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Abstract. This work focuses on the invertibility of non-constant shape Gaussian asymmetric

interpolation matrix, which includes the cases of both variable and random shape parameters. We

prove a sufficient condition for that these interpolation matrices are invertible almost surely for the

choice of shape parameters. The proof is then extended to the case of anisotropic Gaussian kernels,

which is subjected to independent componentwise scalings and rotations. As a corollary of our proof,

we propose a parameter free random shape parameters strategy to completely eliminate the need of

users’ inputs. By studying numerical accuracy in variable precision computations, we demonstrate

that the asymmetric interpolation method is not a method with faster theoretical convergence. We

show empirically in double precision, however, that these spatially varying strategies have the abil-

ity to outperform constant shape parameters in double precision computations. Various random

distributions were numerically examined.

1. Interpolation with spatially varying kernels. We consider the standard

interpolation problem in Ω ⊂ Rd: given data {zk, f(zk)}nk=1 =: {Z, fZ} ⊂ Ω × R for

some smooth function f , we seek an interpolant in the form of

sf,Z =

n∑
k=1

αk Jk, (1.1)

satisfying sf,Z(zk) = f(zk) for k = 1, . . . , n, where the basis functions Jk : Ω→ R, for

k = 1, . . . , n, are defined by some Gaussian kernel function J : Ω × Ω → R centered

at zk ∈ Z.

We consider the case that each basis function Jk is defined differently by its own

strictly positive shape parameter, εk ∈ R+, so that

Jk(·) := J(·, zk; εk) = exp(−ε2k‖ · −zk‖2). (1.2)

All n such shape parameters can be stored in a vector ε := {εi}ni=1 ∈ (R+)n which

can ease notation below. This non-constant shape parameters framework is commonly

referred to as interpolation with variable shape kernels and with random shape kernels,

respectively, when εk = ε(zk) for some smooth function ε and when εk is a positive

random variable following some probability distribution. Despite the lack of theory,

there are numerous instances of numerical evidence in the literature suggesting such

an approach can improve accuracy and numerical stability; see for instance [3, 6, 12,
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16,19,22] for some related work in the past two decades.

Example 1.1. Let Z = {0, 1e−10, 1} ⊂ R and J be the standard Gaussian

kernel. The condition numbers of the traditional interpolation matrices are 4.7e+21,

3.2e+20 and 5.0e+19 for constant shape kernels with shape parameter ε = 0.5, 1, and

2. Using non-constant shape parameters ε = (0.5, 2, 1) to avoid nearly identical basis,

the condition number drops significantly to 8.2e+10. All condition numbers in this

example were computed with 64 digits accuracy. �

The only theory available [1] thus far is for a “similar” formulation that handles

variable shape parameters by an extra dimension. In their approach, numerical ex-

pansions are not using basis functions in the form of (1.2). The Gaussian-related basis

function there takes the form exp(‖zi − zk‖2) exp(−(εi − εj)2), for example.

Implementation of asymmetric interpolation with (1.1)–(1.2) is straightforward.

One can identify the unknown coefficients in (1.1) by solving the exactly determined

linear system
J(z1, z1; ε1) · · · J(z1, zn; εn)

...
. . .

...

J(zn, z1; ε1) · · · J(zn, zn; εn)




α1

...

αn

 =


f(z1)

...

f(zn)

 , (1.3)

or denoted by J(Z,Z; ε)α = fZ in compact matrix notations with ε = [ε1, . . . , εn]T ∈
(R+)n. Due to the different scales used in defining these basis functions, this n × n
non-constant shape kernel interpolation matrix J(Z,Z; ε) is asymmetric in general and

the conditions for its invertibility will be addressed in the following section. Whenever

(1.3) has a solution, we can express the interpolant in (1.1) in vector form as

sf,Z(x) = J(x, Z; ε)α

by using a 1× n row-vector function

J(x, Z; ε) := [J(x, z1; ε1), . . . , J(x, zn; εn)], x ∈ Ω.

2. Solvability almost surely. We begin with a small comment on the potential

lack of invertibility of asymmetric interpolation matrix J(Z,Z; ε) in (1.3).

Example 2.1. Let Z = {1, 2, 3} ⊂ R and ε(t) = [t, 0.3, 0.4]T for t ∈ R+ as

the first shape parameter ε1. We show the determinant of J(Z,Z; ε(t)) as a function

of 0 < t ≤ 2.5 in the left graph of Figure 2.1. For t > 2.5, the determinant value
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Fig. 2.1. Determinants of n× n spatially varying kernel interpolation matrices J(Z,Z; ε) as a
function of shape parameter ε1. left: n = 3. right: n = 4.

monotonically increases and approaches a horizontal asymptote from below. There are

two “bad” values for the shape parameter t that make the determinant zero and the

asymmetric interpolation matrix singular. Similarly, we construct a 4 × 4 examples

by Z = {0.5, 1, 2, 3} ⊂ R and ε(t) = [t, 0.5, 0.3, 0.4]T for t ∈ R+ and show the

resulting determinant in right graph of Figure 2.1. This time, we see three roots in

the determinant function. �

The data points and shape parameters used in Example 1.1 are arbitrary. It

is easy to construct examples so that the determinant of det J(Z,Z; ε(t)) is always

nonzero for all t ∈ R+. The following theorem inserts a condition for invertibility

without any restriction on how ε ∈ (R+)n behaves.

