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Abstract. The aim of this paper is to present partial differential equations (PDEs) on surface

to the community of methods of fundamental solutions (MFS). First, we present an embedding

formulation to embed surface PDEs into a domain so that MFS can be applied after the PDEs is

homogenized with a particular solution. Next, we discuss how the domain-MFS method can be used

to directly collocate surface PDEs. Some numerical demonstrations were included to study the effect

of basis functions and source point locations.

1. Partial differential equations on surfaces. In this paper, we focus on

second-order elliptic partial differential equations (PDEs) posed on some sufficiently

smooth, connected, and compact surface S ⊂ Rd with bounded geometry. Without

loss of generality, we assume dim(S) = d − 1, a.k.a., S has co-dimension 1. We

denote the unit outward normal vector at x ∈ S as n = n(x) and the corresponding

projection matrix to the tangent space of S at x as

P(x) = [~P1, . . . , ~Pd](x) := Id − nnT ∈ Rd×d, (1.1)

where Id is the d× d identity matrix.

Example 1. Let S be the unit circle in R2. Then, we have n = (x, y)T = x for

every x ∈ S and the projection matrix is

P(x) =

(
1− x2 −xy
−xy 1− y2

)
=

(
y2 −xy
−xy x2

)
.

Unlike standard PDEs posed in some bounded domains with flat geometry, cur-

vatures of our computational domain S plays key roles in solution behaviours of the

PDEs. The surface gradient ∇S can be defined in terms of the standard Euclidean

gradient ∇ for Rd via projection P as

∇S := P∇ (1.2)

and the Laplace-Beltrami ∆S operators (a.k.a. the surface Laplacian) can then be
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defined using the surface gradient operator by

∆S := ∇S •∇S . (1.3)

Surface gradient is straightforward to compute, whereas the analytic expression of

surface Laplacian involves derivatives of normal vector n. In [4], one can find the

following formula: for any sufficient smooth function uS : S → R, we have

∆SuS =

d∑
i=1

(
trace(P · J(~Pi)

T )
∂uS
∂xi

+ Pii
∂2uS
∂x2

i

)
+

d∑
i,j=1
i 6=j

Pij
∂2uS
∂xi∂xj

, (1.4)

where J denotes the Jacobian operator, ~Pi and Pij denotes the i-th column and ij-th

entries of the projection matrix P in (1.1) respectively.

Example 2. Let S be the unit circle in R2. The surface gradient operator takes

the form

∇S =

(
y2 −xy
−xy x2

)(
∂x

∂y

)
=

(
y2∂x − xy∂y
−xy∂x + x2∂y

)
.

We can also compute the coefficients of surface Laplacian with simplifications based

on the parametric equation x2 + y2 = 1 as follows

trace(P · J(~P1)T ) = −xy2 − x3 = −x,

trace(P · J(~P2)T ) = −x2y − y3 = −y.

Together, we have ∆S = y2 ∂
2

∂x2
−2xy

∂2

∂x∂y
+x2 ∂

2

∂y2
−x ∂

∂x
−y ∂

∂y
on the unit circle.

Any linear second-order elliptic differential operators on surfaces S ⊂ Rd can be

expressed in the form of

LS := aS∆S + bS •∇S + cS , (1.5)

where aS , cS : S → R, and bS : S → Rd are bounded coefficients that can be functions

of x ∈ S. The elliptic surface PDEs is then defined as

LSuS = fS , (1.6)

for some sufficiently smooth right hand function fS , and, because S is closed, without

any other conditions. Under some standard smoothness assumptions [14], we know

(1.6) has classical solutions u∗S : S → R.
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2. Traditional MFS approach. Since the surface PDE (1.6) is inhomogeneous,

the traditional approach is to find a particular solution in order to obtain a homoge-

neous PDE. However, finding the particular solution to (1.6) is equivalent to solving

the uniquely solvable PDE; see [4] for some intrinsic algorithms. This leaves no room

for applying MFS.

We now present an embedding framework to solve (1.6) by dual reciprocity

method (DRM) [2,9] and MFS. Our approach is based on the closest point method [13].

Let the closest point map be defined as

cp(x) = arg inf
x∈S

‖x− x‖`2(Rd).

The differentiability of the closest point map is directly related to the smoothness of

S, see [5]. For smooth S, there exits ε > 0 depending on the curvature of S so that

the closest point map is well-defined in the narrow band domain

Ω :=
{

x ∈ Rd : inf
s∈S
‖s− x‖`2(Rd) < ε

}
⊂ Rd.

