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ABSTRACT

Motivation: High-dimensional data such as microarrays have
created new challenges to traditional statistical methods. One such
example is on class prediction with high-dimension, low-sample size
data. Due to the small sample size, the sample mean estimates
are usually unreliable. As a consequence, the performance of the
class prediction methods using the sample mean may also be
unsatisfactory. To obtain more accurate estimation of parameters
some statistical methods, such as regularizations through shrinkage,
are often desired.
Results: In this article, we investigate the family of shrinkage
estimators for the mean value under the quadratic loss function.
The optimal shrinkage parameter is proposed under the scenario
when the sample size is fixed and the dimension is large. We then
construct a shrinkage-based diagonal discriminant rule by replacing
the sample mean by the proposed shrinkage mean. Finally, we
demonstrate via simulation studies and real data analysis that the
proposed shrinkage-based rule outperforms its original competitor
in a wide range of settings.
Contact: tongt@hkbu.edu.hk
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1 INTRODUCTION
With the advent of high-throughput technologies, learning high-
dimensional complex models is critical in many disciplines such
as biology, genetics, epidemiology, geology, ecology, neurology
and engineering. One such example is microarray data, where the
expression levels of thousands of genes are measured simultaneously
from each sample. Due to the cost and/or other experimental
difficulties such as the availabilities of biological materials, it is
common that high-throughput data are collected only in a limited
number of samples. They are referred to as high-dimensional
data with small sample size, or ‘large G small n’ data, where
G is the number of dimensions and n is the sample size. High-
dimensional data pose many challenges to traditional statistics
methods. Specifically, due to the small n, there are more uncertainties
associated with standard estimations of parameters such as the mean
and variance estimations. As a consequence, statistical analyses
based on such parameter estimation are usually unreliable. To obtain
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more accurate estimation of parameters some statistical methods,
such as regularizations through shrinkage, may yield better results.

Shrinkage-based methods have been proposed in recent years to
improve the variance estimation for ‘large G small n’ data. See
for example, Baldi and Long (2001), Storey and Tibshirani (2003),
Wright and Simon (2003), Smyth (2004), Cui et al. (2005), Tong
and Wang (2007), Opgen-Rhein and Strimmer (2007) and Wang
et al. (2009), among many others. In contrast to the advances on
variance estimation, little attention has been paid to improving the
mean estimation for high-dimensional data until recently (Hausser
and Strimmer, 2009; Hwang and Liu, 2010). In this article, we
investigate the family of shrinkage estimators for the mean value
which is tailored to the high-dimensional data such as microarrays.
Specifically, we will propose the optimal shrinkage parameter under
the quadratic loss function for the data when G tends to be infinite.

Class prediction with high-dimensional data has been recognized
as a very important problem and received much attention in different
fields such as genomics, proteomics, brain images, medicine and
machine learning. For high-dimensional data with small sample
sizes, it is known that the traditional classification methods such
as the linear discriminant analysis are not applicable as the sample
covariance is going to singular when G is greater than n. To
overcome the singularity problem, Dudoit et al. (2002) introduced
two diagonalized discriminant rules, the diagonal linear discriminant
analysis (DLDA) and the diagonal quadratic discriminant analysis
(DQDA). When the sample size is small, DLDA performed
remarkably well compared with more sophisticated classifiers in
terms of both accuracy and stability (Dettling, 2004; Lee et al.,
2005). In addition, DLDA is easy to implement and is not sensitive
to the number of predictor variables.

Though DLDA performed well for high-dimensional small
sample size data, there is still room to improve it (Huang et al., 2010;
Pang et al., 2009; Pang et al., 2010). In particular, we notice that
the mean estimation (the sample mean) in DLDA will be unreliable
when the sample size is not sufficiently large. As a consequence,
the performance of DLDA may also be unsatisfactory. With this
insight, we propose in this article an improved version of DLDA,
which replaces the sample mean by the optimal shrinkage estimator.
We expect that the proposed shrinkage-based DLDA will improve
the classification accuracy in practice.

The remainder of the article is organized as follows. In Section 2,
we investigate the family of shrinkage estimators for the mean
value under the quadratic loss function. With the nature of high-
dimensional data, we assume that the variances are unequal and
unknown. Under regularity conditions, we discuss the choices of the

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 531

 at H
ong K

ong B
aptist U

niversity on M
arch 2, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[15:29 9/2/2012 Bioinformatics-btr690.tex] Page: 532 531–537

T.Tong et al.

shrinkage parameter and then evaluate their practical performance
via numerical studies. In Section 3, we construct a shrinkage-based
diagonal discriminant rule by replacing the sample mean by the
proposed shrinkage mean. Simulation studies will also be conducted
to evaluate its performance over its original competitor. In Section 4,
we use the leukemia data to demonstrate that the proposed method
is widely applicable and performs well. Finally, we conclude the
article in Section 5 with a brief discussion.

