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Abstract. Partial differential equations (PDEs) on surfaces appear in many applications through-
out the natural and applied sciences. The classical closest point method (Ruuth and Merriman, J.
Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method for solving PDEs on surfaces
using standard finite difference schemes. In this paper, we formulate an explicit closest point method
using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal
gradients method (Piret, J. Comput. Phys. 231(14):4662-4675, [2012]), our proposed method uses
RBF centers on regular grid nodes. This formulation not only reduces the computational cost but
also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with
a grid based manifold evolution algorithm (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024,
[2009]). When compared to the standard finite difference discretization of the closest point method,
the proposed method requires a smaller computational domain surrounding the surface, resulting in
a decrease in the number of sampling points on the surface. In addition, higher-order schemes can
easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a
variety of examples are provided to illustrate the numerical convergence of the method.
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1. Introduction. Many applications in the natural and applied sciences require
the solution of partial differential equations (PDEs) on surfaces. Image processing
applications include the placement of an image on a surface [41], the restoration of a
damaged pattern on a surface [3] and the segmentation and the denoising of images on
surfaces [39, 5]. In biology, applications include the formation of patterns on animal
coats [32] and the wound healing process [33]. In computer graphics, applications are
found in the topic of real time fluid visualization on surfaces [2].

Various numerical methods have been developed to approximate the solution of
PDEs on surfaces. These include methods applied on parametrized surfaces, on trian-
gulated surfaces and on surfaces embedded in a higher dimensional space. Solution of
PDEs on parametrized surfaces can be efficient for surfaces where a parametrization
is possible [25, 12], however a parametrization of a surface often leads to distortions
of the surface and singularities [12]. Triangulated surfaces avoid these issues. Finite
difference methods can be applied to solve PDEs on triangulated surfaces [41], but
there are difficulties in the calculation of geometric quantities, including the normal
vector and the curvature of a surface [4]. On the other hand, finite element methods
on triangulated surfaces are effective in solving parabolic or elliptic PDEs [10]. Meth-
ods using surfaces embedded into a d-dimensional space extend the surface PDE in
the embedding space and solve the extended PDE using standard Cartesian methods.

A popular method employs a level set representation of surfaces and a projection
operator to solve surface PDEs [22, 14]. Typically, the computational domain consists
of points in a neighborhood of the surface. This may lead to the introduction of
artificial boundary conditions at the boundary of the computational domain which
can degrade the accuracy of the method [7]. Meshfree approximations using radial
basis functions (RBFs) are also becoming popular within the embedded surfaces class
[19, 37].
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The closest point method [36] is an embedding method which uses a closest point
representation of the surface to solve PDEs on surfaces. In the classical formulation
[36, 27], the discretization is carried out in a neighborhood of the surface using stan-
dard finite difference schemes and barycentric Lagrangian interpolation. The implicit
closest point method was introduced in [28] to provide a stable approximation of the
Laplace-Beltrami and other higher-order surface differential operators. Application
of the implicit closest point method to the solution of eigenvalue problems appears
in [26]. See also [29] for a study of the theoretical foundation of the closest point
method.

The extension via the closest point mapping is also used as part of the development
for other methods for solving surface PDEs. In [35], the author uses the closest point
mapping to derive an RBF method for solving surface PDEs. The method gives a
high-order approximation to the solutions of surface PDEs in a variety of examples.
See also [7] for a related RBF method that carries out a local approximation of surface
differential operators to solve PDEs on folded surfaces. In addition, the extension via
the closest point mapping is used in the computation of integrals over curves and
surfaces [23] and in the solution of PDEs on closed, smooth surfaces using volumetric
variational principles [8].

In this paper, we propose a new method using a closest point representation
of a surface and finite difference stencils derived from radial basis functions (RBF-
FD). Notably, the use of RBF-FD leads to a method (RBF-CPM) that evaluates
derivatives on the surface, rather than in the embedding space. This eliminates the
interpolation step in the evaluation of derivatives, thereby eliminating a potential
source of error and computational cost. In addition, standard RBF-FD and global
RBF methods for surface PDEs may suffer ill-conditioning due to small separating
distances in the surface points [44]. Our method uses RBF-FD stencils on regular
Cartesian grid nodes, thus allowing irregular collocation points on the surface and
avoiding the ill-conditioning that may arise due to point clustering on the surface.
Due to the regularity of the RBF-FD stencil, the collocation matrix associated with
the calculation of the RBF-FD weights is independent of the surface, and its inverse
can be accurately calculated locally. Due to repeated patterns on the RBF centers,
only a small number of collocation matrix inverses need to be calculated, thus reducing
the computational cost over existing RBF methods.

In our method, second-order accuracy in ∆x can be achieved with smaller com-
putational domains and fewer points on the surface relative to the classical closest
point method. Furthermore, higher-order schemes are obtained simply by increasing
the number of points in the finite difference stencil.

The paper unfolds as follows. In Section 2, we review the classical closest point
method and RBF approximation. Section 3 gives our new method and studies the
selection of parameters and the computational domain. Section 4 considers the perfor-
mance of the method using a variety of convergence studies and numerical examples in
two and three dimensions. Finally Section 5 concludes and explores potential future
work.