Theorem 2.2. For any set of data points Z ⊂ Ω with distinct pairwise distances

such that, for any 1 ≤ i, j, k ≤ n, ‖zi−zk‖ 6= ‖zj−zk‖ if i 6= j, the asymmetric Gaus-

sian interpolation matrix J(Z,Z; ε) in (1.3) is invertible for ε in almost everywhere

of (R+)n with respect to the Lebesgue measure.

Proof: The idea of the proof is to sequentially rank-1 perturb the columns of an

invertible matrix to generate a sequence of invertible matrices which end with the

desired asymmetric interpolation matrix. We begin with a symmetric interpolation

matrix of A0 := J(Z,Z; 1), which must be invertible by the fact that kernel J is

symmetric positive definite. The first step towards arriving at J(Z,Z; ε) in (1.3) is to

perturb the first column to associate it with the shape parameter [ε]1. We do so by

defining A1 := A0 + p1e
T
1 with p1 ∈ Rn, whose entries are given by

[p1]i := J(zi, z1; ε1)− J(zi, z1; 1), 1 ≤ i ≤ n, (2.1)
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so that the first column of A0 matches with that of J(Z,Z; ε). Now we examine the

invertibility of A1 by its determinant. By the equality

det(A1) = det(A0 + p1e
T
1 ) = (1 + eT1 A

−1
0 p1) det(A0),

we know det(A1) = 0 if and only if

p1 ∈
{
p ∈ Rn : (eT1 A

−1
0 )p = −1

}
=: S. (2.2)

But p1 is not arbitrary; from (2.1), we can see that the set of all p1 for ε1 > 0 is a

space curve in Rn, which we denote as γ := {p1(ε1) : ε1 > 0}. Together, we know A1

is invertible as long as p1(ε1) 6∈ γ ∩ S.

We already know that the whole space curve is confined in the hyperplane x1 = 0

since [ p1 ]1 = 0 for all p1 ∈ γ. The inhomogeneous equation in (2.2) ensures that

S cannot be the entire x1 = 0 hyperplane, or otherwise the equation has a trivial

solution. To complete the proof, it remains to show that γ is not locally confined in

any Rn−2 dimensional hyperplane by showing that all but one of its curvatures are

nonzero. Together, we know the set of intersection γ ∩ S is measure zero and, hence,

A1 is invertible for [ε]1 almost everywhere in R+.

It is more convenient to work with t = ([ε]1)2 > 0; we re-parameterize the space

curve γ as

γ(t) :=
{

p : [p]i = J(zi, z1;
√
t)− J(zi, z1; 1), 1 ≤ i ≤ n

}
⊂ Rn. (2.3)

Let s = sγ(t), (T1(t), . . . ,Tn(t)), and (κ1(t), . . . , κn−1(t)) denote the arc-length, the

generalized TNB frame, and generalized curvatures of γ(t) ⊂ Rn respectively. By

applying chain rule and Frenet-Serret formulas repeatedly, the derivative vectors of

γ(t) can be expressed as

Dγ(t) :=
[
γ′(t), γ′′(t), · · · , γ(n)(t)

]
=
[
T1, T2, · · · ,Tn

]
U(t), (2.4)

where U is an n× n upper triangular matrix with

diag(U(t)) =

∥∥∥∥dγds
∥∥∥∥
ds
dt
,
(ds
dt

)2
κ1,

(ds
dt

)3
κ1κ2, · · · ,

(ds
dt

)n n−1∏
j=1

κj

 .
Nonzero off-diagonal entries involve higher derivatives of s(t) and derivatives of gen-

eralized curvatures.

Next, we compute entries of the derivative matrix explicitly for the Gaussian
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kernel J and get

[
Dγ
(
t)]ij = (−1)j‖zi − z1‖2je−t‖zi−z1‖

2

,

which is the product of a full-rank diagonal matrix function of t with exponential

components and the transpose of a Vandermonde matrix generated by the set of

scalars

{0, ‖z2 − z1‖2, . . . , ‖zn − z1‖2}.

This t-independent Vandermonde matrix is of rank n− 1 if ‖zi − z1‖ are all distinct

and non-zero. Combined with (2.4), they imply that the rank of U(t) is also n − 1

and consequently that κj 6= 0, 1 ≤ j ≤ n − 2, and κn−1 = 0 for all t > 0. Thus, the

number of ε1 > 0 that makes A1 singular is finite.

After applying the same argument iteratively to perturb the second through nth

columns, we show that the asymmetric Gaussian interpolation matrix J(Z,Z; ε) is in-

vertible for ε almost everywhere in (R+)n if all pairwise distances of Z are distinct. �

3. Anisotropic Gaussian kernels. We consider the case that each basis func-

tion Jk is componentwise scaled differently by a matrix E = [ε1, · · · , εn] ∈ (R+)d×n

formed by a set of n strictly positive shape parameter vectors {εi}ni=1 ⊂ (R+)d so

that the basis function centered at zk

J(·, zk; εk) = exp
(
− (· − zk)Tdiag(εk)2(· − zk)

)
is no longer radially symmetric. The corresponding anisotropic Gaussian interpolation

matrix on Z ⊂ Ω now takes the form of

J(Z,Z;E) :=


J(z1, z1; ε1) · · · J(z1, zn; εn)

...
. . .

