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Abstract. By exploiting the meshless property of kernel-based collocation methods, we propose
a fully automatic numerical recipe for solving interpolation/regression and boundary value problems
adaptively. The proposed algorithm is built upon a least-squares collocation formulation on some
quasi-random point sets with low discrepancy. A novel strategy is proposed to ensure that the fill
distances of data points in the domain and on the boundary are in the same order of magnitude. To
circumvent the potential problem of ill-conditioning due to extremely small separation distance in
the point sets, we add an extra dimension to the data points for generating shape parameters such
that nearby kernels are of distinctive shape. This effectively eliminates the needs of shape parameter
identification. Resulting linear systems were then solved by a greedy trial space algorithm to improve
the robustness of the algorithm. Numerical examples are provided to demonstrate the efficiency and
accuracy of the proposed methods.

Key words. Radial basis function, Kansa method, overdetermined collocation, adaptive trial
space selection.

1. Introduction. We are interested in kernel-based methods for solving inter-
polation, regression or curve fitting, and boundary values problems equations in some
bounded domain Ω ⊂ Rd. For the sake of discussion, we focus on elliptic differential
equations subject to some boundary conditions on ∂Ω:

Lu = f in Ω and Bu = g on ∂Ω, (1.1)

for some linear differential operators L and B. We assume the domain Ω is Lips-
chitz continuous and satisfies an interior cone condition. Operators L and B define a
well-posed PDE. Moreover, we assume the coefficients of L,B and functions f, g are
sufficiently smooth to allow a classical solution u∗ ∈ Hm(Ω).

Strong-form asymmetric kernel-based collocation methods, also known as Kansa
methods [1], are easy to implement and meshfree in nature. A recent review of the
method can be found in monograph [2]. They are widely used for solving engineering
problems and partial differential equations [3–6]. Given any smooth scalar radial basis
function (RBF) φ : R+ → R and shape parameter ǫ, one can define a translation-
invariant scaled kernel function Φǫ : R

d × Rd → R by

Φǫ(x, z) := φ(ǫ‖x− z‖2) for any ǫ > 0.

To solve (1.1) by Kansa methods, users have to provide the following point sets:
• Interior collocation points X = {x1, . . . , xnX

} ⊂ Ω,
• Boundary collocation points Y = {y1, . . . , ynY

} ⊂ ∂Ω, and
• Trial centers Z = {z1, . . . , znZ

} ⊂ Ω.
If ones adopt the variable-shape formulation, a shape parameter ǫj has to be specified
at each trial center zj and we need another set of

• Shape parameters E = {ǫ1, . . . , ǫnZ
} ⊂ R+.

The denseness of the domain-filling point sets X and Z can be measured by the
mesh norm and the separation distance, which are respectively defined as

hχ := sup
ς∈Ω

min
x∈χ
‖x− ς‖ℓ2(Rd) and qχ :=

1

2
min

xi, xj ∈ χ
xi 6= xj

‖xi − xj‖ℓ2(Rd),
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and the quantity hχ/qχ =: ρχ is commonly referred as the mesh ratio of χ ∈ {X,Z}.
For any discrete set of collocation points X ⊂ Ω, we define a discrete norm by

‖w‖2ℓ2(X) =
∑

xi∈X

∣∣w(xi)
∣∣2 for any w ∈ C(Ω).

Analogously, with any discrete set Y ⊂ ∂Ω, we can also define denseness measures
hY , qY , ρY and a discrete ℓ2(Y ) norm on the boundary for functions in C(∂Ω).

To ensure stability of Kansa formulations, we usually require some linear ratio of
oversampling, i.e.,

γhZ ≤ min(hX , hY ) ≤ max(hX , hY ) ≤ hZ for some γ > 0. (1.2)

Kansa approximations can then be sought from the trial space

UΦ,Z,E := span{Φǫj ( · , zj) : zj ∈ Z, ǫj ∈ E} (1.3)

by minimizing the strong-form residuals at collocation points X and Y . In particular,
weighted least-squares (LS) Kansa solutions are given by

ULS := arg inf
u∈UΦ,Z,E

{
‖Lu− f‖2ℓ2(X) +W‖u− g‖2ℓ2(Y )

}
(1.4)

for some weight W > 0; see [7, 8] for works on finding appropriate scaling factors for
W . Theoretically, (1.4) consists a class of H2(Rd)-optimal formulations [9] for elliptic
PDEs (1.1) subject to Dirichlet boundary conditions. Suppose that d ≤ 3 and the
Sobolev regularity of the true solution satisfies m > 3 + d/2. If the kernel Φǫ, with
constant shape parameters E = {ǫ, . . . , ǫ} for some constant ǫ > 0, reproduces the
Sobolev space Hm(Ω), then the LS-Kansa solution with an appropriate weight W
satisfies an error estimate

‖ULS − u∗‖H2(Ω) ≤ Chm−2
Z

for some constant C depending on Ω, Φ, L, m, mesh ratios ρZ , ρX and ρY but
independent of the classical solution u∗.

