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Abstract

Background: High-throughput techniques bring novel tools and also statistical challenges to genomic research.
Identifying genes with differential expression between different species is an effective way to discover evolutionarily
conserved transcriptional responses. To remove systematic variation between different species for a fair comparison,
normalization serves as a crucial pre-processing step that adjusts for the varying sample sequencing depths and other
confounding technical effects.

Results: In this paper, we propose a scale based normalization (SCBN) method by taking into account the available
knowledge of conserved orthologous genes and by using the hypothesis testing framework. Considering the
different gene lengths and unmapped genes between different species, we formulate the problem from the
perspective of hypothesis testing and search for the optimal scaling factor that minimizes the deviation between the
empirical and nominal type I errors.

Conclusions: Simulation studies show that the proposed method performs significantly better than the existing
competitor in a wide range of settings. An RNA-seq dataset of different species is also analyzed and it coincides with
the conclusion that the proposed method outperforms the existing method. For practical applications, we have also
developed an R package named “SCBN”, which is freely available at http://www.bioconductor.org/packages/devel/
bioc/html/SCBN.html.
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Background
High-throughput techniques provide a high revolutionary
technology to replace hybridization-based microarrays
for gene expression analysis [1–3]. The next-generation
sequencing has evoked a wide range of applications, e.g.,
splicing variants [4, 5] and single nucleotide polymor-
phisms [6]. In particular, RNA-seq has become an attrac-
tive alternative to detect genes with differential expression
(DE) between different species, which is used to explore
the evolution of gene expression levels in mammalian
organs [7] and the effect of gene expression levels in
medicine. As an example, gene expression analyses per-
formed in model species such as mouse is commonly used
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to study human diseases [8], including cancer [9, 10] and
hypertension [11].
For different species, several studies have emerged in the

recent literature to compare the gene expression levels in
different organisms using microarrays or RNA-seq data.
Liu et al. [12] reported a systematic comparison of RNA-
seq for detecting differential gene expression between
closely related species. Lu et al. [13] developed some prob-
abilistic graphical models and applied them to analyze
the gene expression between different species. Kristians-
son et al. [14] proposed a statistical method for meta-
analysis of gene expression profiles from different species
with RNA-seq data. For different species, the RNA-seq
experiments will result in not only different gene num-
bers and gene lengths, but also different read counts,
i.e., sequencing depths. To make the expression levels of
orthologous genes comparable between different species,
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normalization is a crucial step in the data processing
procedure.
The main purposes of normalization are to remove sys-

tematic variation and reduce noise in the data. In the
case of one species (see the first panel of Fig. 1), vari-
ous normalization methods have been developed in the
last decade [15–18]. Mortazavi et al. [19] transformed
RNA-seq data to reads per kilobase per million mapped
(RPKM). Robinson et al. [20, 21] proposed a weighted
trimmed mean of log-ratios method (TMM). Zhou et al.
[22] developed a hypothesis testing based normalization
(HTN) method by utilizing the available knowledge of
housekeeping genes, and showed that the HTNmethod is
more robust than TMM for analyzing RNA-seq data.
We note, however, that normalization of RNA-seq data

with different species is more difficult than that with same
species. For different species, we need to consider not
only the total read counts but also the different gene num-
bers and gene lengths (see the second panel of Fig. 1).
To the best of our knowledge, there are few studies in
the literature for normalizing RNA-seq data with differ-
ent species. As a routine method for normalization, one
often standardizes the data with different species by scal-
ing their total number of reads to a common value. For
instance, Brawand et al. [7] used RPKM in Mortazavi
et al. [19] to normalize RNA-seq data with different

species. Specifically, they first identified the most con-
served 1000 genes between species and then assessed their
median expression levels in each species among the genes
with expression values in the interquartile range for dif-
ferent species. Lastly, they derived the scaling factors that
adjust those median values to a common value.
In this paper, we extend the HTN method from the set-

