
Numerical simulations of two-dimensional fractional

subdiffusion problems

Hermann Brunner1,∗, Leevan Ling2,∗, Masahiro Yamamoto3,∗∗

Abstract

The growing number of applications of fractional derivatives in various fields
of science and engineering indicates that there is a significant demand for
better mathematical algorithms for models with real objects and processes.
Currently, most algorithms are designed for 1D problems due to the memory
effect in fractional derivatives. In this work, the 2D fractional subdiffusion
problems are solved by an algorithm that couples an adaptive time stepping
and adaptive spatial basis selection approach. The proposed algorithm is
also used to simulate a subdiffusion-convection equation.
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functions, collocation, adaptive greedy algorithm, geometric time grids

1. Introduction

Let Ω be a bounded domain in R
2 with sufficiently smooth boundary

∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. We consider an initial-boundary problem
for a time fractional diffusion equation with fractional-order 0 < α < 1:
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cDα
t u(x, t) = ∆u(x, t) + f(x), x ∈ Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = g0(x, t), x ∈ ΓD, t ∈ (0, T ),

∂νu(x, t) = g1(x, t), x ∈ ΓN t ∈ (0, T ),

(1)

where cDα
t denotes the Caputo fractional derivative of order α with respect

to t defined by

cDα
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
, 0 < α < 1, (2)

see monograph by Podlubny [1]. The operator ∆ is the Laplacian in R
2 and

∂ν is the outward normal derivative. Note that if α = 1, then the Caputo
fractional derivative in (2) becomes ∂tu(x, t) and the problem in (1) represents
the standard integer-order parabolic equation. Very recently, existence and
uniqueness of the weak solution of (1) is shown in [2].

The fractional diffusion equation is related with the continuous-time ran-
dom walk and is a model for anomalous diffusion in many applied fields such
as diffusion processes of contaminants in porous media, see [3, 4, 5, 6] and
the references therein.

In this paper, we discuss a numerical algorithm that couples an adaptive
time stepping and an adaptive spatial basis selection approach, and show
numerical results.

As for works on numerical methods for fractional diffusion equations ap-
pearing in (1.1), we can refer to [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The above papers, except for [18], all treat the case where the spatial dimen-
sion is one; see also [14] for a nonlinear fractional diffusion equation. As for
available numerical methods for fractional diffusion equations, see [19] and
[20].

2. Methodology

2.1. Finite difference time discretization

Suppose the numerical approximation of the solution u in (1) is obtained
up to some time t (0 < t < T ). Any explicit-time-scheme requires evaluation
of the Caputo fractional derivative (2). If the numerical approximation is
restricted on uniform time grid, algorithms for evaluation of the convolution
integrals [21] can be employed. As we will soon see, nonuniform time grids
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are preferred. Hence, we employ the difference approximation in [22] for
the fractional time derivative. Suppose the time interval [0, T ] is discretized
uniformly into n subintervals; define tk = k · △t, k = 0, 1, . . . , K, where
△t = T/n is the time step. Let λ(tk) be the exact value of a function λ(t) at
time step tk. Then, the fractional time derivative can be approximated by
the following scheme:

cDα
t λ(tk+1) =

1

Γ(1− α)

∫ t

0

∂λ(t)

∂η

dη

(t− η)α

≈ 1

Γ(1− α)

k
∑

j=0

λ(tj+1)− λ(tj)

△t

∫ (j+1)△t

j△t

dη

(tk+1 − η)α

=
1

Γ(1− α)

k
∑

j=0

λ(tj+1)− λ(tj)

△t

∫ (k−j)△t

(k−j+1)△t

η−αdη

=
1

Γ(1− α)

k
∑

j=0

λ(tk+1−j)− λ(tk−j)

△t

∫ (j+1)△t

j△t

η−αdη

=
(△t)1−α

Γ(2− α)

k
∑

j=0

λ(tk+1−j)− λ(tk−j)

△t

[

(j + 1)1−α − j1−α
]

.

Hence, we obtain a first-order discretization

cDα
t λ(tk+1) ≈ c△α

t λ(tk+1) :=
(△t)−α

Γ(2− α)

k
∑

j=0

wj

[

λ(tk+1−j)− λ(tk−j)
]

, (3)

for k = 0, . . . , K − 1 where the weight is defined as wj = [(j + 1)1−α − j1−α]
for j = 0, 1, . . . , K. Equation (3) can be easily rewritten to obtain a fully
explicit scheme for the latest approximation λ(tk+1) which depends on all
previous values λ(t0), . . . , λ(tk).