In this paper, we are interesting in solving PDE with popular C∞ RBFs [10]
such as the Gaussian φ(r) = exp(−r2), multiquadric φ(r) =

√
1 + r2, and high or-

der kernels like the Whittle–Matérn–Sobolev kernels φ(r) = rm−d/2Km−d/2(r) that

reproduces Hm(Rd). To design a fully adaptive numerical recipe for kernel-based
methods, we need ways to generate the four point sets X , Y , Z, and E in order to set
up LS-Kansa matrix systems and deal with the potential problem of ill-conditioning.
In Section 2, we propose an algorithm to generate interior and boundary data points
X ⊂ Ω and Y ⊂ ∂Ω automatically so that they have similar density. If these data
points are used as trial centers, the algorithm also outputs a set of quasi-random
numbers Θ = {θ1, . . . , θnZ

} ⊂ [0, 1] such that θj will be used to generate a shape
parameter ǫj for the jth trial center. By construction, the quasi-uniformity of points
in Z × Θ ensures θj 6≈ θk whenever zj ≈ zk. The role of the quasi-random point set
Θ, when used properly, is to ensure ǫj 6≈ ǫk if zj , zk ∈ Z are nearby. We then consider
an extended set of trial centers Z with nZ ≥ nX + nY and associated with shape
parameter E = E(Θ). From all the associated trial basis function

Φǫi( · ) = φ(ǫj‖ · −zj‖2) for (zj , ǫj) ∈ Z × E ,
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we employ an adaptive-greedy algorithm [11] to select a subset of nsel trial centers,
denoted by Zsel, with the associated shape parameters (Zsel, Esel) ⊂ (Z, E) that de-
fines the trial space (1.3), within which we seek for numerical approximation (1.4). In
Section 3, the adaptive LS-Kansa algorithm will be presented in detail. If ULS uses
nsel trial basis functions, the overall complexity of the proposed algorithm is O(n3

sel).
In Section 4, numerical examples are provided to show the robustness of the proposed
fully-adaptive algorithm.

2. Adaptive point sets generator. In literature, we can find different ways to
generate point sets adaptively to run Kansa methods, for example, by quad-tree [12],
wavelet [13, 14], and Voronoi diagram [11, 15]. In common, all these methods are
designed to keep the separation distance qZ bounded away from zero. The main
drawback is that the number of additional points is no longer arbitrary but has to obey
the respective data structure. In this paper, we focus on low-discrepancy sequences by
quasi-Monte Carlo methods [16], which generate deterministic sequences of points such
that any finite subsequences fill the unit hypercube uniformly, where the deviation
from uniformity is assessed by different so-called discrepancies. Examples include
the Faure, Halton, Sobol, and van der Corput sequences. Points from such a low-
discrepancy sequence are also known as quasi-random points, which can be thought
of as points distributed according to the uniform distribution. However, unlike pseudo-
random numbers, quasi-random points should be interpreted not as independent but
as correlated realizations of the uniform distribution, so that in such a sample of
realizations (i.e. a finite subsequence) we would not be ‘unlucky’ to observe a large
deviation from uniformity or a cluster of arbitrarily close points. For example, in the
Sobol sequence in Rd, the distance between the 2ith and the (2i+1)st points is

√
d/2,

and the minimum distance between the first n points is bounded below by
√
d/(2n)

and empirically found to be proportional to n−1/d for large n [17]. Nevertheless, in
such a sample there may still be points that should better not be used as trial centers,
and this will be explained and dealt with in Section 3.

The goal here is to expand any given X ∈ Ω and Y ∈ ∂Ω with hX ≈ hY to
X ′ ⊃ X and Y ′ ⊃ Y in such a way that nX′ can be pre-specified and hX′ ≈ hY ′ with
some appropriate nY ′ . Trial centers in Z can be generated by the same approach.

2.1. Interior points. Consider smooth bounded domains Ω ⊂ B ⊂ R
d in some

bouncing box B with a parametric boundary ∂Ω. We assume there exists a sign
function

SignΩ(x) =





+1 x 6∈ Ω
0 x ∈ ∂Ω
−1 x ∈ Ω.

Denote by {p1, p2, . . .} ⊂ B a low-discrepancy point set in Rd; see [18] for the related
computational issues. Constructing the set X for Ω is equivalent to identifying the
strictly increasing index functions ϕΩ : N → N such that SignΩ(pϕΩ(j)) = −1 for all
j ∈ N and SignΩ(pi) 6= −1 for all i ∈ N \ {ϕΩ(j) : j ∈ N}. Then, for any given nX ,
we take

X := {pϕΩ(j) : 1 ≤ j ≤ nX}.

If the points are used as trial centers, we will begin with a low-discrepancy point set
in {(p1, θ1), (p2, θ2), . . .} ⊂ B× [0, 1] ⊂ Rd+1, and then obtain the set of quasi-random
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numbers Θ by

Θ := {θϕΩ(j) : 1 ≤ j ≤ nX}.

The computational cost here is dominated by the rejection rate. To seek for nX

points, it requires approximately nXVol(B)/Vol(Ω) evaluations of SignΩ. Expanding
X to X ′ simply means evaluating more SignΩ(pϕΩ(j)) until the pre-specified number
of collocation points nX′ are included in the point set, i.e.