...

J(zn, z1; ε1) · · · J(zn, zn; εn)

 . (3.1)

The proof of Theorem 2.2 can be modified to this anisotropic setting.

Theorem 3.1. For any set of data points Z ⊂ Ω with distinct non-zero pairwise

component distances such that, for any 1 ≤ i, j, k ≤ n, 1 ≤ ` ≤ d, |(zi)` − (zk)`| 6=
|(zj)`−(zk)`| whenever i 6= j, the anisotropic Gaussian interpolation matrix J(Z,Z; E)

in (3.1) is invertible for E in almost everywhere of (R+)d×n with respect to the

Lebesgue measure.
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Proof: We apply the rank-1 perturbation technique in the proof of Theorem 2.2. The

differential geometries of curves and hyperplane remain unchange in the anisotropic

setup, but we need to consider different space curves. To begin, we consider the space

curve given as

γ(t) :=
{

p : [p]i = J(zi, z1; [
√
t,1d−1])− J(zi, z1; 1d), 1 ≤ i ≤ n

}
⊂ Rn, (3.2)

where 1` denotes the all-ones vector in R`. The corresponding derivative matrix

explicitly is now

[
Dγ

(
t)]ij = (−1)j |(zi)1 − (z1)1|2je−t|(zi)1−(z1)1|

2

e−‖zi−z1‖
2+|(zi)1−(z1)1|2 ,

which is the product of a full rank diagonal matrix and the transpose of a Vander-

monde matrix generated by the set of scalars

{0, |(z2)1 − (z1)1|2, . . . , |(zn)1 − (z1)1|2}.

Under the assumption of distinct non-zero pairwise component distances, the Van-

dermonde matrix is of rank n− 1. We can ensure this perturbed matrix, denoted by

A0,1, is invertible for [ε1]1 in almost everywhere of R+. To obtain the first column of

(3.1), we need d perturbations in total:

A0 → A0,1 → · · · → A0,d =: A1.

The proof can be completed after nd iterations to arrive at An, at each of which only

a measure zero set of parameters [Ek]` ∈ R+, 1 ≤ k ≤ n and 1 ≤ ` ≤ d, leads to

singular matrices. �

An even more general form of rotated anisotropic Gaussian is

J(·, xk; εk,θk) = exp
(
− (· − zk)TRTk diag(εk)2Rk(· − zk)

)
, (3.3)

where Rk = R(θk) = Rx1
([θk]1) · · ·Rxd

([θk]d) is some elemental rotation matrix de-

fined by the vector θk ∈ Rd. Collecting all 1 ≤ k ≤ n angle-vectors θk in a matrix

Θ ∈ Rd×n allows us to define an interpolation matrix J(Z,Z;E,Θ).

Corollary 3.2. Under the assumptions in Theorem 3.1, the rotated anisotropic

Gaussian interpolation matrix J(Z,Z;E,Θ) generated by basis (3.3) is invertible with

respect to E ∈ (R+)d×n and Θ ∈ Rd×n in almost everywhere of (R+)d×n×Rd×n with

respect to the Lebesgue measure.
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Proof: Note that the proof of Theorem 3.1 only relies on the matrix in the previous

iteration being invertible. At the k-th column update, we can operate on a rotated set

of points instead of the given Z. The argument in the proof remains valid as far as the

rotated pairwise component distances are all distinct and non-zero. Let rij := zi− zj
subject to ` − 1 previous successful rotation so that the matrix Ak,`−1 is invertible.

The assumption of Theorem 3.1 is equivalent to |(rij)`| > 0 and |(ril)`| 6= |(rjl)`| for

any 1 ≤ i, j, l ≤ n and component 1 ≤ ` ≤ d. For each fixed (i, j, l), only finitely

many angles θ ∈ [0, 2π), or countably many in R, for rotations about the x`-axis can

be obtained from solving the following equalities for the rotated distances:

|(Rx`
(θ)ril)`′ | = |(Rx`

(θ)rjl)`′ | or |(Rx`
(θ)ril)`′ | = 0, (3.4)

for each `′ 6= `. If (3.4) holds, it means rotating about the x`-axis by θ will result

in non-distinct or non-zero pairwise component distances. However, there are only

countably many such angles θ for each component of θk, and hence are of zero mea-

sure. �

It worths noting the invertibility theorems presented here are Z location depen-

dent. As adding more rows to an invertible matrix is safe with respect to the condition

number, see [14, Thm. 2.2], solvability of kernel-based least-squares function approx-

imations [5, 11, 13, 21] with non-constant shape parameters can also be safeguarded.

In this setup, kernels were centered at Z and collocation were done at X ⊃ Z such

that the interpolation matrix studied in this work is a submatrix of the collocation

matrix.

4. Numerical accuracy in variable/double precisions. Numerical evidence

in literature suggests that asymmetric interpolation methods can numerically outper-

form the traditional symmetric approach [3, 14, 23]. In [3], the authors showed that

non-constant shape parameters approach yields interpolation matrices with certain

eigenvalue patterns as ‖ε‖∞ → 0, which differ from the constants shape parameters.

