrj

k ϕ(2j · −k) where rj
k ∈ {0, cj

k}. (2.10)

For some threshold tσ(j) > 0 for 0 ≤ j ≤ u and a fixed regularization parameter α,
the regularized interpolant is defined to be

sα =

u∑

j=0

∑

k∈Zd

λj
σ rj

k ϕ(2j · −k) such that rj
k =

{
cj
k if |cj

k| > tσ(j)α,
0 otherwise.

(2.11)

For practical problems, the optimal regularization parameter α∗ is not attainable
unless η is known a priori . In the next section, we specify our choice of threshold
tσ(j) using the Tikhonov regularization method. After giving a concrete formula of
the threshold tσ(j), we make sure the errors in interpolation and in the gradient of the
regularized interpolant in (2.11) is both bounded and well behaved for some suitable
α.

3. Regularization. The classical Tikhonov regularization method [31] is a com-
mon tool for finding solution from an unstable system. Using some a priori choice
strategy for regularization parameters, Hofmann and Yamamoto [18] prove conver-
gence rates for the Tikhonov regularization method. Despite the differences with the
classical problem, we seek a regularized interpolant sα to sδ,X (considered to be fixed
here) by the Tikhonov regularization method. For any

g̃ =

u∑

j=0

∑

k∈Zd

λj
σ r̃j

k ϕ(2j · −k) ∈ Vu,
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we define the error measure by

E(g̃) = E(g̃; sδ,X) := ‖sδ,X‖2
NΦ

− ‖g‖2
NΦ

=

u∑

j=0

∑

k∈Zd

λ−j
σ

(
(cj

k)2 − (r̃j
k)2

)
, (3.1)

and the roughness measure by

R(g̃) :=

u∑

j=0

∑

k∈Zd

λj
σ|r̃

j
k| |ϕ(2j · −k)|W 2,2(Ω), (3.2)

such that |g̃|2W 2,2(Ω) ≤ R(g̃) for any g̃ ∈ Vu. The error measure depends on the
interpolant sδ,X but both are independent of α.

Given any regularization parameter α ≥ 0 (consider to be fixed here), the regu-
larized interpolant sα is defined to be the minimizer of E(·)+α R(·) over all functions
in the form of (2.10), i.e.,

E(sα) + α R(sα) = inf
{

E(g) + α R(g) for all g as in (2.10)
}
. (3.3)

Although the number of nonzero functions in the form of (2.10) is finite, we have the
following theorem to simplify our selection process.

Theorem 3.1. For any given α ≥ 0 the optimizer to (3.3) is given by (2.11) with

tσ(j) :=
(
2d−2σ+4 |ϕ|2W2,2

)j
< ∞ for all 0 ≤ j ≤ u < ∞.

Proof. First by changing variables, we obtain

|ϕ(2j · −k)|2W2,2(Ω) =
∥∥∥

∑

|γ|=2

Dγϕ(2j · −k)
∥∥∥

2

L2(Ω)
= 2j(4−d) |ϕ|2W2,2(Ω). (3.4)

For any g in the form of (2.10), we have

E(g) + α R(g) =

u∑

j=0

∑

k∈Zd

((
λ−j

σ (cj
k)2 − (rj

k)2
)

+ α λj
σ |rj

k| 2
j(4−d) |ϕ|2W2,2(Ω)

)

=




u∑

j=0

∑

k∈Zd

λ−j
σ (cj

k)2




︸ ︷︷ ︸
= ‖sδ,X‖2

Φσ

−




u∑

j=0

∑

k∈Zd

λ−j
σ (rj

k)2 − α λj
σ |rj

k| 2
j(4−d) |ϕ|2W2,2(Ω)


 .

Since ‖sδ,X‖2
Φσ

is a fixed quantity, the minimizer of (3.3) corresponds to the following

condition on rj
k:

λ−j
σ (rj

k)2 − α λj
σ |rj

k| 2
j(4−d) |ϕ|2W2,2(Ω) > 0.

After simplification, we obtain (rj
k)2 > tσ(j)|rj

k|α. �

Once α is determined, Theorem 3.1 allows us to select {rj
k} from {cj

k} and con-
struct the regularized interpolant and its derivatives.
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3.1. Error Estimate. In general, interpolation does not make sense on L2(Ω)
and there are many possibilities of projecting L2(Ω) to NΦ. Moreover, there are many
new results on interpolation in cases where f is not in the native space [22, 28]. For
our problem, we will define the necessary projection by interpolation.