2. Numerical methods review.

2.1. The closest point method. The classical closest point method [36] is a
simple numerical method for approximating the solution of PDEs on surfaces. In this
section, we review the method and its components.
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2.1.1. Surface representation. To begin, the closest point to the surface is
defined:

Definition 2.1. Let Γ ⊂ Rd be a surface and z ∈ Ω ⊂ Rd be some point in the
embedding space Ω ⊃ Γ. Then,

cpΓ(z) = arg min
x∈Γ
‖x− z‖2

is the closest point of z to the surface Γ. In a neighborhood of the surface, cpΓ will
be Cp-smooth for a Cp+1-smooth surface Γ [29].

To discretize, a Cartesian grid is introduced in the embedding space, over a neigh-
borhood of the surface. Typically, this neighborhood includes all grid nodes whose
Euclidean distance to the surface is less than or equal to some constant γCPM . Follow-
ing a common convention (e.g., [24]), we refer to this localized computational domain
as the computational tube, and the corresponding radius γCPM as the computational
tube radius. To avoid introducing discontinuities into cpΓ, the computational tube
radius should satisfy γCPM < κ−1

∞ , where κ∞ is an upper bound on the curvatures of
Γ [8]. The grid points and their closest points together form a closest point represen-
tation of the surface Γ.

The method used to determine the closest point function depends on the type of
surface under consideration. For simple surfaces, such as the sphere and the torus,
an analytical formula for the closest point function is available, and the preferred
approach is to simply evaluate the formula. On the other hand, for ellipsoids, the
Möbius strip, and many other interesting shapes, the surface may be given in pa-
rameterized form. Here, standard numerical optimization techniques can be applied
to find the closest point on the surface (cf. [31]). Finally, we consider surfaces in
triangulated form. In this case, we follow [27] and loop over the list of triangles. For
grid nodes near a triangle Ti (specifically, nodes that are within a Euclidean distance
γCPM of Ti), we compute and store the closest point on Ti. For each grid node, the
closest point over all stored possibilities is the closest point on the surface. See [27]
for further details on this procedure. Another approach which follows the causality
of the eikonal equation can also be applied [40].

2.1.2. The equivalence principles. In the closest point method, we do not
solve the surface PDE problem on the surface directly. Instead, we solve a suitable
differential equation defined over the computational domain. The key property of
this differential equation (the embedding equation) is that its solution on the surface
must agree with the solution to the original surface PDE. Values off the surface do
not directly give the solution to the PDE-on-surface problem.

To form the embedding equation, surface derivatives are replaced with closest
point operators and standard Cartesian derivatives. The foundation of this procedure
consists of two principles [36, 6]: the equivalence of gradients and the equivalence of
divergence.

Principle 1. Let v be any function on Rd that is constant along normal directions
of Γ. Then, at the surface, intrinsic gradients are equivalent to standard gradients,
∇Γv = ∇v.

Principle 2. Let v be any vector field on Rd that is tangent to Γ and tangent to
all surfaces displaced by a fixed distance from Γ. Then, at the surface, ∇Γ ·v = ∇·v.

General surface differential operators can be replaced with the corresponding
Cartesian differential operators by combining the two principles. Of particular interest
to us is the composition of the divergence and gradient operators: Let u be any
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function on Rd that is constant along normal directions of Γ. Then, on the surface, the
Laplace-Beltrami operator is equivalent to the standard Laplacian operator, ∆Γu =
∆u for all x ∈ Γ. This property is referred to as the equivalence of the Laplacian. As
a consequence, heat flow intrinsic to a surface can be approximated by alternating
constant-along-normal extension with standard heat flow in the underlying embedding
space. Other, similarly straightforward combinations of the gradient and divergence
principles lead to replacements for nonlinear diffusive flows such as curvature motion
intrinsic to a surface [31, 36]. Higher-order operators can also be approximated in the
embedding space, although additional extension operators may be needed. See, for
example, [28] where two extension operators are used as part of the approximation of
fourth-order operators.

2.1.3. The closest point method. Evolution of the embedding equation may
be carried out in a similar fashion, to yield the explicit closest point method [36].
Specifically, given a closest point representation of a surface Γ, the explicit closest
point method alternates between the following two steps:

1. Closest point extension. Carry out a constant-along-normal extension of
u : Γ → R to yield ũ : Ω → R by ũ(z) = u(cpΓ(z)) for each z in the tubular
computational domain Ω ⊃ Γ.

2. Evolution. The PDE is solved on the tubular computational domain Ω in the
embedding space for one time step (or one stage of a Runge-Kutta method).

Note that the closest point extension step is an interpolation step since cpΓ(z)
is not necessarily a grid point. In [36], barycentric Lagrange interpolation is used
with polynomial degree p = q + r − 1, where q is the order of finite differences
schemes and r is the order of the derivatives. Localization of the computation is
accomplished by computing over a computational tube surrounding the surface [36,
28]. For second-order finite differences and second-order derivatives, it is sufficient to
choose a computational tube radius of γCPM where

γCPM =

√
(d− 1)

(
p+ 1

2

)2

+

(
1 +

p+ 1

2

)2

∆x(2.1)

in a d-dimensional embedding space [36].