ting of same species to different species. As described in
Zhou et al. [22], HTN is a normalization method under
different sequence depths for same species, and its perfor-
mance outperforms other normalization methods. Based
on the hypothesis testing framework, it transforms the
problem to finding the scaling factor in normalization. By
utilizing the available knowledge of housekeeping genes,
it achieves the optimal scaling factor by minimizing the
deviation between the empirical and nominal type I errors
. However, HTN cannot be directly applied to RNA-seq
data with different species, mainly because the assump-
tion of the same numbers and lengths. For the setting
of different species, we develop a scale based normaliza-
tion (SCBN) method by utilizing the available knowledge
of conserved orthologous genes and the hypothesis test-
ing framework. Here, we use conserved orthologous genes
for different species instead of housekeeping genes. It is
noted that the normalization scaling factor is stable in
both simulation studies and real data analysis.

Fig. 1 The first panel shows the same genes of different human samples, and the second panel shows the orthologous genes in human and mouse



Zhou et al. BMC Bioinformatics          (2019) 20:163 Page 3 of 10

The rest of the paper is organized as follows. We first
propose the new SCBN method in “Materials and meth-
ods” section.We then conduct simulation studies to assess
the performance of the SCBNmethod and also compare it
with the existing method in “Simulation studies” section.
In “Real data analysis” section, we apply the SCBNmethod
to a real dataset with human and mouse to demonstrate
its superiority over the existing method. The paper is con-
cluded in “Discussion” section with some discussions and
future work.

Materials andmethods
In the following section, we propose a novel normalization
method for RNA-seq data with different species by uti-
lizing the available knowledge of conserved orthologous
genes and the hypothesis testing framework.

Notations andmodel
Let G = {g1, g2, . . . , gn} be the complete set of genes from
two different species, and G0 be the set of one-to-one
orthologous genes that are to be tested for differential
expression. For species t = 1 or 2, let Xgkt be the ran-
dom variable that represents the count of reads mapped
to the orthologous gene gk ∈ G0, and xgkt be the observed
value of Xgkt . Accordingly, the total number of ortholo-
gous reads for species t is Nt = ∑

gk∈G0 xgkt . For ease
of presentation, our normalization method is presented
for the setting of one sample in each species only. Our
proposed method, however, can be readily extended to
more general settings including multiple samples for each
species. For gene gk in species t, we consider the mean
model:

E(Xgkt) = μgktLgkt
St

Nt , (1)

where μgkt is the true expression level, Lgkt is the true
gene length, and St = ∑

gk∈G0 μgktLgkt is the total expres-
sion output of all orthologous genes in species t. Note
that, since Lgkt is often different between species, we have
included it in model (1) to alleviate the bias in gene length.

Novel normalization method
We propose a novel normalization method by employing
the available knowledge of conserved orthologous genes
and the hypothesis testing framework. Specifically, we
choose a scale to minimize the deviation between the
empirical and nominal type I errors in RNA-seq data
based on the hypothesis test.
To detect differential expressions of orthologous genes

between two species, for each gk ∈ G0, we consider the
hypothesis

Hgk
0 : μgk1 = μgk2 versus Hgk

1 : μgk1 �= μgk2.

We further assume that the reads mapped to the orthol-
ogous genes are Poisson random variables with λgk1 =
E(Xgk1) and λgk2 = E(Xgk2). Then under model (1), the
hypothesis is equivalent to

Hgk
0 :λgk1= Lgk1

Lgk2
N1
N2

cλgk2 versus Hgk
1 :λgk1 �= Lgk1

Lgk2
N1
N2

cλgk2,

(2)

where c = S2/S1 is the scaling factor for normalization.
Given that Xgk1 +Xgk2 = ngk with ngk a fixed integer, the

random variable Xgk1 follows a binomial distribution with
the conditional probability density function as

P
(
Xgk1 = xgk1

∣
∣Xgk1 + Xgk2 = ngk

)

= ngk !
xgk1!