Let Ω ⊂ R
d be a domain satisfying the conditions in Theorem 2.2. Suppose that

the multiscale kernel Φσ also satisfies Assumption 2.3 and f ∈ NΦ = Hσ(Ω). For any
fixed center X and noise function η ∈ L2(Ω) ∩ C(Ω), the noise level is defined as

δ := sup
x∈Ω

|η(x)|.

It is easy to verify that ‖η‖L2(Ω) ≤ V 1/2(Ω) δ, where V (Ω) is the volume of Ω ⊂ R
d.

The noisy input data for interpolation at the points X ⊂ Ω is given by Yη := (f +η)
∣∣
X

under the assumption that f and η are both well defined at all points x ∈ Ω.
We define a finite dimensional subspace VX ⊂ NΦ to be the span of Φσ(z, ·) and

V
(γ)
X to be the span of DγΦσ(z, ·) where differentiation acts upon the second variable

of Φσ for all z ∈ X . Furthermore, we define a projection map

PX : L2(Ω) ∩ C(Ω) → R
|X| such that PXf = {f(x) : x ∈ X}

that extracts discrete values from a function in L2(Ω)∩C(Ω) at X so that interpolation
is possible and makes sense, and an interpolation map

IX : R
|X| → VX such that IXPXf = IXf for all f ∈ NΦ,

which maps discrete function values at X to a function in VX by interpolation using
MSK. Last, we define a truncation map,

Tα : {1}N×Z
d

→ {0, 1}N×Z
d

for all α ≥ 0

that smoothes out functions by truncating some of their frame coefficients. Fur-

thermore, when no confusion arises, we treat Tα as a map from VX and V
(γ)
X onto

themselves in the sense that,

Tα




u∑

j=0

∑

k∈Zd

λj
σ cj

k φ(2j · −k)


 :=

u∑

j=0

∑

k∈Zd

λj
σ Tα(cj

k)φ(2j · −k), φ = {ϕ, Dγϕ}.

The truncation map Tα, as in (2.11), is a nonlinear map whose actual form depends
on the parameter α and the data (X, Yη). It can also be interpreted as a countable

set {τ j
k} ⊂ {0, 1}N×Z

d

such that Tα(cj
k) = τ j

k (α)cj
k = rj

k(α) where

τ j
k = τ j

k (α) =

{
1 if rj

k = cj
k,

0 otherwise.
(3.5)

Since the number of nonzero cj
k ∈ {0, 1}N×Z

d

is finite, there are infinitely many cj
k = 0

and the corresponding τ j
k = 1 because rj

k = 0 = cj
k for all α ≥ 0 by (3.5). Thus, there

are infinitely many τ j
k = 1 (frame coefficients being kept) and only a finite number of

τ j
k = 0 (frame coefficients being truncated) for the selected frame coefficients.

With the newly introduced notation, the unknown full interpolant can be ex-
pressed by s := IXPXf. Furthermore, we can write the regularized interpolant in
Theorem 3.1 as

sδ,X := IXPX(f − η) and sα = Tαsδ,X .
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Moreover, Equation (2.11) can be restated as

sα = Tαsδ,X =
u∑

j=0

∑

k∈Zd

λj
σ τ j

kcj
k ϕ(2j · −k).

Without any extra assumptions on the noise function η, the threshold tσ(j) and the
data points X , the truncation map has the following properties.

Proposition 3.2. Let |γ| = 1 and nzj(·) be a function with respect to j that

returns the number of zero elements in the level-j of a set in {0, 1}N×Z
d

. Denote the
L2(Ω)-induced norm for maps on VX by ‖ · ‖L2(Ω) and define

uα := sup
{

j
∣∣∣ τ j

k 6= 0 for some k ∈ Z
d, 0 ≤ j ≤ u

}
, (3.6)

to be the maximum nonzero frame level after truncation. Then the truncation map
Tα satisfies:

1. ‖Tα‖L2(Ω) = ‖T0 − Tα‖L2(Ω) = 1 for α > 0.

2. ‖DγTα‖L2(Ω) = ‖TαDγ‖L2(Ω) = 2uα ‖Dγϕ‖L2(Ω) ‖ϕ‖
−1
L2(Ω).