In this section, we take a deeper look into these observations without letting basis go

flat. Firstly, the following example shows that there are no “theoretical” advantages

in terms of convergence for asymmetric interpolations.

Example 4.1. We consider interpolation problems on equally distributed data

points using Gaussian basis. Computations were carried out with 512 digits precision

to eliminate the effect of ill-conditioning. For symmetric interpolation, we used con-

stant integer shape parameters 1 ≤ ε ≤ 6. For the asymmetric case, we use random

shape parameters that follows χ2(3)-distribution, which is the distribution used in [23].

The bandlimited function f = sinc(2x+ 0.5) : [−1, 1]→ R is considered. It lies in
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Fig. 4.1. L∞-convergence profiles against the number of data points n for interpolating f1 =
sinc(2x+ 0.5) in (a) variable precision and (b) double precision.

the reproducing kernel Hilbert space of all scaled Gaussian kernels. The well-known

exponential convergence of symmetric Gaussian interpolation (towards functions in

its reproducing kernel Hilbert space) is clearly observed here. The same convergence

behavior can be seen in asymmetric interpolations. In terms of accuracy, asymmetric

interpolations (with these particular choices of random shape parameters) perform

similarly to ε = 2 or 3. The resulting maximum interpolation error profiles were

shown in the left half of Figure 4.1. For the asymmetric approach, we show the

median of all test runs in a solid line and the full range of error in shade.

For comparison, the right half of Figure 4.1 shows the double precision results of

the same test. In presence of rounding error, asymmetric interpolation clear suffers

less from the ill-conditioning of the interpolation basis and yields better accuracy. �

Example 4.1 suggests that the improved accuracy we observed in double precision

is solely a numerical issue. To gain more insights, we will analyze the effect of non-

constant shape parameters on the singular values of the asymmetric interpolation

matrix. First, the following theorem inserts an upper bound on the maximum singular

value.

Theorem 4.2. The largest singular values σ1
(
J(Z,Z; ε)

)
of the variable shape

Gaussian interpolation matrix in (1.3), for k = 1, . . . , n, are bounded above by

σ1
(
J(Z,Z; ε)

)
≤
√∑

ε∈ε
λ2max

(
J(Z,Z; ε)

)
,

where λmax

(
J(Z,Z; ε)

)
denotes the maximum eigenvalue of the standard symmetric

interpolation matrix J(Z,Z; ε) corresponding to the scaled Gaussian kernel J(·, ·; ε)
with a constant shape parameter ε.
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Proof: Let c = [c1, . . . , cn]T with ‖c‖ = 1 be an eigenvector of J
(
Z,Z; ε

)
JT
(
Z,Z; ε

)
corresponding to the maximum eigenvalue λmax

(
J
(
Z,Z; ε

)
JT
(
Z,Z; ε

))
. Then, we

have

λmax

(
J
(
Z,Z; ε

)
JT
(
Z,Z; ε

))
=

n∑
i=1

n∑
j=1

cicj

n∑
k=1

J
(
zi, zk; εk

)
J
(
zj , zk; εk

)
=

n∑
k=1

( n∑
i=1

ciJ(zi, zk; εk)
)2

=

n∑
k=1

( n∑
i=1

ciJ(zi, Z; εk)ek

)2
=

n∑
k=1

(
cT J(Z,Z; εk)ek

)2
, (4.1)

with ek denoting the k-th standard basis of Rn. Because

|cT J(Z,Z; εk)ek| ≤ ‖J(Z,Z; εk)c‖2 ≤ λmax

(
J(Z,Z; ε)

)
, (4.2)

for each k = 1, . . . , n, substituting the rightmost term of (4.2) into (4.1) and then

taking the square root of both sides of (4.1) yield the asserted upper bound. �

In Rd, the symmetric Gaussian interpolation matrix J(Z,Z; ε) has
(
m+d−1
d−1

)
eigen-

values of order O(ε2m). From the fact that, when m = 0, the maximum eigenvalue

is of O(1), the same property holds for the asymmetric counterpart. In a constant

shape parameter approach, the problem of ill-conditioning becomes severe because of

the cluster of small eigenvalues on the right of zero.

Gaussian interpolation with non-constant shape parameters improves accuracy by

breaking symmetry; this results in sending some of the nearly zero eigenvalues out to

the complex plane and away from the origin. For asymmetric linear systems, we focus

on singular values instead of eigenvalues (i.e., spectrum). Suppose that an asymmetric

Gaussian matrix J = J(Z,Z; ε) has an eigenvalue decomposition J = VΛV−1.

Proposition 4.3. [9, Sec. 7.3, p.18] If A,BT ∈ Rm×n and k = min{m,n},
then the singular values satisfy σi+j−1(AB) ≤ σi(A)σj(B) for i, j = 1, . . . , k and

i+ j ≤ k + 1.