(
ngk − xgk1

)
!
(
pgk0

)xgk1 (
1 − pgk0

)ngk−xgk1 ,

where

pgk0 = λgk1

λgk1 + λgk2
= cLgk1N1

Lgk2N2 + cLgk1N1

is the probability of success under the null hypothesis of
(2). For the above model, the p-value of the test is

pgk (c) = P
(|Xgk1 − ngkp

gk
0 | ≥ |xgk1 − ngkp

gk
0 |∣∣ngk

)

= P
(

|(1 + Lgk1
Lgk2

N1
N2

c
)

Xgk1 − Lgk1
Lgk2

N1
N2

cngk | ≥
∣
∣
∣
∣

(

1 + Lgk1
Lgk2

N1
N2

c)xgk1 − Lgk1
Lgk2

N1
N2

cngk |
∣
∣
∣
∣ ngk

)

.

(3)

Note that the p-value in (3) is a function of the scal-
ing factor c under the condition Xgk1 + Xgk2 = ngk . To
search for the optimal c for normalization, we apply the
following two questions as criteria. (i) Does the normal-
ization method improve the accuracy of DE detection, i.e.,
whether or not it will decrease the false discovery rate
(FDR) of the tests? (ii) Does the normalization method
result in a lower technical variability or specificity? For
multiple testing, Storey [23] pointed out that different
hypothesis tests will result in different significant regions.
To transform these tests into a common space, the p-value
is a natural way to do so with respect to the positive false
discovery rate (pFDR). By taking the number of set G0
identical hypothesis tests, the pFDR is defined as follows:

pFDRgk = P(H0; c)P(Rgk | H0; c)
P(Rgk ; c)

= P(H0; c)P(Rgk | H0; c)
P(H0; c)P(Rgk | H0; c)+P(H1; c)P(Rgk | H1; c)

,

(4)
where α is the significance level and Rgk = {pgk (c) < α}
is the rejection region. By (4), the pFDR of gene gk is a
function of both α and c. Given the values of α and c,
we can apply the empirical distributions to estimate



Zhou et al. BMC Bioinformatics          (2019) 20:163 Page 4 of 10

P(Rgk |H0; c) and P(Rgk |H1; c). Let V0 and V1 be the sets
of non-DE genes and DE genes in G0, respectively. Then,
pFDRgk (α; c) can be estimated as

̂pFDRgk = P(H0; c)̂P(Rgk | H0; c)
P(H0; c)̂P(Rgk | H0; c) + P(H1; c)̂P(Rgk | H1; c)

,

where

P̂(Rgk | H0; c) = 1
n0

∑

gk∈V0

I(pgk (c) < α|H0; c)

for any gk ∈ V0, and

P̂(Rgk | H1; c) = 1
n1

∑

gk∈V1

I(pgk (c) < α|H1; c)

for any gk ∈ V1, where I(·) is the indicator function, and
n0 and n1 represent the cardinalities of V0 and V1, respec-
tively.
When all non-DE genes in V0 are given, we can perform

our new normalization by determining the optimal scal-
ing factor that minimizes the value of pFDR. For real data,
however, it is not uncommon that only a small propor-
tion of non-DE genes are known a priori by background
knowledge. In this paper, we assume that a set of con-
served orthologous genes between species are given in
advance, which may either be reported in other studies or
be selected by a certain biological measure [7, 24]. For the
given set H of conserved orthologous genes that are con-
sidered as non-DE genes for its stability between species,
we search for the optimal scaling factor by minimizing
the deviation between the empirical and nominal type I
errors. Let m be the number of genes in the set H. Given
the true value of c, the p-values of the tests for the con-
served orthologous genes follow a uniform distribution on
interval (0, 1). That is, for the specified α and c, the value
of

∑
gk∈H(1/m)I(pgk (c) < α|H0; c) should be around the

nominal level at α. In our method, we define the optimal
scaling factor as copt that minimizes the objective function
| ∑

gk∈H(1/m)I(pgk (c) < α|H0; c) − α |; that is,

copt = argmin
c>0

∣
∣

∑

gk∈H

1
m
I(pgk (c) < α|H0; c) − α

∣
∣. (5)

Finally, to estimate the optimal scaling factor defined in
(5), we apply a grid search method and denote the best
estimate as ĉopt. For convenience, we refer to the proposed
scale based normalization method as the SCBN method.