2.2. Global Radial Basis Function (RBF) approximation. RBF approxi-
mation is a powerful tool for approximating smooth functions on a variety of geome-
tries. Following [11, 16], given an RBF φ(r) (see Table 2.1 for some RBF options)
and a set of scattered points Z = {zj}nZ

j=1 called RBF centers, the RBF interpolant
has the form

s(x) =

nZ∑
j=1

λjφ(‖x− zj‖)(2.2)

with coefficients λj . For the RBF interpolation of any smooth function v : Ω → R,
the coefficients λj can be found by interpolation conditions at Z ⊂ Ω, i.e. by solving
the symmetric linear system

A(Z,Z)λ = v(Z),(2.3)

for λ = [λj ] ∈ RnZ×1, where v(Z) := [v(zj)] ∈ RnZ×1 and A(Z,Z) := [φ(‖zi−zj‖)] ∈
RnZ×nZ for zi, zj ∈ Z in an orderly sense.
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Name of RBF Abbreviation Definition
Smooth RBFs

Gaussian GA φ(r) = e−(εr)2

Multiquadratic MQ φ(r) =
√

1 + (εr)2

Inverse multiquadratic IMQ φ(r) =
1√

1 + (εr)2

Inverse quadratic IQ φ(r) =
1

1 + (εr)2

Piecewise smooth RBFs
Cubic CU φ(r) = |r|3
Thin plate spline TPS φ(r) = r2 ln |r|

Table 2.1
Definition of some commonly used RBFs.

Then, we can use the interpolant to approximate the derivatives of v. If L is a
differential operator, then the quantity Lv at some point x can be approximated as

Lv(x) ≈ Ls(x) =

nZ∑
j=1

λjLφ(‖x− zj‖),(2.4)

in which L acts upon the variable x in the basis function φ. In matrix form, we can
express (2.4) as

Lv(x) ≈ B(x, Z)A(Z,Z)−1v(Z),(2.5)

whereB(x, Z) = [Lφ(‖x−z1‖), . . . , Lφ(‖x−znZ
‖)] ∈ R1×nZ . This expression provides

a radial basis function pseudo-spectral method, which can be easily localized to give a
RBF finite difference discretization (RBF-FD) for the differential operator L evaluated
at the data site x ∈ Ω. Some compact RBF-FD stencils can be found in [15] for
applications in geosciences. Details on RBF-FD stencils that use a given number of
nearest neighbors are found in [13].

3. A closest point method for solving PDEs on surfaces using RBF-FD.
In this section, we introduce an explicit RBF closest point method for solving PDEs
on surfaces. Our method uses RBF-FD stencils that consist of m closest neighboring
grid points. As part of our method, we provide an approach for the calculation of a
computational tube around the surface.

For illustration purposes, consider the heat equation

ut = ∆Γu(3.1)

intrinsic to a surface Γ, where u : Γ → R is a function defined solely on the surface.
Using a set of specially constructed surface data points X = {xj} ⊂ Γ, our aim is to
design an efficient, accurate, and robust finite difference scheme in order to spatially
discretize equation (3.1), i.e.

[∆Γu](X) ≈Wu(X),

where W is a differentiation matrix that takes the vector of function values u(X) :=
[u(xj)]xj∈X to the approximated values of ∆Γu at X.
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In the literature, this can be done by the orthogonal gradients method [35] and
projection methods [19] using RBFs, in which the geometry of X plays a key role
in the numerical stability. In the orthogonal gradients method, the RBF centers
Z = {zj} are constructed by extending the surface points X in the embedding space
in the normal direction. The geometry of the surface Γ and the points X determine
that of Z, which should ideally be quasi-uniform. Projection methods work solely on
X with the corresponding analysis carried out in Sobolev spaces on Γ. Like other
typical kernel approximation theories, convergence comes when X gets dense, i.e. as
the fill distance hX −→ 0. Both approaches involve solving interpolation problems,
whose conditioning depends on the minimum separating distance qX of X [44]. Thus,
it is common to require that the mesh ratio ρX := hX/qX ≥ 1 of the surface points is
bounded. In short, quasi-uniform points X need to be used on surfaces, which may
not be an easy task.

Finite difference schemes, on the other hand, work on regular grids with mesh
ratio exactly equal to 1. Yet, extra work is required to apply finite differences to
surfaces in general (e.g., the original closest point method [36]). We propose a new
RBF kernel based formulation to get the best of both worlds.

3.1. Description of the method. We start with a collection of Cartesian grid
points Z = {zj}nZ

j=1 ⊂ Ω on a small tubular domain containing the surface Γ. Then,
we define surface data points via xj = cpΓ(zj) to form a set X = {xj}nZ

j=1 ⊂ Γ; see
Figure 3.1 for a schematic demonstration. Applying the equivalence of the Laplacian
property yields the relation

∆Γu(X) = ∆ũ(X),

which holds for any X ⊂ Γ, and where we denote the constant-along-normal extension
of u by ũ : Ω→ R.

We now deploy the methodology locally to obtain an RBF-FD approximation.
For each surface point xj = cpΓ(zj) for some zj ∈ Z and j = 1, . . . , nZ , let Zj =
{zj1 , . . . , zjm} ⊂ Z denote the m nearest neighborhood of xj . Locally, we take the
xj–local interpolant of ũ using basis function φ at centers Zj , denoted by sj below,
as the function v in Section 2.2. Then, (2.5) gives an approximation scheme

∆ũ(xj) ≈ ∆sj(xj)

= B(xj , Zj)A(Zj , Zj)
−1ũ(Zj)

=: wj ũ(Zj).