X ′ := {pϕΩ(j) : 1 ≤ j ≤ nX′} and Θ′ := {θϕΩ(j) : 1 ≤ j ≤ nX′}.

2.2. Estimating the required number of boundary points. The construc-
tion of Y and expanding it to Y ′ can be done analogously. However, we have to
determine an appropriate value nY of boundary points so that if we place nY quasi-
random points on ∂Ω, its denseness is similar to the denseness of X in Ω. Our goal is
to control their minimum separating distances qY ≈ qX . Since

qY ∼ Vol(∂Ω)n
−1/(d−1)
Y and qX ∼ Vol(Ω)n

−1/d
X ,

we have

nY ≈
(
Vol(∂Ω)

Vol(Ω)
n
1/d
X

)(d−1)

. (2.1)

As Vol(Ω) and Vol(∂Ω) are not always handy for use, we use (2.1) with some compu-
tational efficient estimates. From Section 2.1, we can easily estimate

Vol(Ω) ≈ n

ϕΩ(n)
Vol(B) for any sufficiently large n ∈ N.

To estimate Vol(∂Ω), let a narrow-domain be defined by Γδ = {x ∈ Ω: dist(x,Γ) < δ}
for some sufficiently small δ > 0 such that Vol(Γδ) ≈ δVol(∂Ω). However, we need
not estimate Vol(Ω) and Vol(∂Ω) separately because Vol(Γδ)/Vol(Ω) can be estimated
directly by the ratio of the number of points in X ∩ Γδ to nX .

To determine the value of δ for practical applications in our context, we expedien-
tially treat the quasi-random points in X as independent random variables uniformly
distributed in Ω. Consider the indicator function 1Γδ

(·) and define

NΓδ
:=

nX∑

j=1

1Γδ
(pϕΩ(j)),

which is the number of points in X∩Γδ and follows the binomial distribution B(nX , p),
where

p := Pr{1Γδ
(pϕΩ(j)) = 1} = Vol(Γδ)

Vol(Ω)
.

By Chebyshev’s inequality, for any ε > 0,

Pr

(∣∣∣∣
NΓδ

nX
− Vol(Γδ)

Vol(Ω)

∣∣∣∣ ≥ ε

)
≤
(
1− Vol(Γδ)

Vol(Ω)

)Vol(Γδ)
Vol(Ω)

ε2nX
.
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Experience suggests that choosing ε as 10% of the ratio Vol(Γδ)/Vol(Ω) and using 0.1
as the upper bound of the above probability will lead to satisfactory results. That is
to say, we want to have

(
1− Vol(Γδ)

Vol(Ω)

)Vol(Γδ)
Vol(Ω)

nX

(
1
10

Vol(Γδ)
Vol(Ω)

)2 = 0.1.

Approximating Vol(Γδ) by δVol(∂Ω) yields

δ =
Vol(Ω)

Vol(∂Ω)

(
1000

1000 + nX

)
. (2.2)

Ironically, the expression contains Vol(Ω)/Vol(∂Ω), which is (the reciprocal of) the
ratio we are estimating in order to use (2.1). However, this probabilistic argument is
not the derivation of the exact value of δ but a determination of the order of magnitude
for δ to be used in the estimation procedure. Thus, we can use the volume-to-surface
area ratio of a d-dimensional sphere of radius r◦ to replace Vol(Ω)/Vol(∂Ω) in (2.2)
and get

δ =
r◦
d

(
1000

1000 + nX

)
,

where r◦ is half of the longest side of the bouncing box B. The main computational
cost here is the identification of NΓδ

. In our implementation, a kd-tree is built for
estimating the distance from each point in X to ∂Ω.

2.3. Generating boundary points. Given any existing sets of collocation
points X and Y . Based on a user/algorithm instructed number of extended inte-
rior collocation points nX′ , we can generate X ′ ⊃ X as in Section 2.1. Then, we
estimate the desired number of extended boundary collocation points, denoted as
nY ′ , based on nX′ and the approach in Section 2.2. This section discusses how to
add/put a specific number of low-discrepancy points on the boundary ∂Ω.

To construct nY quasi-uniform points on ∂Ω, we follow the ideas in [19]. Let the
boundary ∂Ω ⊂ Rd be defined parametrically by ρ : D → Rd for some rectangular
domain D ⊂ Rd−1 of parameters as

ρ(q) =




x1(q)
x2(q)
...

xd(q)


 for q ∈ D.

Then we can define a non-negative function G : D → R by

G := det([Gij ])

using the metric tensor of ∂Ω with element

Gij =
(

∂ρ

∂ui
·

∂ρ

∂uj

)
, for 1 ≤ i, j ≤ d− 1.

Note that the surface area of ∂Ω is given as Vol(∂Ω) =
∫
D

√
G dq and

√
G/Vol(∂Ω) is

a probability density function that allows us to control the density of points in D in
order to yield quasi-random points on ∂Ω.
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(a) nX = 100, nY = 48 (b) nX′ = 200, nY ′ = 66

Fig. 2.1. A schematic demonstration of data points refinement. (a) Request nX = 100 interior
point and estimate that nY = 48 is required to maintain a similar fill distance. (b) Request an
extended set of nX′ = nX + 100 interior points that requires nY ′ = 48 + 18 boundary points to
maintain hX′ ∼ hY ′ .