The first aim is to embed (1.6) to another PDE in Ω. To do so, we define the constant-

along-normal extension operator En := En,S→Ω so that, for every function wS : S → R,

its extension has the property that

wΩ(x) := (EnwS)(x) = wS(cp(x)) for all x ∈ Ω. (2.1)

Now we consider an embedding PDE to (1.5)-(1.6)

LΩuΩ = fΩ with LΩ := aΩ∆ + bΩ •∇+ cΩ, (2.2)

where fΩ = EnfS , aΩ = EnaS , cΩ = EncS , and bΩ = EnbS with componentwise

extension. The governing equation (2.2) alone is not yet well-posed and we need the

following embedding conditions

∂nuΩ = 0 and ∂(2)
n uΩ := nTJ(∇uΩ)n = 0 on S, (2.3)

to ensure unique solution. The connection between surface PDE (1.5)-(1.6) and em-

bedding PDE (2.2)-(2.3) is that the restriction of the embedding PDE solution uΩ to

S coincides with the surface PDE solution uS . This is an immediate consequence of

the following equalities [7]:

∇SuΩ := ∇uΩ − n∂nuΩ and ∆SuΩ := ∆uΩ −HS∂nuΩ − ∂(2)
n uΩ on S,

where HS(x) = trace
(
J(n)(I − nnT )

)
. In the same article, readers can find Kansa-
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type algorithms for solving (2.2)-(2.3) directly.

At this point, we have (2.2)-(2.3) posed in the narrow band domain (2.1), which is

analogue to the standard elliptic PDEs and is DRM-MFS ready. We can decompose

the embedding PDE into

(I) LΩup = fΩ, and (II)


LΩuh = 0 in Ω,

∂nuh =−∂nup on S,
∂

(2)
n uh =−∂(2)

n up on S.

Solving the above by some appropriate means, e.g., (I) by DRM and (II) by MFS,

yields the embedding PDE solution uΩ = uh + up, whose restriction is the surface

PDE solution uS = uΩ|S . An Dirichlet-type alternative to problem (II) is

(II ′)

{
LΩuh = 0 in Ω,

uh − uh ◦ cp =up ◦ cp− up on ∂Ω,

in which we require uΩ = uΩ ◦ cp on the whole boundaries ∂Ω. When the width

ε of the narrow band domain is small, we can easily see that (II’) is a finite differ-

ence approximations to the embedding conditions (2.3). This idea is essentially the

orthogonal gradient method [12] and help avoiding differentiation to up.

2.1. DRM for solving (I). Although problem (I) is posed in Ω, our interest

is only on S and, thus, it is sufficient to have interpolation conditions solely on S in

DRM. Suppose we use nI interpolation points X = {x1, . . . ,xnI
} on S to solve (I)

by DRM . The DRM requires two couple sets of basis functions ({ψk}nI

k=1, {ϕk}nI

k=1)

that satisfy

LΩψk = ϕk, 1 ≤ k ≤ nI .

One can find some closed form formulas of analytic particular solution ψ in [3] of

commonly used RBFs ϕ for some standard elliptic operators LΩ. In cases of RBF

symmetric interpolation, we want to center RBFs at the same set of points, i.e.,

ϕk = ϕ(‖ · −xk), and solve

nI∑
k=1

ak ϕ(‖xi − xk‖) = f(xi), 1 ≤ i ≤ nI .

Once the coefficients ~a = {ak}nI

k=1 were obtained, the approximate particular solution

is given as

Up =

nI∑
k=1

ak ψk(·) =

nI∑
k=1

ak ψ(‖ · −xk‖).
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The computation cost here is dominated by the cost of solving an nI × nI symmetric

matrix system.

2.2. MFS for solving (II). When apply MFS to (II), all collocation points

for the two embedding conditions are on S and there is real role for Ω. Let Y =

{y1, . . . ,ynII/2
} be a set of nII/2 points on S. Going after a square system, one can

simply put nII source points Z = {z1, . . . , znII
} in ∂Ω in order to avoid singularity.

Let G denote the fundamental solution of LΩ such that

LΩG(‖ · −z‖) = δ(‖ · −z‖), z ∈ Rd.