In other words, the nonzero RBF-FD weight wj ∈ R1×m is given as the product
of a row vector B(xj , Zj) = [∆φ(‖xj − zj1‖), . . . ,∆φ(‖xj − zjm‖)] ∈ R1×m and the
inverse matrix of A(Zj , Zj) = [φ(‖zjk − zj`‖)] ∈ Rm×m for zjk , zj` ∈ Zj . Using wj

for j = 1, . . . , nZ , we can assemble the RBF-FD matrix W such that

∆Γu(X) = ∆ũ(X) ≈Wũ(Z).(3.2)

In addition, we also construct an RBF-FD projection matrix P such that

u(X) = ũ(X) ≈ Pũ(Z),(3.3)

simply by replacing ∆ with the identity map in the computation. The matrix P will
appear later as part of our time-stepping scheme.
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Note that all approximations are done in the embedding space, which is inde-
pendent of the geometry of X. By using a regular Z, we obtain collocation matrices
A(Zj , Zj) that depend on the geometry of Zj , but are independent of the surface Γ.
Thus, we can precompute all A(Zj , Zj)

−1, and the evaluation of each RBF-FD weight
requires only matrix-vector multiplications. As a consequence, we can employ accu-
rate and expensive solvers to compute the A(Zj , Zj)

−1 matrices without harming the
overall performance of the proposed method. This greatly improves computational
efficiency over the existing methods in which no matrix inverse can be reused due to
the lack of repeated pattern in data point geometry.

The RBF finite difference stencil used in this paper consists of the m closest grid
points Zj , to each surface point xj . Methods that use RBF-FD stencils of a given
number of nearest neighbors on scattered nodes require the use of quasi-uniform nodes
on the surface [37]. By using RBF-FD stencils on the grid nodes, we avoid the ill-
conditioning of the RBF-FD matrices that arises from the clustering of nodes on
the surface. Figure 3.1 shows an example of an RBF-FD stencil that consists of the
m = 13 closest grid points to a particular surface point (displayed using a squared
red dot).

Fig. 3.1. Left: The closest points (red dots) to the grid points in the computational domain
(blue dots) on the surface. Right: An example of a m = 13 point stencil (circled blue dots) for a
surface point (squared red dot).

We are now ready to temporally discretize the heat equation

ut = ∆Γu

intrinsic to the surface Γ. Using the forward Euler scheme with spatial discretization
at X ⊂ Γ as above, we have

u(X, tn+1) = u(X, tn) + ∆t∆Γu(X, tn) +O(∆t2),(3.4)

for tn = n∆t. Recall that in our proposed setup Z ∈ Ω is regular, whereasX = cpΓ(Z)
could be highly nonuniform. It is desirable to work on the Z nodes.

Let ŨnZ be the approximated values of ũ(·, tn) on Z and at time tn. This time-

stepping scheme is initialized using the initial condition Ũ0
Z := ũ(Z, 0) = u(X, 0). It

is equivalent to consider the discrete equation of the constant-along-normal extended
function, and (3.4) becomes

u(X, tn+1) = ũ(X, tn) + ∆t∆ũ(X, tn) +O(∆t2), n ∈ N.(3.5)
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We use (3.2) and (3.3) to approximate the right hand side from the stored approxi-

mated solution values ŨnZ ≈ ũ(Z, tn). Note that we do not use pointwise projection,

i.e., ũ(X, tn) ≈ ŨnZ , because ŨnZ contains discretization and approximation errors.
Using (3.3) to approximate ũ(X, tn) introduces some averaging into the approxima-
tion and increases numerical stability. Indeed, Figure 3.2 shows the eigenvalues of
the discretization of equation (3.5) on the unit circle for m = 13 points, a grid size
of ∆x = 0.025 and a time step-size of ∆t = 10−6. The scheme that uses pointwise
projection leads to an unstable system (eigenvalues larger than 1) whereas a stable
approximation can be achieved using the projection operator.

Fig. 3.2. The eigenvalues of the discretization of the heat equation using forward Euler in
time with ∆t = 10−6, a grid size of ∆x = 0.025 and m = 13 points in the RBF-FD stencil. Left:
The eigenvalues using the discretization I + dtW , where I is the identity matrix and W is the
discretization of the Laplacian. Right: The eigenvalues using the discretization P + dtW , where P
is the projection matrix and W is the discretization of the Laplacian.

By design, we have u(X, tn+1) = ũ(Z, tn+1), whose approximated values will be

used to define Ũn+1
Z . With all of the above considered, the approximate solution can

be updated from time tn to tn+1 by

Ũn+1
Z := (P + ∆tW )ŨnZ , n ∈ N.(3.6)

In (3.6), the exterior Z nodes are also used implicitly in the construction of RBF-
FD matrices P and W defined in (3.2) and (3.3) as RBF centers. In other words,
the proposed RBF-CPM runs solely based on RBF interpolations with the regularly
placed Z nodes. To evaluate the numerical approximation, say at X ∈ Γ for simplicity,
one can evaluate u(X, tn) ≈ PŨnZ . Other time-stepping schemes are also possible. In
our experiments, we use the third-order, three-stage SSP Runge-Kutta scheme [38]
in advection-dominant problems due to its good linear stability along the imaginary
axis. For simplicity, and to differentiate from other methods, we shall refer to our
RBF discretization as the RBF-CPM.