2.2. Kernel based spatial approximation

In this section, we consider a kernel-basis representation for the spatial
variables. For the considered problem (1), the numerical approximation is
expanded as

u(x, t) ≈ U(x, t) =
N
∑

ℓ=1

λℓ(t)Φ
(

‖x− ξℓ‖/c
)

, x ∈ Ω, (4)
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where c is the scaling parameter, the set Ξ = {ξℓ}Nℓ=1 is the trial centers
and Φ(·) can be any commonly used radial basis kernel; for examples, multi-
quadrics Φ(r) = (r+1)1/2, inverse multiquadrics Φ(r) = (r+1)−1/2, gaussian
Φ(r) = exp(−r2), thin plate spline Φ(r) = r2 log(r), etc. Putting (4) into
the subdiffusion equation (1) results in

N
∑

ℓ=1

cDα
t λℓ(t)Φ

(

‖x− ξℓ‖/c
)

=

N
∑

ℓ=1

λℓ(t)∆Φ
(

‖x− ξℓ‖/c
)

+ f(x). (5)

Using a sufficiently dense set X = {x1, x2, . . . , xM} ⊂ Ω̄ for collocation,
applying the finite difference c△α

t in (3) to λℓ(·) and the strong form collo-
cations at X will result in a matrix system for updating (discrete) values of
the coefficient functions λℓ(tk), ℓ = 1, . . . , N , k = 1, . . . , K.

2.3. Geometric time grids

When t ≫ 0, the size of “memory” in the fractional-derivative approx-
imation becomes enormously large. The “short-memory” principle [1, 23]
suggests that, for large t, the role of the “history” of the behavior of the
solution u(x, t) near t = 0 can be neglected. This agrees with the fact that
wj ց 0 in (3) as j ր with large n. Hence, one may take into account the
behavior of u(x, t) in the recent past in the interval [t− L, t] where L is the
“memory length”. It is shown [1, Ch.7] that

| cDα
t λ(t)− t−L

cDα
t λ(t)| ≤ ǫ, if L ≥

(

M

ǫ|Γ(1− α)|

)1/α

,

where t−L
cDα

t is the fractional derivative with moving lower integration limit
t− L in the definition (2), instead of 0.

Despite of its success in 1D problems, Figure 1 shows that the short-
memory principle is not particularly useful in reducing the memory require-
ment in 2D when t ≈ 1. The penalty in the form of inaccuracy is too large;
for example, when α = 0.5, any memory length L < 1 will introduce an error
ǫ≫ 1. As we will see soon in the numerical experiment, small time stepping
is important to capture the fast “initial drop” [1, Ch.3] accurately.

One can also see the initial drop as a boundary layer at t = 0. Techniques
for solving boundary layer problems, e.g. [24, 25, 26], can be applied. How-
ever, these techniques do not ease the memory requirement. The nested mesh
principle in [23] partitions the time interval [0, T ] into nonuniform subinter-
vals; the smallest subinterval is placed at t = 0 in order to well-capture the
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Figure 1: Memory length L required for various orders α and desired accuracy ǫ in the
“short-memory” principle.

initial drop and the rest gradually widen as time increases in order to speed
up the calculation. In this paper, we do not neglect outdated information
completely as in the short-memory principle. Similar to [27], we make use of
the fading memory property but in a different way. To do so, we turn our
focus to the geometric time grids [28, 29].

For large t away from 0, the solutions of subdiffusion “diffuse more slowly”
than the standard integer-order diffusion process. It makes sense to employ
a large time step in this region. Let U(·, tk) be the numerical approximation
for u(·, tk). To monitor this diffusion rate, we define a measure between the
numerical solutions U(x, ·) of two consecutive time steps by

∆Utk =
‖U(x, tk)− U(x, tk−1)‖L2(Ω)

‖U(x, tk−1)‖L2(Ω)

, for k = 1, . . . , K. (6)

For some user-defined relaxation parameters τ , if ∆Uti < τ , the time spacing
is relaxed:

△t← 2 · △t,

up to some prefixed value △tmax.
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2.4. Adaptive kernel selections

Although the geometric time grids can help reduce the number of pre-
vious solutions needed for evaluating c△α

t u(x, t) at current time, it is not
possible to completely remove the memory nature as it comes directly from
the fractional subdiffusion problem. To effectively minimize the overhead of
computer memory, the spatial information must be carefully treated. Using
kernel representation, a kind of meshless method, expansion (4) provides us
a parametric description of the numerical approximation. This is the first
motivation of employing an adaptive technique so that only a small subset
of unknown coefficients λℓ(tk) in (4) are nonzero and stored instead of all
approximation function values U(X, tk).