3. For any given data (X, Yη), the number of frame coefficients being truncated

by Tα, denoted by nzj(1 − τ j
k (α)) < ∞, is a bounded nondecreasing simple

function in α and nzj(1 − τ j
k (0)) = 0.

Proof. The perfect candidate to evaluate the above norms is the scaled function in
the frame. For each nested space Vj (0 ≤ j ≤ u), such function is given by

gj,k =
(
2jd/2 ‖ϕ‖−1

L2(Ω)

)
ϕ(2j · −k) ∈ Vj , 0 ≤ j ≤ u,

such that ‖gj,k‖L2(Ω) = 1 and ‖Dγgj,k‖L2(Ω) = 2j ‖Dγϕ‖L2(Ω) ‖ϕ‖
−1
L2(Ω).

For Proposition 3.2-1 follows directly from the fact that Tα 6= 0 for all α ≥ 0;
there exists some (j1, k1) and (j2, k2) such that τ j1

k1
= 1 and τ j2

k2
= 0 for 0 ≤ ji ≤ u

and ki ∈ Z
d corresponding to a frame coefficient that is kept and truncated by Tα,

respectively. Hence, we have

‖TαIXPXgj1,k1
‖L2(Ω) = 1, and ‖(T0 − Tα)IXPXgj2,k2

‖L2(Ω) = 1.

To prove Proposition 3.2-2, we first note that the differential operator acts on each
ϕ independently as in (2.9); thus, cj

k and τ j
k are independent of the truncation process.

Differentiation after truncation is the same as truncation after differentiation, namely
we have DγTαsj = TαDγsj for all sj ∈ Vj . For numerical efficiency, the operation
DγTα is preferred for efficiency.

Since ‖Dγϕ‖L2(Ω) ‖ϕ‖
−1
L2(Ω) is a fixed quantity once ϕ is fixed, without regular-

ization the noise in the level-j will be greatly amplified as expected,

‖DγIXPXgj,k‖L2(Ω) = ‖Dγgj,k‖L2(Ω) ≤ 2j ‖Dγϕ‖L2(Ω) ‖ϕ‖
−1
L2(Ω). (3.7)

Let uα be the highest nonzero frame level appearing in the regularized interpolant as
in (3.6). Applying the regularization map Tα will “cut off” all levels higher than uα

exclusively and we arrive at the conclusion.
Lastly, Proposition 3.2-3 follows from the fact that the number of nonzero cj

k is
finite and no regularization is applied when α = 0. �
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We now turn our focus to the error estimate for ‖f − sα‖. First of all,

‖f − sα‖L2(Ω) ≤ ‖f − IXPXf‖L2(Ω) + ‖IXPXf − sδ,X‖L2(Ω) + ‖sδ,X − Tαsδ,X‖L2(Ω)

= ‖f − IXPXf‖L2(Ω)︸ ︷︷ ︸
interp. error

+ ‖IXPXη‖L2(Ω)︸ ︷︷ ︸
noise

+ ‖(T0 − Tα)sδ,X‖L2(Ω)︸ ︷︷ ︸
reg. error

.

The last inequality uses the fact that

‖IXPXf − sδ,X‖ = ‖IXPXf − IXPX(f − η)‖ = ‖IXPXη‖.

By Theorem 2.2 with q = 2 and |γ| = 0, the first term (interpolation error) can
be bounded by

‖IXPXf − f‖L2(Ω) ≤ C1h
σ
X,Ω ‖f‖NΦ

,

and the second term (noise) is bounded by our assumption on η,

‖IXη‖L2(Ω) ≤ V 1/2(Ω) δ.

It is straight forward to verify that

‖sj‖
2
L2(Ω) ≤ 2−jd ‖ϕ‖2

L2(Ω) ‖sj‖
2
Vj

for all sj ∈ Vj . (3.8)

For the third term (regularization error), by Theorem 3.1 and (3.8) we have

‖(T0 − Tα)sδ,X‖2
L2(Ω) ≤

u∑

j=0

‖(T0 − Tα)sδ,X,j‖
2
L2(Ω) (3.9)

≤ ‖ϕ‖2
L2(Ω)

u∑

j=0

∑

k∈Zd

2−jd
(
(1 − τ j

k )cj
k

)2

≤ ‖ϕ‖2
L2(Ω)

u∑

j=0

2−jdnzj(1 − τ j
k ) tσ(j)2α2

≤
u∑

j=0

2−2(σ−2)jnzj(1 − τ j
k)|ϕ|2j

W2,2
‖ϕ‖

2(j+1)
L2(Ω) α2

:=
(
C2(α)α

)2

An immediate fact from Proposition 3.2-3 is that C2(α) is a bounded positive nonde-
creasing simple function with C2(0) = 0.