Given a collection of Cartesian grid points Z = {zj}nZ
j=1 in a small tubular domain

Ω that contains the surface Γ, the algorithm of the RBF-CPM for a time dependent
PDE consists of the following steps:

1. Compute the set of surface points X = {xj}nZ
j=1 ∈ Γ via the closest point

representation of the surface Γ: xj = cpΓ(zj), for zj ∈ Z, j = 1, . . . , nZ .
2. Compute the RBF-FD matrices, i.e. the matrices P and W in (3.2)-(3.3).

For each surface point xj , j = 1, 2, . . . , nZ :
(a) Find the m closest grid points Zj = {zji}mi=1 to xj .
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(b) Compute the RBF-FD weight wj at the surface node xj .
3. Solve the surface PDE using an explicit time-stepping scheme, e.g. (3.6),

until the final time.
Our method allows pre-computation for solving local linear systems; provided that
two local neighborhoods Zi and Zj share the same geometrical arrangement, the cor-
responding interpolation matrices are identical, i.e, A(Zi, Zi) = A(Zj , Zj). Therefore,
an expensive but accurate method can be used.

3.2. Parameters. The convergence order of the RBF-FD schemes is limited by
the smoothness of the employed kernel and the geometry of the RBF centers [9]. In
this paper, we employ Gaussian RBFs so that the smoothness of the kernel will not
be a limiting factor. To avoid any potential problem of ill-conditioning, we use the
stable RBF-GA method which provides an accurate and stable algorithm and is a
cheaper stabilization method over RBF-QR [18]. These stabilization techniques are
independent of the condition number of the matrix A (see Section 3.1) using a direct
calculation using Gaussian RBFs [17, 18].

There are two parameters appearing in the RBF-CPM. These are the shape pa-
rameter ε of the Gaussian RBFs and the number of points m in the stencil used
locally for the RBF interpolation. While this section considers the dependence of the
numerical method on both parameters, our emphasis will be on the number of points
m. The parameter ε was found to have little effect on our results.

We consider two test problems to measure the error of the discrete Laplace-
Beltrami operator in comparison to the exact. The first test problem (P1) approx-
imates the Laplace-Beltrami operator applied to the function u(θ) = sin(θ) on the
unit circle. The relative error in this problem can computed using the known, exact
solution ∆Γu = −u. In our second problem (P2), the Laplace-Beltrami operator is
applied to the function u(θ, φ) = sin(φ) on the unit sphere Γ

Γ =
{

x : x(θ, φ) = (cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)),−π ≤ θ < π,−π
2
≤ φ ≤ π

2

}
.

Here, the relative error can be computed using the known, exact solution ∆Γu = −2u.

Fig. 3.3. Relative error as a function of grid spacing ∆x for various stencils for the approxi-
mation of the Laplace-Beltrami operator. Left: problem P1 (two dimensions). Right: problem P2
(three dimensions). All experiments use ε = 1.

We apply the RBF-FD method in Equation (3.2) to test problems P1 and P2 for
various mesh spacings and selected m-values. See Figure 3.3 for the corresponding
max norm relative errors. We find that the observed order of the method increases as
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the number of points in the finite difference stencil increases. Due to the regularity
of the grid spacing, and the smoothness of the kernel, our choice of parameter ε has
little effect on the results. In particular, the observed orders of convergence for ε = 1,
ε = 0.1 and ε = 0.001 are the same for problems P1 and P2. For this reason, we
simply choose ε = 1 in the numerical experiments presented in Section 4.

3.3. Computational tube. The RBF-FD stencils used in the RBF-CPM, i.e.,
Zj ⊂ Z for j = 1, . . . , nZ , are formed using the m-nearest neighboring regular grid
points with a predetermined spacing ∆x. For such problems, the matrix-based for-
mulation of the closest point method [28] can be used to obtain the minimal-sized
computational tube. In this paper, we can take a simpler approach to identify the
computational tube by identifying a sufficiently large tube radius γ.

Consider the Gauss circle problem [43]. In its standard form, it is posed as follows:
Find the number of integer lattice points m inside a circle with radius r centered at
the origin. We shall consider a related formulation: Find the number of ordered pairs
(x, y), with integers x, y ≥ 0, such that

x2 + y2 ≤ q

where the radius of the circle is chosen as r =
√
q, for a fixed integer q ≥ 0. General-

izations to higher dimensions are also available. In three dimensions, the problem uses
a sphere centered at the origin. In this case, we find the number of ordered triplets
(x, y, z), with integers x, y, z ≥ 0, such that

x2 + y2 + z2 ≤ q

where the radius of the sphere is r =
√
q, for an integer q ≥ 0.

The integer solutions of the Gauss circle problem and its generalization to three
dimensions are given by sequences A057655 (two dimensions) and sequences A117609
(three dimensions) in the On-Line Encyclopedia of Integer Sequences [1]. Table 3.1
shows some of the integer solutions for the Gauss circle problem in two and three
dimensions.

q m (2D) m (3D)
0 1 1
1 5 7
2 9 19
3 9 27
4 13 33
5 21 57

Table 3.1
The number of lattice points m contained in a ball with radius r =

√
q in two and three

dimensions.