To avoid computing Vol(∂Ω), we generate another low-discrepancy point set
{(q1, s1), (q2, s2), . . .} ⊂ D × [0,max(

√
G)]. For any j ∈ N, a point qj ∈ D will be

rejected if

√
G(qj) < sj .

The rejection rate here is dominated by the range of
√
G, which is related to the

variation of the curvature of the boundary. When the point qj ∈ Q is accepted, the
corresponding ρ(qj) ∈ ∂Ω will be stored. Similar to the generation of interior trial
centers, we can begin with a low-discrepancy point set in D× [0,max(

√
G)]× [0, 1] in

order to obtain a quasi-random number θj associated with each accepted point ρ(qj).
Figure 2.1 shows a schematic demonstration of our intended outcome. From the

figure, we can already see that some data points generated by the proposed quasi-
random approach could be placed close together and we will handle this in the coming
section.

3. System-free algorithm for solving PDEs. Using the procedures in Sec-
tion 2, we can obtain nested sequences of sets of collocation points and trial centers:

• Interior collocation: X1 ⊂ X2 ⊂ · · · ⊂ Xk ⊂ · · ·
• Boundary collocation: Y1 ⊂ Y2 ⊂ · · · ⊂ Yk ⊂ · · ·
• Trial centers: Z1 ⊂ Z2 ⊂ · · · ⊂ Zk ⊂ · · ·

along with sets of quasi-random numbers Θk ⊂ [0, 1] to accompany each set Zk,
k = 1, 2, . . ., respectively.

Firstly, we present a system-free algorithm that enlarges trial spaces Zsel ⊂ Zk

on-the-fly. We suppose that a kernel Φ is chosen and sets of shape parameters Ek
are available in Section 3.1 so that the finite dimensional trial space as in (1.3) is
well defined for each Zk. Implementations details will be discussed in Section 3.2. In
Section 3.3, we complete the description of the proposed algorithm by specifying a
strategy for generating shape parameters Ek based on the pre-selected trial centers
Zk and the quasi-random numbers in Θk.

3.1. System-free algorithm. Suppose that we work on discrete sets of data
points Xk ⊂ Ω, Yk ⊂ ∂Ω and a set of trial centers candidates Zk ⊂ Ω for some k ∈ N.
Out of these candidates, further suppose that we have a subset of selected trial centers
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Zsel ⊂ Zk and subsets of selected collocation points Xsel ⊂ Xk and Ysel ⊂ Yk. Denote
N = |Xsel|+ |Ysel|, M = |Zsel| and we assume N ≥M . Then, these preselected point
sets specify an N ×M Kansa system

A([Xsel;Ysel], Zsel)λ = b([Xsel;Ysel]) (3.1)

with matrix entries

[A]ij =

{
LΦǫj (xi, zj), for xi ∈ Xk, zj ∈ Zk,
BΦǫj(yi, zj), for yi ∈ Yk, zj ∈ Zk,

for any variable-shape kernel Φǫ(x, z) = φ(ǫ‖x − z‖2) of our choice. The right-hand
side vector is given as

b := [f(Xk), g(Yk)]
T .

We solve (3.1) in the least-squares sense to obtain λLS . We propose a system-free
algorithm that addresses the followings automatically:

• Is λLS ∈ R|Zsel| a satisfactory approximation to the solution of the full system

A([Xk;Yk], Zsel)λLS ≈ b([Xk;Yk])?

If not, expand the sets of selected collocation points Xsel and Ysel to further
reduce error.
• Are there enough trial center candidates in Zk \ Zsel to identify new appro-
priated trial centers? If not, expand the set of selected trial centers Zsel to
enlarge the trial space.

To answer the first questions, we need to measure errors by primal and dual residuals
whose definitions are given in the next section. The primal residual simply measures
the error A([Xk, Yk], Zsel)λLS− b([Xk, Yk]) at all collocation points. Provided that we
have some stability estimate [9] for the least-squares Kansa formulation, small primal
discrete residual ensures the numerical error ‖ULS − u∗‖ of our least-squares solution
is also small in some appropriate norm. If the residual is unsatisfactorily large, we
can identify collocation points with large error by examining the magnitudes of the
entries in the primal residual. This allows us to expand Xsel and/or Ysel to include
new collocation points with large error, and hopefully the next approximate solution
can reduce their errors.

The dual residual, on the other hand, measures a scaled distance between the
approximate solution and the hyperplanes of the affine space containing the exact
solution (and the corresponding Lagrange multipliers), see [20]. In a similar manner,
it can be used to identify which unused trial centers are causing large dual error.
Including these new trial centers expands Zsel. By design, trial centers with large
dual errors are far away from the selected ones and hence keeping the condition
number of the selected submatrix A([Xsel;Ysel], Zsel) small.