2 IMPROVED MEAN ESTIMATION
Let Xj = (X1j,...,XGj)T , j=1,...,n, be independent G-dimensional

vectors normally distributed with mean μ= (μ1,...,μG)T and
covariance matrix �. Let X̄ =∑n

j=1Xj/n be the sample mean. Let

‖X̄‖2 = X̄
T

X̄ and ‖X̄‖2
� = X̄

T
�−1X̄ for any invertible matrix �. In

this section, we consider estimating μ with respect to the quadratic
loss function.

2.1 Motivation
Shrinkage estimation of means has a long history starting with the
seminal paper of James and Stein (1961) that the sample mean is
inadmissible for G≥3. When �= I , James and Stein (1961) showed
that

μ̂JS =
(

1− (G−2)/n

‖X̄‖2

)
X̄

dominates X̄ for any G≥3. When �=σ2I with σ2 unknown, the
James-Stein type estimator is given as (Baranchik, 1970)

μ̂JS =
(

1− (G−2)/n

‖X̄‖2/σ̂2
0

)
X̄,

where σ̂2
0 is the pooled estimator of σ2. More generally, when � is

non-diagonal and unknown, the James-Stein type estimator has the
form (Lin and Tsai, 1973; Gleser, 1986)

μ̂JS =
⎛
⎝1− (G−2)/n

‖X̄‖2
�̂

⎞
⎠X̄,

where �̂=∑n
j=1(Xj −X̄)(Xj −X̄)T /(n−G+2) is the pooled

sample covariance matrix. To guarantee �̂ non-singular, we require
that n>G. Note that this is not the case for high-dimensional data
where G can be much larger than n. Therefore, the existing shrinkage
methods for estimating μ break down and cannot apply to the
high-dimensional data directly.

2.2 Proposed mean estimator
To overcome the singularity problem, we assume � is diagonal and
denote it by D=diag(σ2

1 ,...,σ2
G). As mentioned in Hwang et al.

(2009), most existing shrinkage estimators of μ in the literature
required the variances σ2

i , i=1,...,G, to be either equal or unequal

but known. When σ2
i =σ2 for all i, the problem reduces to D=σ2I

with σ2 unknown (James and Stein, 1961; Montazeri et al., 2010).
When the σ2

i are unequal but known, the problem reduces to the case
considered in Efron and Morris (1973). In this article, we consider
the assumption of σ2

i being both unequal and unknown. Note that the
same assumption has been commonly used in the recent literature,

e.g. in Berger and Bock (1976), Dudoit et al. (2002), Bickel and
Levina (2004), Cui et al. (2005), Tong and Wang (2007) and Hwang
and Liu (2010) where the correlations among genes are ignored due
to the small sample size.

Consider the following hierarchical Bayesian model with
conjugate priors,

Xij|μi,σ
2
i

i.i.d.∼ N(μi,σ
2
i ),

μi|σ2
i ∼N(0,σ2

i /τ0),

σ2
i ∼ Inv-χ2(ν0,σ2

0 ),

where i=1,...,G, j=1,...,n, N(·) is the standard normal
distribution, and Inv-χ2(·) is the scaled inverse chi-squared
distribution with unknown hyperparameters (τ0,ν0,σ2

0 ). The joint

prior density of μi and σ2
i is given as

f (μi,σ
2
i )∝ (σ2

i )−(ν0+3)/2exp

{
− 1

2σ2
i

(ν0σ2
0 +τ0μ2

i )

}
.

Let X̄i =
∑n

j=1Xij/n and s2
i =∑n

j=1(Xij −X̄i)2/(n−1) be the
sample mean and the sample variance for gene i, respectively. Let
X̄ = (X̄1,...,X̄G)T and S =diag(s2

1,...,s2
G). By Gelman et al. (2004),

the posterior distribution of (μi,σ
2
i ) can be represented as

f (μi,σ
2
i |Xi1,...,Xin)=N(μi,p,

σ2
i

τ0 +n
)·Inv-χ2(ν0 +n,σ2

i,p)

where

μi,p = n

τ0 +n
X̄i,

σ2
i,p = 1

ν0 +n

(
ν0σ2

0 +(n+1)s2
i + nτ0

τ0 +n
X̄2

i

)
.