For a stencil that uses the m closest grid nodes to a surface point, a circle can
be constructed centered at the surface point that contains these m grid nodes. In
order to construct a computational tube around the surface using the Gauss circle
problem, we need to find a sufficiently large circle independent of the position of the
surface point relative to the surrounding grid nodes. In the optimal case, the surface
point lies on a grid node; see Figure 3.4 (left). In such an occurrence, the Gauss circle
problem can be applied directly, scaled properly with the grid size ∆x. Otherwise,
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the surface point does not lie on a grid node. In order to use the Gauss circle problem,
the distance between the surface point and its closest grid node needs to be added to
the radius r of the Gauss circle problem. The worst case appears in Figure 3.4, where
the surface point lies midway between all four surrounding grid nodes.

Fig. 3.4. Two cases of a surface point (black x) placement in a mesh grid (blue dots).

To guarantee a sufficiently large circle/sphere radius, we must allow for the worst
case. This leads to a relation between the computational tube radius γ (corresponding
to the circle/sphere radius r) and the number of points m in the RBF-FD stencil; see
Table 3.2.

γ (2D) m (2D) γ (3D) m (3D)

(
√

2 +
√

2/2)∆x 9 (
√

3 +
√

3/2)∆x 27

(2+
√

2/2)∆x 13 (2+
√

3/2)∆x 33

(
√

5 +
√

2/2)∆x 21 (
√

5 +
√

3/2)∆x 57

(
√

8 +
√

2/2)∆x 25 (
√

6 +
√

3/2)∆x 81

(
√

8 +
√

3/2)∆x 93
Table 3.2

Computational tube radius γ for an m-point RBF-FD stencil in two and three dimensions.

4. Numerical experiments. In this section, we test our method, the RBF-
CPM, on a number of examples in two and three dimensions. For problems involving
the Laplace-Beltrami operator, we choose m = 13 in two dimensions and m = 57 in
three dimensions, which provides a second order approximation for smooth solutions
(cf. Figure 3.3). The radius of the computational tube is set according to the values
specified in Table 3.2. Finding the optimal RBF shape parameter is out of the scope
of this paper, and thus we set ε = 1 (unscaled Gaussian RBFs are used). Unless
stated otherwise, forward Euler with a time step-size ∆t = 0.1∆x2 is used for the
discretization of the time derivatives.

4.1. Examples in two dimensions. First, we perform numerical experiments
for applications in two dimensions to test the convergence of the proposed method.

4.1.1. Heat equation on a circle. In our first experiment, we consider the
heat equation

ut = ∆Γu

intrinsic to the unit circle Γ. Following [36], for an initial profile u(θ, 0) = sin θ, the
exact solution is

u(θ, t) = e−t sin θ.
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Fig. 4.1. The computational tube around the semicircle, including internal grid points (blue
dots) and ghost points (black dots), along with their corresponding closest points on the semicircle
(red dots).

Using an analytic closest point representation of the unit circle, the surface heat
equation is discretized and solved using Equation (3.6). Table 4.1 shows the relative
errors as well as the convergence rates for different grid sizes ∆x and number of
points N on the computational domain. The convergence rate here appears to be
at least second-order. Using the original closest point method, the number of points
in the computational tube that are required for a second order approximation with
∆x = 0.00625 is 7276, whereas our method uses 5464 points. This corresponds to a
reduction of 25%.

∆x N Rel. error (t = 1) Conv. rates
0.2 172 7.15×10−3 -
0.1 336 1.22×10−3 2.55
0.05 688 2.23×10−4 2.46
0.025 1376 5.15×10−5 2.11
0.0125 2708 1.35×10−5 1.93
0.00625 5464 3.15×10−6 2.10

Table 4.1
Relative errors and convergences rates for the approximate solution at time t = 1 for the heat

equation on the unit circle. Errors are measured in the infinity norm.

4.1.2. Heat equation on a semicircle. Next, we consider the surface heat
equation on the unit semicircle with homogeneous Dirichlet boundary conditions.
Given an initial profile u(θ, 0) = sin θ, the exact solution is

u(θ, t) = e−t sin θ.

Following [26], we introduce a modified closest point mapping cpΓ(z) = cpΓ(2cpΓ(z)−
z) which equals cpΓ(z) for points z that map to the interior of the semi-circle. Grid
nodes that satisfy cpΓ(z) 6= cpΓ(z) are called ghost points zg. At such points, the
function u is extended by −u(cpΓ(zg)). Figure 4.1 shows the computational tube
used in this example.

Table 4.2 presents the relative errors as well as the convergence rates for different
grid sizes ∆x and number of points N on the computational domain. Second-order
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convergence is observed. Using the original closest point method, the number of
points in the computational tube that are required for a second order approximation
at ∆x = 0.00625 is 3682, whereas the RBF-CPM uses 2756 points.

∆x N Rel. error (t = 1) Conv. rates
0.2 110 7.38×10−3 -
0.1 192 1.14×10−3 2.69
0.05 368 2.12×10−4 2.43
0.025 712 5.02×10−5 2.08
0.0125 1378 1.34×10−5 1.91
0.00625 2756 3.13×10−6 2.09

Table 4.2
Relative errors and convergence rates for the approximate solution at time t = 1 for the heat

equation on the unit semicircle. Errors are measured in the infinity norm.