Applying Proposition 4.3 twice (with j = 1) yields

σi(J) = σi(VΛV−1) ≤ σ1(V)σi(Λ)σ1(V−1).
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(b) Zoom-in

Fig. 4.2. Spectrum of various Gaussian interpolation matrices with (top to bottom) constant
shape ε = 1, random ε ∼ (U(0.5, 1.5))n, and random ε ∼ (χ2(1))n. Markers + and ◦ indicate
computational results from variable and double precision respectively. The left hand panel (a) shows
all eigenvalues, whereas the right (b) shows the ones with magnitude of real parts in [10−17, 10].

Moreover, we also have

σi(Λ) = σi(V
−1JV) ≤ σ1(V−1)σi(J)σ1(V).

Together with κ(V) = σ1(V−1)σ1(V), we see the connection between singular values

and eigenvalues:

Theorem 4.4. For any n× n matrix J that admits an eigenvalue decomposition

J = VΛV−1, suppose the eigenvalues are in nonincreasing order so that |λi(Λ)| = σi(Λ)

for 1 ≤ i ≤ n, then we have

1

κ(V)
σi(J) ≤ |λi(J)| ≤ κ(V)σi(J),

where κ(V) is the 2-norm condition number of V.

Theorem 4.4 suggests that some singular values in machine-epsilon magnitude of

an asymmetric interpolation matrix J could allow the corresponding eigenvalues to

go into the complex plane and become numerically significant again up to a factor of

κ(V). The following example demonstrates how random shape parameters affect the

spectrum of Gaussian interpolation matrices, and hence, their singular values.

Example 4.5. We consider Gaussian interpolation matrices on n = 100 equally

spaced data points in [−1, 1]. Figure 4.2(a) shows all eigenvalues with positive real

part of

• constant ε = 1n,

• random, independent and identically distributed ε ∼ (U(0.5, 1.5))n, and

• random, independent and identically distributed ε ∼ (χ2(1))n,
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computed under 128 digits (+) and double precision (◦). The cluster of + on the left

most is numerical artifact and we expect a nice equally space spectrum in log-scale in

the absence of rounding error. With shape parameters bounded away from zero, the

eigenvalue patterns observed in [3] disappear from both random cases. Figure 4.2(b)

zooms into the real axis between 10−17 to 10. Both asymmetric interpolation matrices

have 45 negative real eigenvalues; 7 and 9 of those have magnitudes greater than

−2.2e − 16 for U(0.5, 1.5) and χ2(1), respectively. The condition numbers κ(V) seen

in Theorem 4.4 are around 500 and 10000 in these two random strategies.

From Figure 4.2, asymmetric interpolation matrices still contain many numer-

ically zero eigenvalues. We therefore cannot expect any improvement in terms of

condition number from the non-constant shape parameters approach. The effect of al-

lowing complex eigenvalues in the asymmetric approach is a higher (double precision)

numerical rank: 13, 19, and 27 respectively for the three test cases reported by Mat-

lab build-in rank function. We see that a larger κ(V) results in a higher numerical

rank, i.e., the number of numerically nonzero singular values. �

The message here is that there need not be some intelligent structure for choos-

ing the spatially varying non-constant shape parameters; even a random choice can

produce improvements. Because of the new theories, we can safely leverage even

unintelligent strategies for improving the performance of the interpolant in double

precision.

5. Parameter-free random shape strategy. Using non-constant parameter

in asymmetric interpolation does not eliminate the need for some choice of shape

parameter throughout the domain. For these parameters to be chosen deterministi-

cally, some function would be needed to define the parameter εi given the location xi

and, potentially, all the other locations x1, . . . , xn in the problem. For random shape

parameters, a user-chosen distribution is needed which will likely have its own free

parameters; more discussion on this is presented in Section 6.1. As a corollary of The-

orem 2.2, we propose a parameter-free strategy in picking random shape parameters.

For each data point zk ∈ Z ⊂ Ω ⊂ Rn, the motivation is to randomly sample its

shape parameter εk that minimizes the risk of having a singular asymmetric interpo-

lation matrix. A zero determinant occurs exactly when the space curve γ(t) = γ(t; zk)

for zk in (2.3) intersects with the hyperplane S in (2.2), which is determined by all the

other shape parameters εj with j 6= k. Such dependence also makes the hyperplane S
random. Theorem 2.2 shows that if the distribution of each εk is absolutely continuous

with respect to the Lebesgue measure, we will have almost sure invertibility.

To guarantee that we will not incur the zero probability singular situation, we
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Fig. 5.1. L∞-convergence profiles against the number of data points n for interpolating f1 =
sinc(2x+ 0.5) in (a) variable precision and (b) double precision.

suggest that the shape parameter distribution should be chosen in order to get a

uniformly distributed space curve value. In other words, we want to pick any point

on the space curve, between the start of no change and the end which results in

singularity, with equal chance. This can be done by using the arc length variable

s(t; zk) :=

∫ t

τ=0

‖γ′(τ ; zk)‖`2(Rn) dτ, 0 < t <∞.

Then, apply inverse transform sampling using the cumulative distribution function

s(t; zk)/s(∞; zk) yields an arc-length uniform distribution, denoted by

A(t; zk, Z) :=
d

dt

s(t; zk)

s(∞; zk)
=
‖γ′(t; zk)‖`2(Rn)

s(∞; zk)
, (5.1)

for the random shape parameter εk to follow. One clear advantage is that A(t; zk, Z)

depends only on the data structure and is free from other parameters. One can easily

differentiate (2.3) analytically to obtain a close form formula for ‖γ′(t; zk)‖`2(Rn).