For the error in the gradient, we have

‖∇f −∇sα‖L2(Ω) ≤ ‖∇f −∇IXPXf‖L2(Ω) + ‖∇IXPXf −∇TαIXf‖L2(Ω) + ‖∇TαIXPXf −∇sα‖L2(Ω)

≤ ‖∇f −∇IXPXf‖L2(Ω)︸ ︷︷ ︸
interp. error

+ ‖∇(T0 − Tα)IXPXf‖L2(Ω)︸ ︷︷ ︸
reg. error

+ ‖∇TαIXPXPXη‖L2(Ω)︸ ︷︷ ︸
noise

Using Theorem 2.2 with q = 2 and |γ| = 1, the interpolation error in gradient is again
bounded by

‖∇IXPXf −∇f‖L2(Ω) ≤ C1h
σ−1
X,Ω ‖f‖NΦ

.
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Next, we need a stronger assumption than σ ≥ 2 such that NΦ ⊆ W 2,2(Ω) to make
use of an inequality in [1, Theorem 4.14]: For any 0 < ǫ0 there exists a constant
C3 = C3(ǫ0, Ω, d) > 0 such that for g ∈ W 2,2(Ω) and for all 0 < ǫ < ǫ0,

‖∇g‖L2(Ω) ≤ C3

(
ǫ |g|W 2,2(Ω) + ǫ−1‖g‖L2(Ω)

)
. (3.10)

By assumption, the unknown function f is “smoother” than the random noise η.
Hence, for all α ≥ 0 the following statement holds

‖∇(T0 − Tα)IXPXf‖L2(Ω) ≤ ‖∇(T0 − Tα)sδ,X‖L2(Ω).

Similar to (3.9), by (3.4) we have

|(T0 − Tα)sδ,X |W 2,2 ≤
u∑

j=0

|(T0 − Tα)sδ,X,j |W 2,2 (3.11)

≤ |ϕ|2W 2,2

u∑

j=0

∑

k∈Zd

2j(2−d/2)
(
(1 − τ j

k)cj
k

)2

≤ |ϕ|2W 2,2

u∑

j=0

2j(2−d/2)nzj(1 − τ j
k) tσ(j)α

≤
u∑

j=0

2(6−2σ+d/2)jnzj(1 − τ j
k)|ϕ|

2(j+1)
W 2,2 α

:= C4(α)α.

We choose ǫ = 1 < ǫ0 for some fixed ǫ0. Putting (3.9) and (3.11) into (3.10) yields

‖∇(T0 − Tα)IXf‖L2(Ω) ≤ C5(α)α.

Namely, C5(α) = C3(C2(α)+C4(α)) that is a bounded positive nondecreasing simple
function with C5(0) = 0.

All the terms considered so far are stable. Last, but most importantly, we consider
the error in gradient due to the presence of noise. By Proposition 3.2-2, if there exist
some (j, k) such that cj

k 6= 0 and τ j
k = 1, we have

‖∇TαIXPXη‖L2(Ω) ≤ 2d/2 2uα ‖∇ϕ‖L2(Ω) ‖ϕ‖
−1
L2(Ω) V 1/2(Ω) δ := C6(α) δ. (3.12)

Otherwise sδ,X = 0, we clearly have ‖∇TαIXPXη‖L2(Ω) = 0 and C6(α) = 0.
The function C6(α) in (3.12) is a bounded positive nonincreasing simple function.

Since 2u ≥ 2 ρ
hX,min

is the requirement of a positive definite kernel, the gradient error

in (3.7) will blow up when one takes finer and finer data points if the noise level δ > 0
is fixed and no regularization is applied.