These are the rationales of greedy trial subspace selection algorithms [20, 21],
which are designed to run on matrix system with a fixed size. The key features
making the greedy algorithm attractive are that:

• it is matrix-free and only the entries of A in the selected rows and columns
are required, and
• it has linear complexity in M and N if run in block-form,
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each of which allows us to use large sets of collocation points and trial centers. In
our context, the underneath full matrix A([Xk;Yk], Zk) can increase in size by using
more data points, i.e.,

Xk ← Xk+1, Yk ← Yk+1, Zk ← Zk+1.

As the selected sets expand, the numbers of unselected candidates drop, and it is
easy to make undesired selections simply because there is no choice. In the proposed
system-free algorithm, we do not allow selecting more than half of the available can-
didates, i.e., keeping |Xsel| + |Ysel| < 1

2 (|Xk| + |Yk|) and |Zsel| < 1
2 |Zk| at all time.

When more data points are needed, we expand all sets and continue. After the se-
lection process terminates, which is usually due to ill-conditioned selected submatrix
instead of tiny residuals, we can obtain a least-squares Kansa solution as in (1.4) using
the selected trial centers Zsel and the final sets of collocation points Xk and Yk.

3.2. Implementation in block from. To implement the system-free algo-
rithm, it is sufficient to consider a potentially huge in size and ill-conditioned M ×N
with M & N underneath linear system

Aλ = b,

which need not be fully computed/stored or even be determined. If the system-free
algorithm terminates with point sets Xk and Yk, then M = |Xk|+ |Yk| and N = |Zk|;
the exact value of M , N and k are a posteriori and somewhat irrelevant.

In this section, we will use the Matlab matrix notations to describe the necessary
matrix operations in the proposed system-free algorithm. The expansion of point sets
can be viewed as marking some rows and columns as candidates, indexed by Ican and
Jcan respectively. The algorithm always terminates with Ican = {1, 2, . . . ,M} and
Jcan = {1, 2, . . . , N} from this point of view. The aim is to select a set of columns of
A, indexed by Jsel ⊂ Jcan, such that the submatrix A(1 : M,Jsel) is well-conditioned,
and the least-squares solution λLS = A(1 : M,Jsel)

+b gives a good approximation
to the true solution in the sense that its zero-upsampled vector (by patching zero to

entries associated with unselected trial centers) solves Aλ̂LS ≈ b.
We begin with relative small sets of Ican and Jcan, i.e., we generate some initial

sets of quasi-random collocation points X1, Y1 and trial centers Z1. To initialize, find

index i ∈ Ican such that the ith entry [b(Ican)]i = ‖b(Ican)‖∞ and set I
(1)
sel = {i}.

Then, find index j ∈ Jsel such that the column A(Ican, j) has the largest norm and

set J
(1)
sel = {j}.
For ℓ ∈ N, we use the reduced-QR factorization of A

(
I
(ℓ)
sel , J

(ℓ)
sel

)
, which will be

available in memory from the previous iteration, to solve the following linear systems
(in the least-squares sense if it is overdetermined):





A
(
I
(ℓ)
sel , J

(ℓ)
sel

)
η(ℓ) = b(I

(ℓ)
sel),

A
(
I
(ℓ)
sel , J

(ℓ)
sel

)T
ζ(ℓ) = −η(ℓ),

(3.2)

and get the primal and dual residuals by

µ(ℓ+1) := A
(
Ican, J

(ℓ)
sel

)
η(ℓ) − b(Ican) ∈ R

|Ican|, (3.3)

ν(ℓ+1) := η̂(ℓ) +A
(
I
(ℓ)
sel , Jcan

)T
ζ(ℓ) ∈ R

|Jcan|, (3.4)
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using the zero-upsampled vector η̂(ℓ) of η(ℓ) from (3.2). From (3.3)–(3.4), we can see
that the main storage requirement is M |Jsel|+N |Isel| − |Isel| · |Jsel| instead of MN .

To run the proposed algorithm in block form, we roughly double the numbers of
selected rows and columns based on the residuals of each iteration. Expand data sets
whenever necessary, we can assume that |Isel| < 1

2 |Ican| and |Jsel| < 1
2 |Jcan| at all

times. Then, the expansion of the selected rows indices Isel from the ℓth to (ℓ+ 1)st
iteration is relatively straightforward: we sort the primal residual µ(ℓ+1) according to

the magnitude of its entries, partition the sorted vector into & |I(ℓ)sel | parts, and select

a new row index from each partition to expand I
(ℓ)
sel to I

(ℓ+1)
sel . Now, we compute the

reduced-QR factorization A
(
I
(ℓ+1)
sel , Jsel

)
= QℓRℓ.

Using a similar procedure, we sort and partition the dual residual ν(ℓ+1) to select
nsc ≥ 2|J(ℓ)| shortlisted candidate columns, indexed by Jsc, and only part of them will

be added to J
(ℓ)
sel to form J

(ℓ+1)
sel . It is mathematically equivalent to say that we select

new column indices from Jsc by the first |J (ℓ)
sel | ones in the permuted-QR factorization

of A
(
I
(ℓ+1)
sel , J

(ℓ)
sel ∪ Jsc

)
. In the actual implementation, this can be done by updating

the QR-factorization of the previous iteration stored in memory, see [11] for details.