4.1.3. Advection equation on an ellipse. The next example is the advection
equation on an ellipse. Following [36], the equation

ut + us = 0,

with s being the arclength, is imposed on an ellipse with major axis b = 1.25 along
the y-axis and minor axis a = 0.75 along the x-axis. By [36], application of the closest
point principles to the surface PDE leads to the embedding PDE

ut + T(x, y) · ∇u = 0

with

T(x, y) =
(−y/b2, x/a2)√
y2/b4 + x2/a4

.

For an initial profile u(s, 0) = sin3(2πs/L), the exact solution for subsequent times
t ≥ 0 is

u(s, t) = sin3(2π(s− t)/L),

where L is the length of the perimeter of the ellipse. Using a parametrization for
the ellipse, the closest point representation is calculated via optimization techniques.
Due to the generic centered nature of the RBF-FD stencils used for approximating the
first-order derivatives, the TVD-RK3 scheme [20] is chosen for the time discretization
with a time step-size ∆t = 0.5∆x. In this example, the computational tube radius
is γ = (

√
2 +
√

2/2)∆x with m = 9 points in the finite difference stencil. Table 4.3
shows the error at the final time t = 1 and the estimated order of convergence of the
method for various grid spacings and number of points in the computational domain.
Second-order convergence is observed. The number of points in the computational
tube that are required for a second order approximation at ∆x = 0.00625 using the
original closest point method is 7276. Our method uses 41% fewer points.

4.1.4. Advection-diffusion equation on an ellipse. Our next example con-
siders advection-diffusion on an ellipse. The equation

ut + us = uss,
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∆x N Rel. error (t = 1) Conv. rates
0.2 136 8.99×10−2 -
0.1 272 9.80×10−3 3.20
0.05 552 2.25×10−3 2.12
0.025 1080 5.59×10−4 2.01
0.0125 2168 1.40×10−4 2.00
0.00625 4332 3.51×10−5 1.99
0.003125 8652 8.75×10−6 2.00

Table 4.3
Relative errors and convergences rates for the approximate solution at time t = 1 for the

advection equation on an ellipse. Errors are measured in the infinity norm.

with s being the arclength, is imposed on an ellipse with major axis b = 1.25 (along the
y-axis) and minor axis a = 0.75 (along the x-axis). Similar to the previous example,
application of the closest point principles to the surface PDE gives

ut + T(x, y) · ∇u = ∆u

with

T(x, y) =
(−y/b2, x/a2)√
y2/b4 + x2/a4

.

For an initial profile u(s, 0) = sin(2πs/L), the exact solution has the form

u(s, t) = e−2πt/L sin(2π(s− t)/L),

where L is the length of the perimeter of the ellipse. Table 4.4 shows the relative error
of the approximate solution compared to the exact as well as the estimated order of
convergence. Second-order convergence is observed.

∆x N Rel. error (t = 1) Conv. rates
0.2 172 9.66×10−3 -
0.1 348 1.34×10−3 2.85
0.05 692 4.88×10−4 1.46
0.025 1384 1.25×10−4 1.97
0.0125 2792 2.72×10−5 2.20
0.00625 5552 6.86×10−6 1.99
0.003125 11100 1.68×10−6 2.03

Table 4.4
Relative errors and convergence rates for the approximate solution at time t = 1 for the

advection-diffusion equation on an ellipse. Errors are measured in the infinity norm.

4.2. Examples in three dimensions. Next, we apply our proposed method
to examples in three dimensions.

4.2.1. Heat equation on a sphere. For our first three dimensional example,
consider the heat equation

ut = ∆Γu
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on the unit sphere Γ. For an initial profile u(θ, φ, 0) = sinφ, the exact solution for all
times t is

u(θ, φ, t) = e−2t sinφ.

An analytic closest point representation of the unit sphere is used and the surface
heat equation is discretized and solved using Equation (3.6). Table 4.5 shows the
relative errors as well as the convergence rates for different grid sizes ∆x and number
of points N in the computational tube. Second-order convergence is observed. Using
∆x = 0.0125 and a second order finite difference discretization in the original closest
point method leads to 663880 points in the computational domain, while the RBF-
CPM uses 498392 points. This corresponds to a reduction of 25%.

∆x N Rel. error (t = 1) Conv. rates
0.2 2240 8.18×10−3 -
0.1 8072 2.21×10−3 1.89
0.05 31416 5.42×10−4 2.03
0.025 125216 1.36×10−4 1.99
0.0125 498392 3.40×10−5 2.00

Table 4.5
Relative errors and convergence rates for the approximate solution at time t = 1 for the heat

equation on the unit sphere. Errors are measured in the infinity norm.

4.2.2. Advection on a torus. In this example, the solution of the advection
equation on a torus is approximated. Following [22], for a torus defined as

Γ =

{
x : x(φ, θ) =

((
1

2
cos(φ) + 1

)
cos(θ),

(
1

2
cos(φ) + 1

)
sin(θ),

1

2
sin(φ)

)
,−π ≤ θ, φ ≤ π

}
,

the advection equation is given by

ut + uφ = 0.