However, kernel representation is not at all trouble-free. For example,
choosing optimal trial centers ξℓ for numerical expansion is a common prob-
lem for researchers who employ various meshless methods. On one hand,
high accuracy is always desired; on the other, ill-conditioning problems of
the resultant matrices, that may lead to unstable algorithms, prevent some
researchers from using meshless methods. For example, the optimal place-
ments of source points in the method of fundamental solutions, or of the
centers in the radial basis functions method are always unclear. Intuitively,
such optimal locations will depend on many factors: the partial differen-
tial equations, the domain, the trial basis used (i.e. the employed method
itself), the computational precisions, some user-defined parameters, and so
on. Such complexity makes the hope of having optimal trial centers place-
ment unpromising.

Various adaptive algorithms are devoted on the sub-optimal solution to
the trial-centers-placement problem. In particular, we employ the most up-
to-date algorithm in [30]. The first theoretical foundation [31] is that, in
a large set of trial centers (large in the sense of |Ξ| ≥ |X|), there exists a
subset such that the meshless collocation system is solvable. To put this
purely theoretical result into practice, we use more-than-necessary number
of basis functions in the expansion (4). Then, by applying the adaptive
algorithm with certain selection criteria, a “proper” subset of trial centers
will be selected from Ξ. Equivalently, only a small subset of coefficients λℓ(tk)
is active in (4). Before describing the algorithm, we emphasize the algorithm
presented below is matrix-free in the sense that resultant matrix will not be
fully evaluated or stored. Hence, the increase in number of basis functions
does not impose an overhead to the memory requirement; that is one of the
main concerns in solving fractional subdiffusion equations.
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Without going into the how-and-why, we present the key ideas and steps
of the adaptive algorithm. Readers can refer to the original articles [30,
31, 32] for details. Consider a meshless collocation system Aλ = b with
A ∈ R

M×N and b ∈ R
M usually with M ≤ N (due to the solvability theorem

we mentioned above). The adaptive algorithm makes sequential collocation–
trial center pair selection and builds up ordered indexed sets, denoted by
X(k) = {x(1), . . . , x(k)} and Ξ(k) = {ξ(1), . . . , ξ(k)}, for k = 1, . . . ,M , for
collocation points and trial centers respectively.

Suppose, after the first k iterations, our algorithm selects a set of k col-
location points and a set k RBF centers, respectively, and builds X(k) ⊂ X
and Ξ(k) ⊂ Ξ. These sets of points define a subproblem to the original one:

{

A(k)λ̌
(k)= b̌(k),

AT
(k)ν̌

(k)=−λ̌(k),
(7)

where A(k) ∈ R
k×k is a k×k square-submatrix of the full matrix A with rows

associated with X(k) and columns associated with Ξ(k). Similarly, b̌(k) ∈ R
k

is the k entry of b associated with the selected collocation points X(k). After

solving (7) for λ̌(k) ∈ R
k, let λ(k) ∈ R

N be the extension of λ̌(k) by patching
zeros into entries associated with the unselected trial centers. Similarly,
ν̌(k) ∈ R

k can be extended to ν(k) ∈ R
N .

All versions of the adaptive algorithm use the same criteria for selecting
new collocation points. The (k+1)st collocation point x(k+1) can be selected
from the primal residual

r(k) = Aλ(k) − b. (8)

In other words, we are checking the well-fitness of approximating b with only k
columns of A with weight in λ̌(k). We pick—from the set of collocation points
XM—an (always-new) collocation point x(k+1) such that the corresponding
entry in the primal residual r(k) is the largest in absolute value (that is the
greedy technique). This is why the adaptive algorithm here is sometimes
referred as the greedy algorithm.

For an unsymmetric matrix system, picking a row (or collocation point)
provides no hint on column-selection. In [31, 32], columns (or trial centers)
are selected based on the determinant function. A new column is selected
such that of the resulting submatrix A(k+1) has a determinant closest to 1.
The latest version in [30] is more cost-efficient and it uses the dual residual

q(k) = λ(k) + ATν(k). (9)

7



Ω

Γ
4

Γ
2

Γ
3

Γ
1

Figure 2: Boundary labels for Ω = [−1, 1]2.