Moreover, the reduced QR-factorization of the expanded matrix A
(
I
(ℓ+1)
sel , J

(ℓ+1)
sel

)

can be obtained as a byproduct without extra computation.
Repeat the above process until the condition number of the expanded matrix

exceeds certain tolerance τ , say τ = 1/ǫmachine, and obtain indices Isel and Jsel of the
selected rows and columns. Since half of the column indices in Jsel are newly added, we
may have to remove some selected columns to keep the condition number of submatrix
A (Isel, Jsel) below tolerance τ ; this is done by a bisection search with a condition
number estimator. Readers are referred to the original article [11] for the details.
Finally, we can obtain the least-squares solution by computing A(1 : M,Jsel)

+b. By
using the specific value of nsc derived in [11], the cost of running the proposed system-
free algorithm is lower than running the greedy algorithm in [11] once on a fixedM×N
linear system, which is O(N n2

sel +M nsel) with nsel := |Jsel| is the number of trial
centers used in defining the solution in (1.4). If we expand data points in such a way
that M ≈ N , then we must have the value of N somewhere between 2nsel to 4nsel in
order to keep a sufficient number of candidate columns. Thus, the overall cost of the
proposed system-free algorithm would be of O(n3

sel) making the method compatible
with blindfolded direct approaches using the same number of trial basis functions.

3.3. Quasi-random shape parameters. At this point, we almost have an
executable system-free algorithm except that we need a way to generate shape pa-
rameters. Finding an optimal constant shape parameter for a given function recovery
problem is a long-standing open question. Different strategies have been proposed,
see [22–27]. Back in 1992, Kansa et al. [28] observed that variable shape parameters
can improve the accuracy of meshfree collocation methods. Using variable shape pa-
rameters also helps reduce the Runge phenomenon in RBF interpolation [29]. The
search for good strategies for variable shape parameters is ongoing [30]. This problem
is analogous to the problem of selecting smoothing parameters in nonparametric curve
estimation. A constant smoothing parameter, which typically is the minimizer of the
mean integrated squared error estimated empirically by cross-validation or obtained
theoretically by considering asymptotic expressions of bias and variance, is often good
enough for the estimation of smoothed curves, see e.g. [31–36], but variable smoothing
parameters will do a better job when the curves to be estimated have complicated
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structures, see [37–41]. These approaches rely on spatial information of the data
points, and some also require information about the unknown solution or the curve
to be estimated, to determine values of shape or smoothing parameters.

We propose a quasi-random shape parameters strategy for the system-free algo-
rithm that is

• data driven as the algorithm iterates,
• independent of spatial information, and
• robust for different PDE solutions,

based on experience and empirical experimental results. For sake of simple discussion
and applications of well-established rule-of-thumb, we assume the bounding box B ⊃
Ω has edges of length O(1). To be efficient, the system-free algorithm should be able to
use between 10d ≤ nsel ≤ 100d trial basis functions to solve any given problem. Taking

the stationary approach [42, Ch.2], one would use shape parameters ǫj = O(n1/d
sel );

in this length scale, we can be sure that ǫj . n
1/d
sel := ǫmax yields very peaky basis

functions. The system-free algorithm will probably need a lot of basis to obtain
any good approximation. The value of ǫmax is not clearly determined because of
the unknown value nsel. In the coming section, we shall demonstrate its role in the
proposed algorithm. On the other end, we simply require ǫj > 0 for all j to avoid
having an extra parameter for the lower bound and allow really flat basis functions
getting into the trial space.

Now that we set a range for all the shape parameters, i.e., 0 < ǫj ≤ ǫmax. To
generate shape parameters from the quasi-random numbers Θk, we need to assign
some suitable probability densities to Ek based on empirical knowledge. On one hand,
the system-free algorithm terminates sooner with small nsel if more flat basis functions
are in the system. On the other hand, it tends to select peaky trial basis functions
and occasionally select some very flat basis functions near the boundary. Knowing
that we need more flat than peaky basis functions as candidates, we propose using the
following probability density

fEk
(θ) =





2

ǫ
(k)
max

− 2θ

(ǫ
(k)
max)2

for θ = [0, ǫ
(k)
max],

0 otherwise,

for any z ∈ Zk∩Ω without adding new parameters. We only need to set the first ǫ
(1)
max,

say equals to 10 or 100, as in the above discussion. In each iteration we reduce the

upper bound ǫ
(k+1)
max in a data-driven way to the mean of all selected shape parameters.

The set of quasi-random (uniform) numbers Θk we generated alongside with Z
allows us to generate shape parameters that are quasi-random having the distribution
fEk

. Denote by Fk the cumulative distribution function of fEk
. The shape parameter

of zj ∈ Zk ∩ Ω is generated by the transformation ǫj = F−1
k (θj) for θj ∈ Θk. By

design, if zi, zj ∈ Ω and |zi − zj| for any i 6= j is small, then |θi − θj | will be large
without any computational overhead in checking the densities of Z. The same holds
true for any pair of trial centers on the boundary if we use the same probability density
function to generate shape parameters for trial centers z ∈ Zk ∩ ∂Ω. To extend this
property to any pair of points in (Zk ∩ Ω) × (Zk ∩ ∂Ω), we set ǫj = 1

2F
−1
k (θj) to be

the shape parameter of zj ∈ Zk ∩ ∂Ω.