We summarize all results by the following theorem.
Theorem 3.3. For any given data (X, Yη), let sα be the regularized interpolant

obtained by a MSK satisfying Assumption 2.3 and regularized by Theorem 3.1. There
exist a constant C1, two bounded positive nondecreasing simple functions Cր

2 (α) ≥

Cր
5 (α) such that Cր

2 (0) = 0 = Cր
5 (0), and a bounded nonnegative noincreasing

simple function Cց
6 (α) with Cց

6 (0) > 0 such that the errors in regularized interpolant
are bounded by

‖f − sα‖L2(Ω) ≤ C1h
σ
X,Ω ‖f‖NΦ

+ V 1/2(Ω) δ + Cր
2 (α)α, (3.13)
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and

‖∇f −∇sα‖L2(Ω) ≤ C1h
σ−1
X,Ω ‖f‖NΦ

+ Cր
5 (α)α + Cց

6 (α) δ, (3.14)

for all α ≥ 0. Furthermore, if the noise level δ ≥ K(f, σ), there exists a nonzero
optimizer α∗ that minimizes the sum of the upper bounds in (3.13) and (3.14).
Proof. For any given data (X, Yη), the minimizer α∗ in the theorem is also a mini-
mizer to the function

(
Cր

2 (α) + Cր
5 (α)

)
α + Cց

6 (α) δ. (3.15)

By the properties of Cր
2 (α) and Cր

5 (α), we know that the term
(
Cր

2 (α)+Cր
5 (α)

)
α is

a monotone increasing piecewise linear function. Its jump discontinuities are governed
by the term nzj(1 − τ j

k (α)).

The terms Cց
6 (α)δ is a nonnegative nonincreasing simple function having jump

discontinuities at 0 =: αu+1 < αu ≤ . . . ≤ α0 < ∞ where αj is the infimum over α
such that j-th level is completely truncated, i.e. for all 0 ≤ j ≤ u

αj := inf{α
∣∣ rj

k(α) = τ j
kcj

k = 0 for all k ∈ Z
d}.

Define ∆kG(α) = G(αu−k) − G(αu−k+1) for all 0 ≤ k < u. If, for sufficiently large

δ, the accumulated drop due to term Cց
6 (α)δ is larger than the accumulated grow

due to the term
(
Cր

2 (α) + Cր
5 (α)

)
α, i.e.,

δ > K(f, σ) := min
0≤j<u

{
j∑

k=1

∆k
(Cր

2 (α) + Cր
5 (α))α

Cց
6 (α)

}
, (3.16)

then an optimizer α∗ > 0 exists. �

To end this section, note that the constant term K(f, σ) in (3.16) decreases as
σ increases. If the unknown function f is sufficient smooth with respect to the noise
level δ, our MSK scheme is able to regularize the interpolant. Consider δ < K(f, σ).
These cases correspond to small noise levels that are negligible to our regularization
technique. As shown in Section 5 when δ = 0, while α∗ = 0 is the theoretical
optimizer to (3.15), we would numerically obtain an approximation αLC to α∗ such
that 0 < αLC < ǫmach (machine epsilon). In these cases, we set the approximation
αLC = εmach to filter out extremely small frame coefficients for efficiency.

4. L-curve Method. The theoretical existence of α∗ does not help us pinpoint-
ing its whereabouts. Choosing an optimal α∗, or an approximation αLC , is a separate
topic that will be considered in this section.

The L-curve (LC) method was investigated by Hansen and O’Leary [16] to regu-
larize ill-posed systems under different values of the regularization parameter α. The
knowledge of the noise level δ is not necessary. Vogel [32] shows that the L-curve
regularization parameter selection method may fail to converge for a certain class of
problems. In our numerical experiments, however, we find that the L-curve method
provides a stable algorithm to find the regularization parameter α.

Our version of the L-curve method is derived from simplifying both measures in
(3.1) and (3.2) for the ease of computation. First, we order the frame coefficients cj

k

by defining an ordered set,

{
(
ξℓ, ηℓ

)
}
nz(cj

k
)

ℓ=1 =

{(∥∥∥cj
kϕ(2j − k)

∥∥∥
2

L2(Ω)
, R

(
cj
kϕ(2j − k)

))
: cj

k 6= 0

}

0≤j≤u, k∈Zd
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Level-j 0 1 2 3 4 5 6 7

|cj
k| > 0 64 144 400 1296 4624 17424 26896 26896

|cj
k| > ǫmach 56 121 361 1225 4489 17161 24025 24025

|rj
k| > 0 by αLC 49 121 350 0 0 0 0 0

|rj
k| > 0 by ǫmach 49 121 361 1204 0 0 0 0

Table 4.1

MSK(3,3) frame coefficients among all levels on a 41 × 41 uniform grids for Section 5.1.