Computing (5.1) then requires applications of some numerical quadratures.

Example 5.1. We repeat Example 4.1 with random shape parameters that follow

the arc-length uniform distribution (5.1) and show the results in Figure 5.1. The mean

of all errors of this parameter-free approach is comparable to that of the carefully

chosen χ2(3) distribution but with a bit wider range of errors.

We emphasize the idea that the data present in this experimental demonstration

comes from an analytic function with no noise. The results here do not suggest a

unreasonably simplistic picture of RBF interpolation that smaller shape parameters

will always yield better outcomes. �
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Following the same line of logic, one can derive a parameter-free distribution for

each component of E in the anisotropic setting. In the following section, we will not

go further into this direction, but instead focus on using some standard probability

distributions to generate shape parameters.

6. Numerical exploration of different random parameter distributions.

Our empirical analysis of spatially varying shape parameter strategies earlier (in Fig-

ure 4.2 and Figure 5.1) has demonstrated that, while in infinite precision there is

likely no theoretical benefit to using randomly varying shape parameters, in finite

precision there is an opportunity to perform better. This occurs as larger amounts

of data leading to an ill-conditioned basis, which leads to a logical conjecture: spa-

tially varying shape parameters can be chosen randomly to outperform a single shape

parameter. In this section, we explore that conjecture, with various possible shape

parameter distributions on examples from different dimensions.

Unfortunately, the parameter-free random shape strategy in Section 5 is compu-

tationally intensive. Any choice of distribution from which we randomly draw shape

parameters would, itself, require some parametrization. In this section, we refer to

the free parameters associated with such a distribution as hyperparameters; this term

is common in Bayesian modeling [4, Chapter 5], whereby it defines the distribution

of another free parameter1.

Our initial analysis considers the impact of such hyperparameters when randomly

generating random shape parameters. We also try to provide some guidance regarding

how the distributions might be chosen in various circumstances.

6.1. Random distributions under consideration. We begin by assuming

that some base ε0 value is present: this would be the single shape parameter which

would be otherwise used in the symmetric setting. Several possible distributions are

considered with this ε0 value as their mean and variance left as a free parameter (when

it varies freely from the mean). Other distributions could also be considered and may

be preferable in some settings; these are meant to provide some initial insights.

One distribution of interest is a log-uniform distribution εu with components

log([εu]k) ∼ Unif(log(ν/τ), log(ντ)), 1 ≤ k ≤ n, (6.1a)

where ν > 0 and τ ∈ (0, 1) represent a sort of center and spread of the distribu-

tion, respectively. This distribution produces points which are logarithmically spaced

1Interestingly, if kernel interpolation is interpreted through Gaussian processes [2], the shape
parameter ε would be called a hyperparameter, because the interpolation coefficients are the actual
parameters of interest in the model. In that setting, τ would be a hyper-hyperparameter, or simply
just another hyperparameter. See [18] for an in depth treatment of the topic.
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between ν/τ and ντ . Because

E([εu]k) = ν(τ − 1/τ)/(2 log τ),

Var([εu]k) = (ν(τ − 1/τ)/(2 log τ))
2

(
log τ

τ + 1/τ

τ − 1/τ
− 1

)
,

and we require E([εu]k) = ε0, this fixes ν = 2ε0 log(τ)/(τ − 1/τ) for all 1 ≤ k ≤ n.

We choose τ for a desired variance Var([εu]k) > 0 by solving the nonlinear equation

log τ
τ + 1/τ

τ − 1/τ
= 1 +

Var([εu]k)

ε20
.

We can also consider the log-normal distribution εn with components

log([εn]k) ∼ N (µ, σ2), 1 ≤ k ≤ n, (6.1b)

for µ ∈ R and σ2 > 0. For this random variable,

E([εn]k) = eµ+σ
2/2 and Var([εn]k) = (eσ

2/2 − 1)e2µ+σ
2

.

Requiring E([εn]k) = ε0 and given a desired variance Var([εn]k) > 0 produces param-

eter values

σ2 = log(1 + Var([εn]k)/ε2) and µ = log
(
ε20/
√
ε20 + Var([εn]k)

)
.

Another distribution, which was used in [23], is the Chi-squared distribution εχ

with components

[εχ]k ∼ χ2(ν), 1 ≤ k ≤ n. (6.1c)

This distribution has only one free parameter, which is fixed to ν = ε0 so that the mean

is ε0. This produces a fixed variance of Var([εχ]k) = ν2. The Gamma distribution εg

generalizes the Chi-Squared distribution, so we may also consider

[εg]k ∼ Gamma(α, β), 1 ≤ k ≤ n, (6.1d)

where α, β > 0 are shape and rate parameters respectively. Because E([εg]k) = αβ

and Var([εg]k) = αβ2 we require

α = ε20/Var([εg]k) and β = Var([εg]k)/ε0.
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Fig. 6.1. The distributions defined in (6.1) are used to create interpolants of three functions
over 250 trials; median and interquartile RMSE values are presented. In each graph, a specific ε0
value is chosen as the distribution mean, and a range of variance values is studied. (top) n = 31.
(bottom) n = 131. (a) The LOOCV ε0 is used on data sampled from the function f(x) = sin(6x)−x.
(b) The MLE ε0 is used on data sampled from the function f(x) = 1− tanh(3x) + ex. (c) The best
ε0, as judged by the accuracy on the evaluation points, is used on data sampled from the function
f(x) = 1/(1 + 25(x− .3)2).