The standard approach is to numerical expand the approximate homogenous solution

by

Uh =

nII∑
j=1

λj G(‖ · −zj‖), (2.4)

and solve the following collocation matrix system for ~λ = {λj}nII
j=1:(

nT∇G(‖yi − zj‖)
nTJ(∇G(‖yi − zj‖))n

)
~λ =

(
−nT∇ψ(‖yi − xk‖)

−nTJ(∇ψ(‖yi − xk‖))n

)
~a,

for 1 ≤ i ≤ nII/2, 1 ≤ j ≤ nII , and 1 ≤ k ≤ nI . Note that all differential operators

here act upon the variable y and the right hand vector is computed based on the

approximate particular solution Up. The computation cost here is dominated by the

cost of solving an nII × nII asymmetric matrix system.

2.3. MFS for solving (II’). When MFS is applied to solve (II’), four layers of

points are required. First, we have to distribute collocations points on ∂Ω. Here, we

want ε as small as possible to minimize the finite difference error. Their respective

closest points have to be identified so that we can evaluate uh ◦ cp, i.e., fundamental

solutions, and up ◦ cp on S.

A simpler approach is to put a set of nII/2 points Y ′ = {y′1, . . . ,y′nII/2} on

S. Then, we extend Y ′ by ±εn as in the orthogonal gradient method to generate

collocation points on ∂Ω, i.e., the set of nII collocation points is given by

Y = {y′1 ± εn, . . . ,y′nII/2 ± εn}.

By construction, if we operate on sets, we have cp(Y ) = Y ′ and no closest point

search is required. For convenience, let Y
′′

=< Y ′, Y ′ > be a set of nII entries that

is ordered in such a way that cp(yj) = y
′′

j for all collocation points yj ∈ Y .
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In terms of source points placement, there is now a requirement on the fictitious

boundary imposed from the narrow band domain, i.e., our choice of ε. Away from Ω,

we have to place the inner and outer source points to complete the set up of MFS.

One can, of course, repeat the same data points extension technique to complete the

job. When S is nonconvex, however, feasible choice of extension may be limited.

For now, we assume the set of source points Z is fixed by some appropriate means.

The collocation system to be solved is in the form of

(
G(‖yi − zj‖)−G(‖y

′′

i − zj‖)
)
~λ =

(
ϕ(‖y

′′

i − xk‖)− ϕ(‖yi − xk‖)
)
~a.

The approximate homogenous solution is given by (2.4) once we found ~λ. The costs

of (II) and (II’) are similar, but (II’) requires no numerical differentiations.

The above algorithms inherit all limitations in the traditional MFS approach that

heavily relies on our knowledge of the fundamental solution to LΩ. Method in the

next section will circumvent the problem.

3. Using fundamental solutions for collocations. In this section, we focus

on Kansa-type collocation method for solving surface PDEs in the form of (1.5)-(1.6).

The idea is to analytically carry out some calculations, similar to our Example 2

above, so that we can collocate the surface operator directly. Our convergent analysis

in [4] applies to kernels that satisfy

cΦm(1 + ‖ω‖22)−m ≤ Φ̂m(ω) ≤ CΦm(1 + ‖ω‖22)−m for all ω ∈ Rd, (3.1)

for some constants 0 < cΦm
≤ CΦm

and smoothness order m > d/2. Simply by

restricting the global kernels Φm on S, we have a surface kernel

Ψm−1/2 := Φm|S×S : S × S → R

that reproduces Hm−1/2(S) provided the smoothness assumption on S stated in [8,11]

are satisfied. Commonly used kernels in this class include Whittle-Matérn-Sobolev

kernels Φm(x) := ‖x‖m−d/2
2 Km−d/2(‖x‖2) and the family of compactly supported

piecewise polynomial Wendland functions. The m > d/2 requirement is commonly

seen in RBF theories. In both R2 and R3, we must take m ≥ 2 if we insist on integer

order smoothness. This means that H3/2(S) is the largest solution space on which

our theories applied. This is the motivation of using fundamental solutions as basis is

a density result in [1]. In our notation, it reads as follows: let Υk be the fundamental

solutions of the modified Helmholtz equation

−(∆− k2)Υk(‖ · −z‖) = δ(‖ · −z‖), z ∈ Rd,
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and Ŝ ⊃ S be some sufficiently smooth artificial surface containing S. Then,

span{Υk(‖ · −s‖)|S : s ∈ Ŝ}

is dense in H1/2(S). This is beneficial for surface PDEs with low regularity, i.e., when

there are near-singularity [6] on S. In other words, we are considering a collocation

method using basis functions

Υk(r) :=


1

2π
K0(kr) in 2D,

1

4π

exp(−kr)
r

in 3D,

for some k > 0. As we do not require Υk to satisfy any governing equations, one can

drop the constant for simplicity. The dimension here should match with that of the

embedding space, i.e., 2D and 3D basis are for solving PDEs on curve and surface

respectively. This collocation approach comes with a computational cost of solving

an nZ × nZ asymmetric matrix system.