Simulation studies
For a fair comparison, we generate the simulation datasets
following the settings in Robinson et al. [20], but with the
structure of different species rather than same species.
For different species, we consider different sequencing
depths and lengths of orthologous genes to generate
the datasets, including DE genes, non-DE genes and

unmapped genes for two species to mimic the real sce-
nario. The unmapped genes represent those genes that
exist only in one species. They are different from the
unique genes, representing those orthologous genes that
exist in both species but are expressed in only one of
them. After setting the number of unique genes and
unmapped genes, proportion, magnitude and direction
of DE genes between two species, we randomly gener-
ate the rate of a gene expression level to the output of
all the orthologous genes from a given empirical dis-
tribution of real counts. We set the expected values of
the Poisson distributions from model (1), and then ran-
domly generate simulation datasets from the respective
distributions.
We first evaluate the stability of the proposed SCBN

method for the fixed parameters. In Study 1, we com-
pare the false discovery number of the SCBN method and
the median method with different number of conserved
genes. We set 10% of the orthologous genes as DE genes at
the 1.2-fold level; of those DE genes, 90% are up-regulated
in the second species, and we set the number of unique
genes as 1000 and 2000 for two species, respectively.
Besides, we set 2000 and 4000 unmapped genes for two
species. With the fixed parameters, we consider the cases
where the number of conserved orthologous genes varies
from 50 to 1000. In Study 2, the parameters are the same
as those in Study 1 except that the fold level of DE genes
is increased to 1.5, and we select 1000 conserved genes
in each experiment. Then, we investigate the stability of
the proposed method when the rates of noise in con-
served genes increase from 0 to 0.6 with step size 0.1. In
Study 3, we consider the adjusted M versus A plots in Lin
et al. [20] to compare the scaling factors of two normaliza-
tion methods when the rate of noise in conserved genes
equal to 0 and 0.4. In this paper, the rate of noise means
the proportion of DE genes in all of the conserved genes.
To make it more obvious, we adjust the parameters with
20%DE genes at the 8-fold level, and 70% are up-regulated
in the second species. The unique genes and unmapped
genes are the same as before. In Study 4, we test the sta-
bility of the SCBN method by choosing different p-values
as cutoff. In this study, we consider the cutoff values vary-
ing from 0.0001 to 0.6. The parameters are the same as
those in Study 1 except that 40% of genes are differentially
expressed.
Next, we investigate the performance of the SCBN

method with several criteria, including the false discov-
ery number, precision, sensitivity and F-score, which were
also adopted in [25]. In Studies 5 and 6, the parame-
ters are kept the same as those in Study 2. In Study
5, the false discovery number of the two normalization
methods are shown with different rates of noise in con-
served genes, ranging from 0 to 0.5. In Study 6, we
compare the precision, sensitivity and F-score for the
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two methods. The precision denotes the rate of true
positives in all the predicted positives, the sensitivity rep-
resents the rate of true positives in all real positives,
and the F-score is a metric to overview both the pre-
cision and sensitivity. Here, we take 0.01 as the p-value
cutoff.
In Study 7, we compare the performance of the two

methods for different rates of DE genes in all orthologous
genes. We set the fold change of DE genes as 1.5, the rate
of noise in conserved genes as 0.2, and the rates of DE
genes varying from 0.1 to 0.6. Other parameters are kept
the same as those in Study 4.
For each simulated dataset, we compare the false discov-