The posterior mean estimator of μi is then

μ̂i =μi,p =
(

1− 1

n/τ0 +1

)
X̄i, i=1,...,G. (1)

Note that τ0 in (1) is an unknown parameter. We propose to
estimate n/τ0 +1 by the form of ‖X̄‖2

S/r, where r is a shrinkage
parameter to be tuned. We then have the following estimator for μ,

μ̂(r)=
(

1− r

‖X̄‖2
S

)
X̄. (2)

Under the quadratic loss function

L(μ̂,μ,D)= n

G
‖μ̂−μ‖2

D, (3)

Fourdrinier et al. (2003) showed that the estimator (2) dominates X̄
when 0<r <2(G−2)/(n+1).

2.3 Optimal shrinkage parameter
In this section, we propose the optimal shrinkage parameter of r >0
within the family of estimator (2). In Appendix A, we show that the
optimal shrinkage parameter is given as

ropt =
(G−2)E(1/‖X̄‖2

S)

nE
[
‖X̄‖2

D/(‖X̄‖2
S)2
] . (4)
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Note that for high-dimensional data, n is usually small but G is large.
We have the follow asymptotic result.

Lemma 1. Define Nm =#{k : (ak/
∑k

i=1ai)≥1/m}, where ai =
X̄2

i /σ2
i and #{A} denotes the total number of elements in set A.

Assume that supm(Nm/m)<∞ almost surely. Then for any fixed

n≥4, we have ‖X̄‖2
D/‖X̄‖2

S
a.s.−→ (n−3)/(n−1) as G→∞.

The proof of Lemma 1 is given in Appendix B. By Lemma 1,
for high-dimensional data, we have r̂opt ≈[(n−1)(G−2)]/[n(n−3)]
and the optimal shrinkage estimator is

μ̂(r̂opt)=
(

1− r̂opt

‖X̄‖2
S

)
X̄. (5)

Let r̃ = (G−2)/(n+1) be the middle point of the range 0<r <

2(G−2)/(n+1) in Fourdrinier et al. (2003). It is clear that when
n is large, r̂opt and r̃ are asymptotically equivalent. While for high-
dimensional data with small sample sizes, the difference between
these two estimators can be large. For instance, when n=5, the
ratio r̂opt/r̃ is given as 2.4; and when n=6, the ratio is 1.9. The
practical performance of these two estimators will be studied in the
next section.

2.4 Evaluation
The first simulation is to evaluate the performance of μ̂(r̂opt) with
the estimators X̄, μ̂JS and μ̂(r̃). Assume that G=100. We consider
four different values of n, ranging from 5, 10, 20 to 50, to represent
different levels of sample sizes. We draw σ2

i from the scaled chi-

square distribution χ2
n−1/(n−1), and μi from N(0,τ2), where τ =

0.2, 0.6 or 1 representing different levels of mean heterogeneity. For
each gene i, we simulate n observations from the normal distribution
N(μi,σ

2
i ). We repeat the process 5000 times for each setting and

report the simulated average risk AR=∑5000
k=1 L(μ̂,μ,D)/5000 in

Table 1 for the four estimators, respectively.
Under the quadratic loss function (3), the sample mean X̄ has

a constant risk at 1, as reported in the simulations. The standard
errors of these average risks are all around 0.14/

√
5000=0.0020.

Therefore, the improvements of the three shrinkage estimators
over X̄ are all statistically significant. We observe that μ̂(r̂opt)
has a smaller average risk than both μ̂JS and μ̂(r̃) in most
settings, especially when the sample size is small. In addition,
the improvement of μ̂(r̂opt) over X̄ increases when the mean
heterogeneity decreases, especially when τ is near zero. We also
observe that the improvements of the shrinkage estimators over the
sample mean become smaller when n becomes larger. This indicates
that for the large sample size scenario, it is no longer necessary
to borrow information from other genes to improving the mean
estimation.

Note that we have assumed the grand mean to be zero in the above
simulation. Note that when the grand mean has a shift from zero,
the term

∑G
i=1μ2

i /σ2
i will tend to be larger so that the improvement

of μ̂(r̂opt) over X̄ will be diminished correspondingly. In such
situations, Lindley (1962) suggested to apply the shrinkage method
to the deviations Xij −X̄·· rather than to the original observations
Xij , which leads to the following variation of the estimator (5),

μ̃r̂opt
= X̄··+

(
1− r̂opt

‖X̄−X̄··‖2
S

)
(X̄−X̄··), (6)

Table 1. Average risks of the estimators under various settings

τ n=5 n=10 n=20 n=50

0.2 X̄ 0.997 1.001 0.996 1.000
μ̂JS 0.337 0.362 0.485 0.682
μ̂(r̃) 0.514 0.408 0.493 0.683
μ̂(r̂opt) 0.339 0.359 0.483 0.682