Example 3. Consider modified Helmholtz LSuS := (∆S−I)uS = fS on the unit

circle. Define sets of source points Z ⊂ Ω \S and collocation points Y ⊂ S. By fixing

some k > 0 and therefore a basis function Υk, we can obtain a collocation system

(
LSΥk(‖yi − zj‖)

)
~α = f(yi), yi ∈ Y, zj ∈ Z

for the unknown ~α = {αj}nZ
j=1. Based on the results in Example 2, we know that

LS = y2 ∂
2

∂x2
− 2xy

∂2

∂x∂y
+ x2 ∂

2

∂y2
− x ∂

∂x
− y ∂

∂y
− I, (x, y) ∈ S,

which can be used to analytically evaluate LSΥk(‖(x, y)− ·‖). The numerical solution

is of the form

US =

nZ∑
j=1

αj Υk(‖ · −zj‖).

Note that the selection of wavenumber k in Υk does not need to match with the

wavenumber in LS , which may not even be of Helmholtz in general.

Example 4. We now consider a modified Helmholtz LSuS := (∆S − I)uS = fS

on the unit sphere. In this example, we shall use the 3D basis function

Υk(r) =
1

4π

exp(−kr)
r

.
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Fig. 3.1. Maximum error against source points location R on one side of S of collocation
methods using modified Helmholtz fundamental solution with various wavenumbers k.

A smooth solution uS = 10xyz + 5xy + z is considered; we aim to study the effects

of wavenumber k and source points distribution. For nZ = {250, 500}, the set of nZ

collocation points Y ⊂ S is quasi-uniformly distributed on the unit sphere. The set

of source points Z is uniformly distributed on a sphere with radius R > 0. Taking

advantage of the simple geometry, we simply generate Z by an extension of the set Y

along normal direction by Z = RY . Figure 3.1 shows the resulting maximum error

over a range of R for various values of k, i.e., basis functions. When R = 100,

source points are right on the surface and, as expected, we see error blow up nearby.

When R < 100, i.e., source points are placed inside the unit sphere, the selection of

wavenumber k has nearly no effect on the accuracy and only the value of nZ matters.

Like the traditional MFS, nZ also affect the location of the Goldilocks zone: R ≈ 0.1

and R ≈ 0.2 for nZ = 250 and 500 respectively. The error profiles on the R > 100

sides is less consistent. In this example, we can see that large k has better conditioning

but lower accuracy.

Example 5. It is commonly seen that MFS source points are placed on both sides

of annulus domains. We repeat Example 4 with source points distributed as

Z = {Rz′1, (2−R)z′1, . . . , Rz
′
nZ/2, (2−R)z′nZ/2} 0 < R < 1

where Z ′ = {z′1, . . . , z′nZ/2} is a set nZ/ uniformly distributed data points on the unit

sphere. The parameter R here still measures the source points to surface distance, but

now we have source points both inside and outside of the unit sphere. The resulting

effects is obvious, see Figure 3.2, in a bad way. The condition numbers increases

dramatically and accuracy drop significantly by five orders. We did a quick fix by

employing an adaptive basis selection algorithm [10]; it helps stabilize the numerical

solutions for R . 100, i.e., when source points are close to S. This example only

means to show how the accuracy of this collocation method is sensitive to source point
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Fig. 3.2. Maximum error against source points location R on both sides of S of collocation
methods using modified Helmholtz fundamental solution with various wavenumbers k.

locations. We do not attempt to search for the sweet spot that balances the inner/outer

number of source points and their respectively optimal distances to surface for the best

accuracy.

4. Conclusions. We present some methodologies for solving surface PDEs with

fundamental solutions. Our discussion focus on elliptic types, which can be extended

to time-dependent problems on surface by some time discretization schemes. This

introductory paper only employs traditional MFS techniques for simplicity; we do not

include any regularization, optimal data points place, etc. Yet, cutting edge devel-

opments in the MFS community are necessary in order to make MFS an attractive

alternative for solving surface PDEs. In particular, singularity-free alternatives to

MFS are attractive when dealing with surfaces with complex geometry. We invite our

readers to explore further in this research topic.
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