For an initial profile

u(φ, θ, 0) = f(φ) =

{
g(φ+π

π
), −π ≤ φ ≤ 0,

g(π−φ
π

), 0 < φ < π,

where

g(s) =
e1/(s−1) − e−1/s

e−1/s + e1/(s−1)
,

the exact solution at time t is

u(φ, θ, t) = f(φ− t).

In this example, an analytic closest point representation of the torus is used. The
computational tube radius is γ = (2 +

√
3/2)∆x and a stencil with m = 33 points is chosen.

The stable TVD-RK3 scheme is chosen for the discretization in time with step-size ∆t =
0.5∆x. Table 4.6 shows the error and the convergence rate of the method for various grid
sizes ∆x. Convergence is at least second-order. The number of points in the computational
tube that are required for a second order approximation at ∆x = 0.00625 using the original
closest point method is 4163904. Our method uses 30% fewer points.
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∆x N Rel. error (t = 1) Conv. rates
0.1 11392 1.76×10−2 -
0.05 45464 2.99×10−3 2.56
0.025 181480 4.88×10−4 2.62
0.0125 725200 9.52×10−5 2.36
0.00625 2901248 1.80×10−5 2.40

Table 4.6
Relative error and convergence rates for the approximate solution at time t = 1 for the advection

equation on a torus. Errors are measured in the infinity norm.

4.2.3. Image denoising on a sphere. Our next example concerns image denoising
for a textured image on the unit sphere. Following [5], we apply the Perona-Malik model to
denoise surface images. The equation has the form

ut = ∇Γ · (g(|∇Γu|)∇Γu)

where g is the diffusion coefficient given by

g(s) =
1

1 + (s/λ)2

and λ is a coefficient. The parameter λ and the final time t of the computation control the
denoising of an image.

To construct the initial image, we add Gaussian noise (zero mean and 0.2 standard
deviation) to the image of two birds. The noisy image is scaled to the interval [0, 1]. Figure 4.2
shows the results after denoising the image using λ = 5 and 120 time steps with ∆t = 0.2∆x2

and ∆x = 0.005. We find this choice for the parameter λ is sufficiently small to preserve
edges in the denoised image. In this example, the computational tube radius is chosen to be
γ = (2 +

√
3/2)∆x with m = 33 points in the stencil. The number of points in the image is

1280598.

4.2.4. Reaction-diffusion systems. Our final example evolves the Gray-Scott
reaction-diffusion model [21] on a triangulated surface. The Gray Scott model describes
the chemical reaction

U + 2V −→ 3V,

V −→ P,

where U , V and P are chemicals. The corresponding surface model has the form

ut = F (1− u)− uv2 +Du∆Su

vt = −(F + k)v + uv2 +Dv∆Sv

where u, v are the concentrations of the chemicals, Du, Dv are the diffusion rates, k is the
conversion rate from V to P and F is the feed rate of U .

For parameter choices of Du = 5 × 10−5 and Dv = 2.5 × 10−5, a variety of patterns
are observed as F and k are varied. Figure 4.3 shows two of these patterns on the surface
of the Stanford Bunny [42]. The closest point representation to the triangulated surface is
calculated according to the method described in Section 2.1.1. In this example, the final time
is 15000 and the time step-size is ∆t = (0.1/Du)∆x2 for a spatial grid size of ∆x = 0.025.
See Figure 4.3 for patterns arising for two different choices of the parameters F and k [30].
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Fig. 4.2. The initial image (top) is warped onto a sphere and Gaussian noise is added. The
noisy image (left) and the denoised image (right) are shown after 120 iterations on 1280598 points.

5. Summary. In this paper, an explicit closest point method is introduced that uses
finite differences derived from radial basis functions (RBF-FD). In our method, an RBF-FD
approximation of surface derivatives is formed using the m grid points closest to a surface
point. Localization of the computation is accomplished by computing over a tube whose
radius is obtained from the solution to the Gauss circle problem. An advantage of our al-
gorithm relative to the standard finite difference CPM is a reduction of the computational
tube radius, leading to the reduction of the grid points in the computational domain and
their corresponding closest points on the surface. Also, higher-order schemes are easily con-
structed by increasing the number of points in the finite difference stencil. When compared
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Fig. 4.3. The solution of the Gray-Scott reaction-diffusion model for parameters (k, F ) =
(0.062, 0.03) (left) and (k, F ) = (0.06, 0.037) (right).

to RBF methods, our algorithm does not require quasi-uniform distribution of points on the
surface. In addition, the repeated patterns in our computational geometry allows us to use
an algorithm to invert (a small number of) collocation matrices, thereby reducing computa-
tional cost over other existing methods. Numerical experiments are provided to validate the
method for different types of PDEs on surfaces.

The RBF-FD discretization introduced in this paper solves surface PDEs using explicit
time stepping methods. Implicit RBF-FD schemes which allow for large time steps for stiff
problems are also needed, and are a focus of our current work. Related to this, the approx-
imation of the eigenvalues of surface operators using the RBF-CPM method is particularly
interesting (cf. [26]). Another focus of our work is the solution of PDEs on moving surfaces.
In moving closest point representations, grid node deactivation may occur [24]. Methods
based on RBF-FD discretizations accommodate irregular stencils and are therefore particu-
larly attractive for such problems. For a discussion on the issue of grid node deactivation,
and an initial method using the original closest point method, see [34].
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