ery number, which are computed by repeating the simu-
lation 100 times, while there are time consuming in each
repeat, and averaging over all the repetitions. We report
the stability of the SCBN method with various parame-
ters in Fig. 2. Figure 3 compares the SCBN method to
the medianmethod with precision, sensitivity and F-score
criteria. The Additional file 1 compares the false discov-
ery number with different rates of noise in the selected
conserved genes.
The left panel of Fig. 2 (Study 1) shows that the

false discovery number is reduced as the number of
conserved genes increases. Whereas the false discov-
ery number of the median method increase drastically
when conserved genes become less, the SCBN method
is much more robust to the number of conserved genes.
Furthermore, the SCBN method performs much better
than the median method for each number of conserved
genes. As shown in the right panel of Fig. 2 (Study 2),

the false discovery number of the SCBN method keeps
stable, but that of the median method increases gradually
as the rate of noise increases. From these two stud-
ies, we can see that the SCBN method is more robust
than the median method, especially when the num-
ber of conserved gene is small, or the rate of noise
is large.
In Study 3, the two scaling factors are presented in

Additional file 2. From the left panel, the lines of the two
normalization methods are close when conserved genes
do not include noise. However, as the rate of noise equals
to 0.4, the right panel shows the scaling factor of the SCBN
method is much closer to the center of non-DE genes.
Additional file 3 presents the result of Study 4, which
demonstrates the choice of p-value cutoffs has no impact
on the results of the SCBN method.
In Study 5, we investigate the overall situations of

false discoveries changed with different rates of noise.
The results are shown in Additional file 3, which
shows that the two normalization methods have a sim-
ilar performance when all selected conserved genes
are non-DE genes. However, the SCBN method out-
performs the median method when the rate of noise
becomes larger than 0.1. Hence, we conclude that the
SCBN method performs significantly better than the
median method when moderate-to-large rates of noise
are presented.
Figure 3 shows the experimental results of precision,

sensitivity and F-scores. Since F-score is the harmonic
mean of precision and sensitivity, it is clear that the SCBN
method has overall better performance as it achieves

Fig. 2 The left panel is the false discovery number of the median and SCBN methods with different number of conserved genes. The right panel is
the false discovery number of the two methods with different rates of noise in conserved genes
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Fig. 3 Precision (left), sensitivity (middle) and F-score (right) values of two normalization methods with various rates of noise

higher F-scores in most cases. As we can see from
the plots, when the rate of noise is less than 0.1, the
values of sensitivity and F-score for two normalization
methods are very close. The median method performs
slightly better than the SCBN method in precision when
conserved genes have no noise or small noise, but its
precision decreases enormously with noise increased.
For instance, the precisions of the median method are
0.93, 0.68 and 0.32 with conserved genes have 0, 30%
and 60% of DE genes. The SCBN method has preci-
sion values 0.91, 0.93 and 0.91, respectively. It is evi-
dent that the median method depends greatly on the
selected conserved genes, including the number and
purity of conserved genes. On contrary, conserved genes
have much less impact on the performance of the SCBN
method.
In Study 7, we focus on the impact of the rate of DE

genes on two normalization methods. Figure 4 shows that
the SCBN method outperforms the median method for
various rates of DE genes, especially when the rate of DE
genes is not too large. The result implies that the SCBN
method is more sensitive to identify less fold of DE genes
than that of the median method.

Real data analysis
We illustrate the usefulness of the SCBN method in
real dataset by the study of Brawand et al. [7]. The real
data were obtained by using the mRNA-seq Sample Prep
Kit (Illumina) platform with paired-end sequencing, and
using TopHat and Bowtie softwares to map the reads.
The dataset consists of two groups of orthologous tran-
scripts in human and mouse, with respective transcripts

lengths and counts of reads (see Additional file 4 for
details). We refer to the human transcripts (GRCh38.p10)
and the mouse transcripts (GRCm38.p5) in Ensembl
database, which is available at http://asia.ensembl.org/
biomart/martview/4e1666ae95e54c2f42ae0402dad82e73.
There are a total of 63967 transcripts in human