Geometric interpretation of the dual residual can be found in the same article.
Using the greedy technique again, the new trial center ξ(k+1) is selected from
all candidates in ΞN such that q(k) is the largest in absolute value among all
others. The adaptive algorithm terminates if either residual is smaller than
some tolerances or when severe problem of ill-conditioning appears in the
subproblem (7). After the adaptive algorithm terminates, the convergence
analysis in [31] recommends to use all available collocation points instead of
the selected ones only. To obtain the unknown coefficient λ in Aλ = b, an
overdetermined system containing all rows but only the selected columns are
solved. In [33], if one employs the MQ-kernel, exponential spatial accuracy
for the integer-order heat problem is formally proven. Numerical evidences
of exponential convergence for other types of PDE can be found in [34].

3. Numerical verifications

We verify the proposed numerical scheme to solve a simplified problem
with zero Dirichlet/Neumann/mixed boundary conditions:

cDα
t u(x, t) = ∆u(x, t), x ∈ Ω, t ∈ (0, T ), 0 < α < 1,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ ΓD, t ∈ (0, T ),

∂νu(x, t) = 0, x ∈ ΓN t ∈ (0, T ).

(10)

Let Ω = [−1, 1]2 whose boundaries are labeled as in Figure 2 and x =
(x1, x2) ∈ Ω. We consider three cases:
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Dirichlet BC is imposed on the whole boundary ΓD = ∂Ω. The exact
solution of (10) associated with initial condition

u0(x) = cos
(π

2
x1

)

cos
(π

2
x2

)

(11)

is given as

w1(x, t) = Eα

(

−1
2
π2tα

)

cos
(π

2
x1

)

cos
(π

2
x2

)

.

Neumann BC: is imposed on the whole boundary ΓN = ∂Ω with initial
condition

u0(x) = sin
(π

2
x1

)

sin
(π

2
x2

)

(12)

The exact solution is Eα

(

−1
2
π2tα

)

u0(x).

Mixed BC: with Dirichlet BC on ΓD = Γ1∪Γ3 and Neumann BC on ΓN =
Γ2 ∪ Γ4. Initial condition is

u0(x) = cos
(π

2
x1

)

sin
(π

2
x2

)

.

Similarly, the exact solution is Eα

(

−1
2
π2tα

)

u0(x).

3.1. α = 1
2

Our first verification focuses on the half-order cases because exact so-
lutions to (1) can be found explicitly. Recall the definition of the (one-
parameter) Mittag-Leffler function

Eα(z) :=

∞
∑

k=0

zk

Γ(αk + 1)
, α > 0,

and its property

cDα
t Eα(−λtα) = −λEα(−λtα), 0 < α < 1. (13)

As for the unique existence of solution to (10) in the case of ΓD = ∂Ω, we
refer to the very recent results in [35] and [36]. Note that E1/2(−z) = erfcx(z)
is the scaled complementary error function defined by

erfcx(z) =
2√
π
exp(z2)

∫

∞

z

exp(−η2) dη,

9
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Figure 3: Dirichlet boundary conditions (α = 1

2
): Absolute and relative errors over time

for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.

see [1] for instance.
A total number of 1537 trial basis functions, including both interior and

boundary nodes, is fed into the adaptive algorithm for all time. For all three
boundary conditions and all time updates, the numbers of selected basis
range between 82 to 146 that is an over 90% saving in memory requirement.
The initial time step is dt = 2−13 and it is relaxed whenever the measure
in (6) is less than τ = 0%, 0.5%, 1.0%, and 10%. When τ = 0%, the time
stepping is fixed at dt = 2−13 for all time. Figure 3 to Figure 4 show the
absolute and relative errors over t = (0, 1].

One interesting observation (see Figure 3 and Figure 4) is that fine time
stepping (τ = 0%) does not result in the best accuracy due to the presence
of cancelation errors. When τ is large, e.g. 10%, the time spacing is relaxed
too early and hence thus results in poor accuracy near t = 0. However, as t
increases, we see that the numerical solutions for τ = 10% is more accurate
than those for τ = 0%. This tells how severe the cancelation errors are.
Better results can be obtained by small tolerances τ = 0.5% or 1.0%. Note
that using small τ > 0 requires more (but still much faster than using fixed
small time step) computational time.
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Figure 4: Neumann boundary conditions (α = 1

2
): Absolute and relative errors over time

for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.
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Figure 5: Mixed boundary conditions (α = 1

2
): Absolute and relative errors over time for

different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.
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Figure 6: Dirichlet boundary conditions (α = 2

3
): Absolute and relative errors over time

for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.