4. Numerical examples. We are now ready to run some numerical experiments
on the system-free adaptive meshfree collocation methods. Throughout this section,
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(a) Sobol sequence (b) Halton sequence

Fig. 4.1. Example 4.1: Quasi-random points X ∪ Y by different generators.
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(b) Halton sequence

Fig. 4.2. Example 4.1: System-free algorithm selected flat basis functions with shape parameters
≤ 10; peaky ones were omitted from this illustration.

initial collocation point set X1 contains 128 interior points. The set of trial centers
Zk is taken to be the union of the collocation sets Xk and Yk. That is, the underneath
matrix system is the square interpolation matrix or traditional Kansa matrix. Quasi-
random points are generated by built-in Matlab fuctions sobolset and haltonset.
All reported errors were evaluated on sets of quasi-uniform points, generated as in
Section 2, differ from and finer than the sets of collocation points used in the algorithm.

4.1. Example: Quasi-random number generators. We set the system-free
algorithm to run in an asterisk-shape domain to solve an interpolation/regression
problem with the Gaussian basis. Shape parameters are randomly generated as in
Section 3.3 using ǫmax = 100. Figure 4.1 shows the resulting quasi-random data
points generated by the Sobol and Halton sequences within the algorithm. To the
eyes, different quasi-random number generators give point sets with different hidden
patterns. Figure 4.2 shows some shape parameters of the selected trial basis. In terms
of the magnitudes of nsel and maximum error, the hidden patterns in Xk, Yk and Zk

make no obvious difference.
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GA Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 635 739 2.6347e-07 5.1091e-07 8.5665e-06 1.7673e-05
50 0 887 1175 1.1854e-09 1.6752e-09 3.7677e-08 5.3122e-08
100 2 1021 1749 4.7907e-09 2.5103e-08 4.9567e-08 2.5110e-07

MQ Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 1023 2013 1.8662e-07 9.4187e-07 1.8582e-06 9.2901e-06
50 2 2015 3909 1.7300e-08 5.6953e-08 1.7804e-07 4.5865e-07
100 1 2007 7343 5.6439e-06 1.8148e-05 6.9103e-05 2.1448e-04

MS Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 401 429 7.2527e-05 7.4555e-05 1.7176e-03 2.4994e-03
50 0 673 745 6.5219e-07 1.0320e-06 1.6340e-05 3.1292e-05
100 0 923 1003 2.7574e-08 3.3238e-08 7.3817e-07 1.0683e-06

Table 4.1

Example 4.2: peaks out of 30 runs

4.2. Example: Choosing kernels and ǫmax. We verify the accuracy and ef-
ficiency of the system-free algorithm using Gaussian (GA), multiquadric (MQ) and
Whittle-Matérn-Sobolev (MS) kernels that reproduce the Sobolev space H10(R2). As
benchmark, we consider interpolation/regression problems in rectangular domain for
the peaks function in Ω = [−3, 3]2. Since the core mechanism of the system-free
algorithm is random, we run each interpolation/regression problem 30 times and re-
port the statistics. What we are looking for is the appropriate value of ǫmax for these
kernels. With the suitable ǫmax, we want the system-free algorithm to be robust in
the sense that it yields small errors in mean with small standard deviation among
different functions and, ideally, no bad run. A bad run is easy to identify by its early
termination with very few selected basis and large residual errors. Also, we want the
algorithm to be efficient (with small nsel) with predictable run-time (range of nsel).
Table 4.1 shows that our proposed strategy does not work efficiently with the MQ
kernel.

Next, we further verify the GA and MS kernels by interpolating the franke

function and a function

f(x, y) = max(0, x)3 −max(0, y)3 (4.1)

with nonsmooth Laplacian in Ω = [−1, 1]2. Resulting statistics are listed in Ta-
bles 4.2–4.3. For MS, it is clear that setting ǫmax = 100 causes no trouble to the
algorithm. For GA, we see that ǫmax = 100 may result in a few bad runs. When
ǫmax = 50, it performs similar to MS in terms of both accuracy and efficiency, i.e.,
nsel. To this end, the MS kernel wins in terms of robustness.