and 53946 transcripts in mouse, 27779 of which
are orthologous transcripts (see the right panel of
Fig. 1). By excluding the unmatched, duplicated and
unexpressed transcripts, there are 19330 available
orthologous transcripts. Figure 5 shows the expres-
sions of several orthologous transcripts in human and
mouse.
As shown in Fig. 1, unlike the case of same species

where the number and lengths of genes are equal to
each other, different species have different gene number
and thus different gene lengths. Regarding the different
lengths of orthologous transcripts, only 105 transcripts
or only 0.54% of all transcripts, have the same lengths
between human and mouse in Additional file 5. The aver-
age difference of the transcripts lengths between two
species is 1039, and the maximum is 21666 in Addi-
tional file 6. The evolutionary process of the eukaryotic
genome includes events such as duplication and recom-
bination, which creates complicated relationships among
genes. As a consequence, the normalization methods for
same species may not provide a satisfactory performance
or may not even be applicable for different species. The
challenges of normalization between different species are
mainly due to the different lengths of orthologous genes
and the different sequencing depths due to the different
platforms.

http://asia.ensembl.org/biomart/martview/4e1666ae95e54c2f42ae0402dad82e73
http://asia.ensembl.org/biomart/martview/4e1666ae95e54c2f42ae0402dad82e73
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Fig. 4 The false discovery number of two normalization methods with DE genes at the rates of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively

We get the conserved orthologous genes with a three-
step procedure. First, we confirm the orthologous tran-
scripts between human and mouse, by using the BioMart
function in the Ensembl to search all human transcripts
and filtering out the genes that do not exist in mouse.

Second, according to the orthology quality-controls cri-
terion, we sort the data from the most conserved to the
least. Third, we select the 143 most conserved ortholo-
gous transcripts between human and mouse and list them
in Additional file 7.

Fig. 5 The RNA-seq data of orthologous transcripts in human and mouse
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The most conserved 500 or 1000 orthologous tran-
scripts are likely non-DE transcripts between two species,
and we compare the two methods with the first group
data. First, we select the most 500 or 1000 conserved
transcripts with the above steps, and then use the two
methods to normalize the sequence data with the 143
conserved transcripts. Next, we calculate p-values (see
Additional file 8) with adjusted sage.test function. Last,
we get DE transcripts between human and mouse with p-
value cutoff 10−6, which are shown in Table 1. Among the
most conserved 500 or 1000 orthologous transcripts, 332
and 647 of them are detected as DE transcripts by using
the SCBN method, in which 48% and 46% significantly
higher in human, whereas the median method detects 351
and 697 DE transcripts, in which 32% and 29% signifi-
cantly higher in human. For all orthologous transcripts,
the SCBN method detects 9662 DE transcripts, and the
median method detects 9910 DE transcripts. Assuming
that the most conserved 500 orthologous transcripts are
non-DE transcripts, there are 351 false detected DE tran-
scripts with the medianmethod and 332 false detected DE
transcripts with the SCBN method. Then the FDR of the
median method is 0.035, which is larger than 0.034 of the
SCBNmethod. For the 1000 conserved transcripts, we get
a similar result that the FDR of the medianmethod (0.070)
is also larger than that of the SCBN method (0.067).
Therefore, the FDRs of the SCBN method are generally
smaller than those of the median method.
Next, we compare the accuracy of the two normal-

ization methods by looking deeper into the biological
function. We apply the SCBN method to detect the most
significant 1000 DE transcripts for each pair compar-
ison between human and mouse, that is the smallest
1000 p-values for each comparison, among which 567
are common. Also, the median method detects 584 com-
mon DE transcripts for two species. Figure 6 shows the

Table 1 The number of DE genes between human and mouse at
a cutoff p-value < 10−6 for the median and the SCBN methods