3.2. Other α

To ensure that the proposed algorithm works beyond the special case
α = 1/2, we consider (10) again but with different order. To make use of the
eigen-relation (13) with α 6= 1/2, we numerically evaluate the Mittag-Leffler
functions [37] to high accuracy (with tolerance 10−10). Other settings remain
the same.

For Dirichlet BC with initial condition (11) and α = 2/3, the results are
shown in Figure 6. The error profiles are oscillatory comparing to Figure 3.
We still observe that using τ = 0.5% yields the best result. Without the
geometric grid (i.e. τ = 0%), the results are not only inaccurate but also
very computationally costly (due to the enormous number of time steps).

For completeness, we now consider a problem with Neumann BC. We
take α = 1/

√
5 so that it is irrational and less than a-half. Initial condition

is taken to be (12). The results displayed in Figure 7 should be compared
with Figure 4. From these figures, we can see that the value α does not have
a great effect on the proposed algorithm.
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Figure 7: Neumann boundary conditions (α = 1√
5
): Absolute and relative errors over time

for different relaxation parameters τ = 0%, 0.5%, 1.0%, and 10%.

4. Numerical simulations

Our first simulation studies the effect of the order α on the decay rate
of the subdiffusion solution. We consider (10) with Neumann boundary con-
dition for insulated boundary. Initial time stepping is dt = 2−13 and the
relaxation parameter is set to be τ = 0.05%. Figure 8 shows the maximum
norm of the numerical solution for α = 0.1, 0.2, . . . , 0.9 and time t ∈ [0, 1];
the dots in Figure 8 indicate all visited times in each run. For small α, say
0.1, the initial drop is enormous; in case of α = 0.1, the maximum norm of
the solution immediately drops from 1 to 0.34 after the first time update. On
the other hand, when time gets large, the change in the solution is relatively
minor; dt is relaxed all the way to dtmax = 2−5. For large α, the solution
behaves more like the integer-order case. When α = 0.9, the largest time
stepping used is dt = 2−8. In the experiment, we see that a very small ini-
tial time stepping is desired for small α. Whereas, when α is large, a more
easygoing relaxation scheme is desired.

Our last example simulates the fractional subdiffusion-convection prob-
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lem with different α.

lem,

cDα
t u(x, t) = ∆u(x, t) + ω

∂

∂x
u(x, t), x ∈ Ω,

u(x, 0) = 2

(

x1 + 1

2

)5

− 1, x = (x1, x2) ∈ Ω,

u(x, t) = x1, x ∈ Γ1 ∪ Γ3,
∂νu(x, t) = 0, x ∈ Γ2 ∪ Γ4

for α = {0.9, 0.8, 0.5, 0.2}, t ∈ (0, 1) and ω = 0.005 is the convection coef-
ficient. Due to the symmetry of the problem, we show the cross section of
the numerical solution (parallel to the x1-axis) in Figure 9 for every 1/32 sec
moving up from the lower-right towards the diagonal.

The effect of convection can be seen most clearly in the case of α = 0.9;
the presence of the points of inflection is obvious for small t. The effect
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of convection is less clear as α decreases. After careful examination, one
may still find some inflection points for the case of α = 0.8. However, when
α = 0.5, the effect of convection becomes even less significant. For α = 0.2, as
in the previous example, we see a very rapid change in the solution between
(0, ǫ); after that, the solution varies slowly. Note also that the numerical
solutions for different α are more distinct near the left endpoint where fluid
is being pumped out. For experiment design, it makes sense to place sensors
somewhere in −1 < x1 < 0 instead of in 0 < x1 < 1.

5. Conclusion

We present a numerical scheme, which includes geometric time grids re-
laxation and adaptive kernel selection, for solving the 2D fraction subdiffu-
sion problems. The algorithm is tested with different boundary conditions,
for which exact solutions are known, in order to verify its accuracy. Next,
the algorithm is applied to simulate the subdiffusion problems with different
fractional-orders and a subdiffusion-convection problem.

Since the kernel presentation is used for spatial discretization, we implic-
itly required the initial condition to be of certainly smoothness. In cases
where this is not true, one should employ a finite element or finite difference
scheme for the first few time steps. Once the numerical solution (sub)diffuses
and becomes smooth, the kernel presentation can be re-introduced. The
memory saving provided by the adaptive kernel selection will become more
significant in 3D. The simulations in [33] suggest that the adaptive algorithm
takes roughly about 500 trial basis for approximating smooth functions in
[−1, 1]3. This suggests that the proposed algorithm has a good chance in
solving 3D subdiffusion problems without modification. We leave this to our
future studies.
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