6.2. Interpolation in 1D. For these first experiments, we use the truncated

SVD (tolerance of 10−14) to solve linear systems with the pseudoinverse; we feel

that this helps manage any potential disparity of solving symmetric and asymmetric

circumstances while also allowing for a consistent treatment of ill-conditioning. In

Figure 6.1, we consider interpolant accuracy results from 3 different functions when

either n = 31 or n = 131 evenly spaced points were sampled in the domain [−1, 1]. In

all tests, 100 evenly spaced evaluation points were used.

For a small number of points, there seems to be little benefit and some potential

penalty in using the random shape parameter strategy for many different variance
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values. However, with a larger problem size, there is significant potential benefit and

reduced potential for penalty. Even in the bottom right graph of Figure 6.1, where we

have “cheated” and chosen the best ε0 value possible so as to minimize the error, the

use of random shape parameters to produced an asymmetric matrix provided better

accuracy (for certain variances).

6.3. Singular value analysis. The top and bottom rows of Figure 6.1 show

distinctly different behavior: in the top row, with only n = 31 points, the random

distribution gives little benefit, whereas in the bottom row, with n = 131 points,

there is much more consistent benefit. In Figure 6.2 we explore the spread of singular

values of these symmetric and asymmetric interpolation matrices to study their role

in this discrepancy. To simplify the analysis, the variance was fixed at 10.0 for all the

distributions where it was a free parameter.

For smaller matrices (in the top row), essentially all of the singular values are

greater than machine precision. In contrast, when n = 131 produces larger kernel

matrices, the bottom row shows that more of those singular values fall beyond machine

precision. The asymmetric kernel matrices have noticeably larger singular values in

two of the situations; both of these situations were able to produce more accurate

interpolants, as seen in Figure 6.1.

6.4. Interpolation in 2D and 3D. We consider now a 2-dimensional exam-

ple, at which point additional flexibility arises in the random kernel approximation.

We use the standard Matlab \ operator for solving linear systems, in lieu of the

truncated SVD from Section 6.2. For each kernel, an anisotropic kernel is chosen

with different shape parameters randomly selected for each dimension. To simplify

our analysis, we consider only the Gamma distribution (6.1d) with ε0 = log(n) and

several possible variances. A random isotropic kernel could also be chosen, but that

seems unnecessarily limiting given the freedom we hope to unlock by using randomly

selected shape parameters.

The function sin(6(x21 + x22)) on [−1, 1]2 is considered in Figure 6.3; n Hal-

ton [20] points were sampled, and the error of the interpolant is computed at 400

Halton points on the convex hull of the points sampled. Figure 6.3(a) shows that

the standard isometric symmetric interpolant has its optimal accuracy for larger n

with ε ∈ [log(n)/
√

10, log(n)
√

10]. Figure 6.3(b) shows that there is an opportunity

to achieve better interpolant accuracy at large n values, if the variance is suitably

large. However, those larger variance values yield worse accuracy for smaller n values

where the kernel matrix is still well-conditioned (as suggested in Figure 6.3).

In 3D, we are interested in some relatively fine tuning free approach to get better

interpolation accuracy. We consider interpolating exp(x + 2y)z in [0, 1]3 using the
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Fig. 6.2. The spread of singular values of symmetric and asymmetric kernel matrices. For the
asymmetric kernel matrices, drawn from the distributions in (6.1) with variance fixed at 10, 250
draws were considered and the interquartile range is plotted. (top) n = 31. (bottom) n = 131. (a)
The LOOCV ε0 is used on data sampled from the function f(x) = sin(6x)−x. (b) The MLE ε0 is used
on data sampled from the function f(x) = 1−tanh(3x)+ex. (c) The best ε0, as judged by the accuracy
on the evaluation points, is used on data sampled from the function f(x) = 1/(1 + 25(x− .3)2).

anisotropic Gaussian kernel interpolation in Section 3. We use n = 3000 Halton

points for interpolation and the error is evaluated at 203 regularly placed points. Two

random shape parameter strategies were considered: Chi-squared distribution [εχ]k ∼
χ2(max{ε0, 1}) and log-normal distribution [εn]k ∼ exp

(
N (log ε0, 1)

)
in Figure 6.4(a)

and (b) respectively for 1 ≤ k ≤ n. For each parameter ε0, we run each strategy 100

times to collect the median and range of error. The L∞-error resulting from constant

shape parameter ε0 is also shown for comparison. Chi-squared distribution seems to

be a bad strategy for ε0. In other cases, it is probabilistically safe to say that random

shape parameter interpolation yields better accuracy than the traditional constant

shape parameter approach.
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Fig. 6.3. (a) We study symmetric interpolant quality as a function of n for 15 ε values log-
arithmically spaced between [log(n)/

√
10, log(n)

√
10]. (b) Randomly chosen shape parameters are

considered with different variance values (including the symmetric case Var = 0) for ε0 = log(n);
the median outcome of 25 trials is plotted as well as the interquartile range. (c) Rotated kernels, as
described in Section 6.5, are used to replace the standard anisotropic kernels with little or no impact
on accuracy.
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Fig. 6.4. We study the L∞-error of a 3D interpolation problem as a function shape/free
parameters ε0 that generate random shape parameters by (a) Chi-squared χ2(max{ε0, 1}) and (b)
log-normal exp

(
N (log ε0, 1)

)
distributions. Median and range of error were computed based on 100

trial runs for each tested ε0.