Median SCBN Overlap

Higher in human 4370 5824 2610

Higher in mouse 5540 3838 2184

Total 9910 9662 4794

Top conserved genes (500)

Higher in human 112 159 56

Higher in mouse 239 173 119

Total 351 332 175

Top conserved genes (1000)

Higher in human 201 300 87

Higher in mouse 496 347 240

Total 697 647 327

common DE transcripts and the unique DE transcripts
of the two normalization methods. For the unique tran-
scripts, we refer to NCBI [26] to find out which genes
are associated with evolution or illness. There are 48 of
123 (39.02%) DE transcripts, which are related to evo-
lution or illness with the SCBN method, and 43 of 140
(30.71%) DE transcripts are related to evolution or illness
with the median method. Specifically, among the unique
DE transcripts detected by the SCBN method, we find
that ‘ENSG00000102316’ is involved in breast cancer and
melanoma, ‘ENSG00000152137’ is involved in the regu-
lation of cell proliferation, apoptosis, and carcinogenesis,
and ‘ENSG00000135744’ is associated with the suscepti-
bility to essential hypertension, and can cause renal tubu-
lar dysgenesis, a severe disorder of renal tubular develop-
ment. Mutations in gene ‘ENSG00000152137’ have been
associated with different neuromuscular diseases, includ-
ing the Charcot-Marie-Tooth disease. We note, however,
that above genes are not included in the 584 most signifi-
cant DE transcripts detected by themedianmethod.More
details are presented in Additional file 9. The results show
that the SCBN method provides a more accurate normal-
ization than the median method in real data analysis.

Discussion
Detecting DE genes between different species is an
effective way to identify evolutionarily conserved tran-
scriptional responses. For different species, the RNA-seq
experiments will result in not only different read counts,
but also different numbers and lengths of genes. To make
the expression levels of orthologous genes comparable
between different species, normalization is a crucial step
in the process of detecting DE genes. This is in sharp con-
trast to the case of same species, where the numbers and
lengths of genes are equal to each other. The existing nor-
malization methods for same species may not provide a
satisfactory performance or may not even be applicable
for RNA-seq data with different species. Therefore, devel-
oping new normalization methods for RNA-seq data with
different species is extremely urgent.
In this paper, we propose a scale based normalization

(SCBN) method between different species for RNA-seq
data. For the SCBN method, it could be used to deal with
non-negative and discrete RNA-seq counts. Therefore,
the proposed method is suitable to deal with paired-end
and single-read sequencing data by using the most widely
used sequencing technologies, including Illumina (Solexa)
sequencing, Roche 454 sequencing, Ion torrent: Proton/
PGM sequencing and SOLiD sequencing. The SCBN
method is also compatible with two main types of RNA-
seq mappers, including unspliced aligners and spliced
aligners. Two main contributions of our work are: (i) deal-
ing with RNA-seq data with two different species, which
have different lengths of genes and sequencing depths,



Zhou et al. BMC Bioinformatics          (2019) 20:163 Page 9 of 10
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and (ii) employing the hypothesis testing approaches to
search for the optimal scaling factor, which minimizes
the deviation between the empirical and nominal type I
errors. From the simulation results, we find that the pro-
posed SCBN method outperforms the existing median
method, especially when the number of the selected con-
served genes is small or the selected conserved genes
involve a lot of noise. In real data analysis, we analyze an
RNA-seq data of two species, human and mouse, and the
results indicate that the SCBN method delivers a more
satisfactory performance than the median method.
Compared to the RNA-seq data with same species,

the normalization procedure between different species is
much more complicated. Although the proposed method
has largely improved the effectiveness to detect DE genes
in some cases, we note that it may still not be able to
provide a satisfactory performance when the rate of DE
genes is very high in the whole samples. In addition,
the unmatched genes and the relation of orthologous
genes are not considered in the process of normalization
between different species. This may call for a future work
that develops newmethods to further improve our current
method.
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