4.3. Example: Solving PDEs. From the results in Example 4.2, readers can
already see some sort of refinement the system-free algorithm offers. We can ask
for higher accuracy by allowing more basis functions, i.e., more computational time.
This, however, should not be done by increasing the value of ǫmax. If the system-free
algorithm terminates due to ill-conditioned submatrix system (as in all reported data
in this example), providing more candidate trial functions will not help reducing the
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GA Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 655 733 9.6738e-04 1.3783e-03 2.8117e-02 4.0347e-02
50 0 823 1217 2.4058e-04 4.8471e-04 8.3423e-03 1.7349e-02
100 2 1015 1777 5.7304e-06 7.5535e-06 2.5603e-04 4.0785e-04

MS Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 397 423 2.5519e-03 2.0556e-03 5.6153e-02 6.8083e-02
50 0 677 749 4.3585e-04 3.8856e-04 1.0987e-02 1.3409e-02
100 0 911 1227 1.5049e-04 4.6402e-04 4.8690e-03 1.6973e-02

Table 4.2

Example 4.2: franke out of 30 runs

GA Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 623 757 1.4682e-05 2.5899e-05 3.7926e-04 7.6777e-04
50 0 869 1007 1.2687e-05 1.9572e-05 4.3372e-04 6.9755e-04
100 2 1023 1785 1.4470e-06 7.7554e-07 3.9665e-05 5.5451e-05

MS Bad nsel L2(Ω) L∞(Ω)
ǫmax Run Min Max Mean S.D. Mean S.D.
25 0 403 427 2.0743e-05 1.0798e-05 3.5904e-04 3.9292e-04
50 0 671 733 7.9690e-06 8.9910e-06 1.6165e-04 2.9417e-04
100 0 927 1009 4.5236e-06 4.4479e-06 1.0258e-04 1.5014e-04

Table 4.3

Example 4.2: max-cube out of 30 runs

condition number and will not keep the algorithm going. Instead, the refinement
feature can be done by putting a cap on nsel so that, when desired, the system-free
algorithm can continue to run. In this example, we fix ǫmax = 100 and solve PDEs.

Now, we solve a Poisson equation ∆u = f in [−3, 3]2 subject to Dirichlet boundary
conditions with the peaks as exact solution. Table 4.4 shows the resulting accuracy
of the proposed algorithm at different stages. If we allow the system-free algorithm to
run till termination, accuracy for solving this PDE is indeed similar to those in inter-
polation/regression reported in Table 4.1. In Figure 4.3, we show selected Gaussian
basis as the system-free algorithm iterates and the condition numbers of the nX×nsel

overdetermined systems. By design, the proposed algorithm always keeps submatrix
systems well-conditioned. Automatically, the system-free algorithm uses more trial
functions to solve the PDE than its interpolation/regression counterpart. In terms
of convergence with respect to nsel, GA is desirable if high accuracy if needed. Er-
ror reduction in the case of MS is more gradual and is suitable if one seeks for fast
numerical approximation.

Next, we are interested in the effect of solution regularity. We consider a modified
Helmholtz equation −∆u + u = f in the unit circle subject to Neumann boundary
conditions. We take the function with nonsmooth Laplacian in (4.1) as the exact
solution. The convergence pattern shown in Table 4.5 matches with Table 4.1. How-
ever, due to low regularity of the exact solution, the rapid reduction of error of the
GA solution from nsel = 1024 to termination disappears. The errors in both kernels
stagnate around 10−4. To affirm the advantage of using the proposed methods, we
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maxnsel 256 512 1024 Terminate
GA 2.1239e+00 7.2920e-01 1.1103e-03 3.8550e-09 (nsel = 1893)
MS 2.6413e+00 6.9293e-03 2.3652e-07 6.5507e-08 (nsel = 1611)

Table 4.4

Example 3: Refining the solution of a Poisson equation with Dirichlet boundary conditions
generated by the peaks function and the corresponding L2(Ω) error.

maxnsel 256 512 1024 Terminate
GA 3.5357e-01 4.4497e-01 2.9196e-04 2.7960e-04 (nsel = 1599)
MS 5.1411e-01 7.9600e-04 2.4273e-04 2.1213e-04 (nsel = 1475)

Table 4.5

Example 4.3: Refining the solution of a modified Helmholtz equation with Neumann boundary
conditions generated by the function with nonsmooth Laplacian in (4.1) and the corresponding L2(Ω)
error.

show some results of the traditional Kansa methods in Figure 4.4. We use 2500 quasi-
random data points and some shape parameter in the range of 0.5 ≤ ǫ ≤ 10 to set up
Kansa systems. None of them can match the accuracy we see in Table 4.5.

5. Conclusion. We propose a black-box algorithm for running kernel based col-
location methods. Numerical examples of problems with both high and low regu-
larities show that using the Whittle-Matérn-Sobolev (MS) kernel in the proposed
algorithm yields an efficient solver that can produce cheap and reasonable numerical
approximations. The coupling is also robust in the sense that the algorithm performs
reliably without any bad run despite the random nature of the system-free algorithm.
To this end, users only need to specify the interpolation/regression or PDE problem
and the domain of computation in order to run the proposed algorithm.

The low discrepancy point sets used in this proposed method are generated in
a non-adaptive way. We may consider an extension of the method by transforming
such quasi-uniform random points using the approximated solutions in intermediate
steps, resulting in more general non-uniform random point sets that are generated
adaptively. However, the (unweighted) least squares approach may cause problems
because when collocation points are very unevenly distributed, then regions with
denser points will actually get heavier weight. Therefore, we have to use weighted least
squares, where the weights should also be adaptive. This extension seems appealing
and will be left for future endeavor.
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