6.5. Rotated Gaussian kernels. We also experiment with the “rotated” Gaus-

sian kernels defined in Corollary 3.2 to study potential benefits from randomly chosen

distance definitions. In this situation, the concept of a random distribution of distance

parameters is slightly more complicated because of the rotation present.

Distance is defined as ‖x− z‖E = (x− z)TE(x− z) for some symmetric positive

definite (SPD) matrix E ∈ Rd×d. Because all SPD matrices E have a unique Cholesky

factorization, they are defined uniquely with d(d+ 1)/2 values. In our case, however,
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we choose to utilize the eigenvalue decomposition in order to define an E matrix which

has directly manipulable length scales. We write

E = VSVT =

v1 · · · vd



s21

. . .

s2d




vT1
...

vTd

 .

The s1, . . . , sd values are chosen from one of the distributions defined in Section 6.1;

again, we use only (6.1d) for ease of analysis. Because V is orthogonal, there are only

d(d − 1)/2 free parameters; such a matrix can be randomly generated by taking the

QR factorization of a d× d matrix with standard normal random entries [24].

As we can see in Figure 6.3(c), the use of the rotated kernels in that particular

experiment provided no immediate benefit or penalty over the standard anisotropic

Gaussians. While it seems likely that adding the additional degrees of freedom can

yield benefits, more experimentation is required to identify those circumstances.

7. Conclusion and future work. We have proved that, subject to some re-

strictions on the data under analysis, Gaussian kernels will almost surely produce

invertible matrices even when using non-constant shape parameters. The initial re-

sult was extended to include Gaussian kernels with an anisotropic sense of distance,

both when aligned with the domain axes and rotated away from the standard orien-

tation.

Some theoretical and empirical analysis was conducted to consider the benefit

of non-constant shape parameters on the numerical rank of the asymmetric kernel

matrices. Experiments were conducted to show that, while there is no theoretical

benefit of utilizing randomly chosen shape parameters on functions in the Gaussian

RKHS, there could be a benefit in finite precision. We devised a strategy for choosing

these random shape parameters in a safe fashion, and then experimented with more

standard ways to generate random parameters to show that they can also provide

benefit.

One ideal direction for future work which is afforded by the almost surely in-

vertible theorems of Section 2 would be to attempt to carefully choose the shape

parameters associated with each kernel center in some optimal way. Such a strategy

could be based on the localized density of points, or perhaps on the desired accuracy

in one region more than the rest of the domain. This would be in contrast (or perhaps

in concert, with enough analysis) to our randomly chosen shape parameter strategy.

Another important step in this research will be to consider possible connections

between the random choice of shape parameters and how random elements of other

numerical computations parallel the structure here. One close example arises in the
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use of kernels within support vector machines: in an attempt to minimize the cost

associated with solving the required quadratic program, [17] suggests that a low di-

mensional representation can be constructed randomly and accurately solved more

quickly. Both random selection combinations of features were discussed in [10] for

so-called extreme learning machines (which are trying to deal with a large amount

of data). The authors of [7] describe randomly interacting with matrices to produce

factorizations.

In all of those random computational circumstances, there is a presumption that

analyzing the large amount of data present in a random fashion can produce effective

results. Our experimental strategy in Section 6 is similar: if we randomly choose shape

parameters and have enough data, then some of the points will be given “appropriate”

shape parameters. That statement is logical, so long as appropriateness is defined,

but the implicit assumption is that the appropriately assigned kernels will contribute

more strongly to the model than those that were given poor choice of shape parameter.

While this seems to be the case numerically (which is why superior accuracy was

observed in, e.g., Figure 6.3), it is likely that work already done on these nearby

topics will help us explore the implications in this research.

Numerically, random shape RBF collocation methods were shown to be success-

ful in solving PDEs [15] adaptively without parameters fine tuning. Although this

work focuses on interpolation problems, our invertibility theories can be extended to

asymmetric RBF collocation methods, a.k.a. Kansa methods, provided that we have

an invertible constant shape Gaussian collocation matrix. In the context of Kansa

methods, Hon and Schaback [8] numerically show that singular constant shape Gaus-

sian collocation matrices are rare and difficult to construct. In examples there, sets of

singular setup are curves in 2D domains, whose theoretical proof is still missing. Thus,

we leave this as a concluding remark instead of a theorem. As constant shape asym-

metric RBF collocation matrices do not have structured eigenvalues, we do not expect

the variable shape approach will generate any. Yet, we do expect to see reductions in

condition number as in the cases of interpolation.
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