such that ηℓ/ξℓ forms a monotone nondecreasing sequence where nz(·) returns the
number of nonzero elements in the set and R(·) is the roughness measure in (3.2).
Then we compute a finite set of points in R

2 by

L =

{(
‖sδ,X‖2

Φσ
−

p∑

ℓ=0

ξℓ,

p∑

ℓ=0

ηℓ

)
⊂ R

2, p = 0, 1, . . . , nz(cj
k)

}
,

which is known as the L-curve.
A suitable regularization parameter αLC is the one near the corner on a log-

log scale of the L-curve [15]. In numerical computation, finite difference schemes
are applied to (the log-values of) these discrete points in order to approximate the
curvature of the L-curve. The point with maximum curvature will be labeled as the
corner of the L-curve. For numerical efficiency, we impose an extra condition that

αLC ≥ ǫmach.

We show some results with the L-curve method in Figure 4.1. The L-curve is
shown in Figure 4.1(a) with a corner at αLC = 5.3761e-12. This value is chosen from
the curvature of the L-curve, see Figure 4.1(b).

The number of nonzero frame coefficients in the regularized interpolant sα is
1735 and 520 for α = ǫmach and α = αLC , respectively. Figure 4.2(a) for ǫmach and
Figure 4.2(b) for αLC show all |cj

k| and label the selected rj
k in boldface dots. All cj

k

are ordered by levels, from level-0 on the left to level-u on the right. In both cases,
only the cj

k in the lower few levels with large absolute values are chosen.

At first glance, the computation of all nonzero cj
k may look tremendous. In

fact, we are showing all 77744 nonzero frame coefficients in Figure 4.2 but some are
extremely small, e.g. 2.4e-42. If we are only interested in frame coefficients whose sizes
are larger than machine epsilon, we are looking at 71463 coefficients. The distribution
of the frame coefficients among all levels are in Table 4.1. After regularization, the
maximum levels appears in {rj

k} are uα = 2 for α = αLC and uα = 3 for α = ǫmach,
readers may already see how this can be computed efficiently.

Our L-curve only makes use of the local property of each function cj
kϕ(2j · −k).

Pre-truncation does not affect the final outcome. One could pick an intermediate
value 0 < υ < u and compute frame coefficients up to level-υ only. A safeguard
of this approach is that the maximum level appearing in the regularized interpolant
should be strictly less than υ. If this is not the case, one can compute the frame
coefficients for level-(υ+1) and reapply the L-curve method.

5. Numerical Comparison and Demonstration. We demonstrate some bi-
variate examples in this section. All codes are written in MATLAB. Random noise is
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(a) L-Curve in log-log scale.
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Fig. 4.1. L-curve method applied to MSK(3,3) in Section 5.1 with δ = 1.018×10−3 on a 41×41
uniform grids.
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(a) 1735 frame coefficients for α = ǫmach.
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(b) 520 frame coefficients for α = αLC .

Fig. 4.2. Selected frame coefficients {rj
k
} ⊂ {cj

k
} corresponds to Figure 4.1.

generated by the built-in routine RAND with STATE reset to 0. Generated random
numbers are scaled to [−1, 1] and multiplied by the noise level δ. For problem in R

2,
tested values for σ are 2 or 3, see Assumption 2.3. The multiscale kernel Φσ in (2.3)
is constructed with the univariate B-spline of order m defined on the knot sequence
[0, 1, . . . , m], denoted by bm, see [9],

ϕ(x, y) = bm(x) bm(y) such that x, y ∈ R, m = {3, 4},

that fulfills all assumptions in the previous discussion. Values of σ and m are specified
by the notation MSK(m, σ) throughout the section.

5.1. Comparison with TPS-based Method. The recent work of Wei et
al. [34] uses the thin plate spline (TPS) to compute numerical derivatives. The pre-
sented TPS-based method requires triangular partitions of data points; the authors
claim that the method can become truly mesh-free with additional assumptions. Two
regularization parameters are studied in the same paper: α1 = δ2 obtained by a pri-
ori rule and α2(δ) obtained by Morozov’s discrepancy principle. We denote them by
TPS-AP and TPS-DP, respectively, hereafter. TPS-DP is reported to be the more
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δ = 1.018× 10−3 δ = 1.020× 10−2

Method ε(sα) ε(∇sα) αLC ε(sα) ε(∇sα) αLC

TPS-AP 0.0028 0.0195 – 0.0699 0.3736 –
TPS-DP 0.0019 0.0157 – 0.0100 0.0659 –
MSK(3,2) 0.0011 0.0072 1.5543e-11 0.0042 0.0310 4.4899e-11
MSK(3,3) 0.0010 0.0075 9.1833e-12 0.0040 0.0260 5.1559e-13
MSK(4,2) 0.0014 0.0071 1.0479e-10 0.0042 0.0300 8.4749e-11
MSK(4,3) 0.0009 0.0048 7.4298e-11 0.0039 0.0242 7.8693e-13

Table 5.1

Comparison to TPS-based methods on a 21 × 21 uniform grids with different noise levels.

effective and stable method between the two.
The clear advantages of MSK with L-curve are that it is already in a truly mesh-

free setting for any dimension and it does not require any a priori knowledge about
the noise level δ. Moreover, resultant linear systems of MSK in (2.5) are sparse. To
make the comparison as fair as possible, we compare the accuracies of all methods on
uniformly distributed grids among many given examples in their papers. Please be
reminded that there are still some differences between the problem settings here and
in [34].

Let Ω = [−2, 2]2. The noise levels are chosen to be the reported δ = 1.018e-3 and
δ = 1.020e-2. The unknown function to be approximated is given by

f(x, y) = sin(π x) sin(π y) exp(−x2 − y2), (x, y) ∈ R
2,

with ‖f‖L2(Ω) ≈ 0.387 and ‖∇f‖L2(Ω) ≈ 4.235. Since the number of evaluation points
is not reported in [34], we use the same root mean square (RMS) errors on a 100×100
uniformly distributed grids x′

i ∈ Ω to measure accuracy for interpolation,

ε(sα) =
1

100

( 1002∑

i=1

(sα(x′
i) − f(x′

i))
2
)1/2

,

and for gradient approximation,

ε(∇sα) =
1

100

( 1002∑

i=1

‖∇sα(x′
i) −∇f(x′

i)‖
2
ℓ2

)1/2

.

Table 5.1 shows the RMS errors for both tested noise levels on a 21 × 21 uniform
grids. The differences in error should not be overinterpreted as they are influenced
by the regularization parameter αLC and the noise function η. It is more important
to note that all choices of m and σ result in the same order of accuracy. Under this
point density, MSK shows competitive results and seems to outperform TPS.

For 1609 unstructured data points, see Figure 5.2(a), with minimum separation
distance hX,min = 5.092e-2 and fill distance hX,Ω = 1.317e-1. We apply MSK(3,2) to
various noise levels. Results are listed in Table 5.2 and graphically demonstrated in
Figure 5.1. All regularization parameters are chosen by the L-curve method except
the first row of Table 5.2: α = 0 indicates the result of the full interpolant without
regularization. Our algorithm runs in the same way as if the data points were struc-
tured. The number of selected frame coefficients is listed under the column of nz(rj

k)
in the table.
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δ αLC nz(rj
k) ε(sα) ε(∇sα)

0 α = 0 100921 8.5518e-5 1.5045e-3
0 2.2204e-16 6081 1.0032e-4 1.2479e-3

1e-5 2.2204e-16 6076 1.0066e-4 1.2511e-3
1e-4 2.2204e-16 6158 1.1065e-4 1.4226e-3
1e-3 2.1649e-13 1800 4.8194e-4 4.8393e-3
1e-2 2.2794e-11 1678 3.4443e-3 3.8510e-2
1e-1 3.0885e-10 1633 3.4145e-2 3.8377e-1

Table 5.2

MSK(3,2) RMS errors and αLC on an 1609 unstructured data points with different noise levels.
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Fig. 5.1. RMS and αLC errors as functions of the noise level δ.

Comparing the two noise-free results in Table 5.2, the interpolation error when
α = 0 is the smallest since the regularization error no longer exists. On the other
hand, due to the presence of rounding errors, the regularized interpolant gives better
approximation to the gradient than the unregularized full interpolant. In fact, this is
true up to δ = 1e-4. When δ ≥ 1e-3, we have αLC > ǫmach and our regularization
technique is functioning in these examples, see Theorem 3.3. Overall, the error profile
is extremely similar to the TPS-DP, see [34, Figure 5]. The monotonic trend shown in
αLC suggests that the proposed L-curve method is capable of balancing the increasing
noise with an increasing regularization parameter.

Our MSK scheme performs equally well when the noise function η is smooth1.
For completion, MSK(3,2) results in ε(sα) = 0.0025 and ε(∇sα) = 0.0046 on a 41×41
uniformly distributed grid. Whereas, TPS-DP results in ε(sα) = 0.0035 and ε(∇sα) =
0.0159.

5.2. Derivative of a Landscape Data. We demonstrate another example with
a set of landscape data [11], see Figure 5.2(b). The data set, containing 1669 data
points, is processed by MSK(3,2) and MSK(3,3) in order to estimate its derivatives.
Unlike the previous example, data points are unevenly distributed and there is no
exact solution for this example. Hence, the full interpolant sδ,X will be used for

1η(x, y) = 0.005 sin
�

1

2
πx

�
sin

�
1

2
πy

�
, see [34, Table 1].
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Fig. 5.2. Data points distribution for examples in Section 5.1 and Section 5.2.

comparison. We only demonstrate the x-derivatives; results for the y-derivatives are
similar and are omitted here.

The full interpolant sδ,X and its x-derivative are shown in Figure 5.3. As we see
in Section 3.1, the presence of noise does not introduce instability to the interpolation
problem. On the other hand, we observe serious oscillations in the derivatives of the
full interpolant, see Figure 5.3(b).

The MSK(3,2) regularized interpolants with αLC = 5.0626e-14 (566 nonzero frame
coefficients) are shown in Figure 5.4. The regularized interpolant in Figure 5.4 is very
similar to Figure 5.3 but with less local structures. The derivative of the regularized
interpolant in Figure 5.4(b) clearly reveal the local features of the landscape.

The MSK(m,σ) method assumes the unknown function f lies in NΦ and LC
regularizes the interpolant accordingly. If σ is too large, the multiscale kernel Φσ is
very smooth and the MSK scheme will over-regularize the interpolant. Fortunately,
nothing will become unbounded. To see this, if we can write the unknown function
f 6∈ NΦ as f = f1 + f2 where f1 ∈ W σ,2 and f2 ∈ L2(Ω) ∩ C(Ω) then our results
in Section 3.1 apply consequently. As an example, Figure 5.5 shows the regularized
interpolant of MSK(3,3). The regularization parameter is αLC = 3.8654e-12 resulting
in 122 frame coefficients. The resulting regularized interpolant in Figure 5.5 is much
smoother than that of MSK(3,2) in Figure 5.4. In fact, it seems too smooth for the
landscape data.

For rough data from a function f 6∈ NΦ, we shall treat αLC as an upper estimated
parameter. To capture more local features, we could use a regularization parameter
0 < α < αLC and obtain results similar to the one from MSK(3,2). The resulting
interpolant will contain more local features with any 0 < α < αLC , while the oscil-
lation in its derivatives are still relatively well behaved. However, we have no robust
routine for choosing an optimal regularization parameter in this case.

For unevenly distributed data points, the tolerance to roughness should be pro-
portional to the local density of data points, e.g. a threshold of the form tσ(j, k).
Regions with high data points density are expected to have more local features and
higher roughness should therefore be allowed. This allows smooth kernels to capture
more local features of the given data set in certain regions. An example of such a den-
sity measure is the number of data points in the support of each function ϕ(2j · −k);
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the information is already available after computing the frame coefficients. We leave
this as an open question for future study.

6. Conclusion. We solve a classical ill-posed numerical differentiation problem
by a state-of-the-art matrix-free multiscale kernel based multivariate interpolation
method. The theoretical stability for this ill-posed problem is investigated. The
Tikhonov regularization and the L-curve method are employed to obtain a regu-
larized interpolant. The advantages of the proposed method are (1) the ability to
handle problems in higher dimensions, (2) the flexibility to handle real-life, noisy and
multiple-valued data, and (3) the efficiency due to the resultant sparse matrix sys-
tems. Numerical examples are given for a bivariate test problem that shows results
competitive with the thin plate spline based method and a landscape data set that
shows the stability of our scheme even when the unknown function may not be smooth
enough for our assumptions.
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Fig. 5.3. Full interpolant for the landscape data and its x-derivatives.
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Fig. 5.4. MSK(3,2) regularized interpolant for the landscape data and its x-derivatives.
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Fig. 5.5. MSK(3,3) regularized interpolant for the landscape data and its x-derivatives.