0.6 X̄ 1.004 1.001 1.003 0.999
μ̂JS 0.889 0.836 0.897 0.951
μ̂(r̃) 0.851 0.840 0.898 0.951
μ̂(r̂opt) 0.801 0.827 0.895 0.951

1 X̄ 0.998 0.997 0.998 1.001
μ̂JS 0.973 0.932 0.957 0.984
μ̂(r̃) 0.933 0.932 0.957 0.984
μ̂(r̂opt) 0.912 0.927 0.956 0.983

Table 2. Average risks of the estimators (5) and (6) under various settings

μ0 n=5 n=10 n=20 n=50

0 μ̂(r̂opt) 0.732 0.770 0.849 0.926
μ̃(r̂opt) 0.736 0.772 0.850 0.926

1 μ̂(r̂opt) 0.928 0.940 0.966 0.982
μ̃(r̂opt) 0.737 0.771 0.852 0.928

2 μ̂(r̂opt) 0.977 0.982 0.993 0.993
μ̃(r̂opt) 0.738 0.773 0.853 0.928

where X̄·· =∑G
i=1

∑n
j=1Xij/(nG) is the grand sample mean across

all the genes, and X̄·· = (X̄··,...,X̄··)T is a vector of size G with
common values.

To evaluate the performance of the Lindley-type estimator (6),
we simulate μi from N(μ0,0.52) for three different values of μ0:
0, 1 and 2. All other settings remain the same as before. We repeat
5000 simulations for each setting and report the average risks of both
μ̂(r̂opt) and μ̃(r̂opt) in Table 2. We observe that the two shrinkage
estimators perform similarly when μ0 =0. When μ0 is away from
zero, μ̂(r̂opt) may perform unsatisfactory while the performance
of μ̃(r̂opt) remains the same. This indicates that the Lindley-type
estimator is robust to the shift of the grand mean. In the remainder
of the article, the estimator (6) will be adopted to estimate the mean
value unless otherwise specified.

3 IMPROVED DIAGONAL DISCRIMINANT
ANALYSIS

As mentioned in Section 1, class prediction with high-dimensional
data is an important problem in high dimensional data analysis. The
objective of class prediction is to assign a new observation to one
of the K classes based on its given profile. For ease of notation, we
define the class labels to be integers ranging from 1 to K with nk
observations belonging to class k,

Xk,1,...,Xk,nk

i.i.d.∼ MVNG(μk,�k), k =1,...,K,

where μk and �k are the mean value and covariance matrix
of the G-dimensional multivariate normal distribution for class
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k, respectively. Let N =n1 +···+nK be the total number of
observations.

For high-dimensional data such as microarrays, it is common that
the dimension is much larger than the sample size.As a consequence,
traditional classification methods such as the linear discriminant
analysis are likely to be inapplicable to such high-dimensional data
directly. For instance, the sample covariance matrix is singular when
G is larger than N . To overcome the singularity problem, Dudoit et al.
(2002) introduced DLDA and DQDA that ignored the correlations
among genes. Specifically, under the assumption that �k =� for
all k, DLDA classifies a new observation y= (y1,...,yG) to class k
which minimizes the following discriminant score

d̂k(y) = (y−X̄k)T [diag(�̂)]−1(y−X̄k)−2logπ̂k (7)

=
G∑

i=1

(yi −X̄ki)
2/σ̂2

i −2logπ̂k, k =1,...,K,

where X̄k =∑nk
j=1Xk,j/nk = (X̄k1,...,X̄kG) is the sample mean

of class k, �̂=∑K
k=1(nk −1)�̂k/(N −K)=diag(σ̂2

1 ,...,σ̂2
G) is

the pooled sample covariance matrix with �̂k =∑nk
j=1(Xk,j −

X̄k)(Xk,j −X̄k)T /(nk −1), and π̂k =nk/N are the prior probabilities
of which the next new observation is coming from class k. DLDA is
also called a ‘naive Bayes’ classifier as it arises in a Bayesian setting
(Bickel and Levina, 2004). It has been widely adopted to analyze
high-dimensional data in the real sciences. See for example Speed
(2003), Noushath et al. (2006), Asyali et al. (2006) and Heilemann
and Schuhr (2008), among others.

Note that DLDA uses the sample mean. We propose here a
modified version of DLDA by replacing the sample mean X̄k in
formula (7) by the proposed optimal shrinkage estimates μ̃k(r̂opt)
for each class k. We then classify a new observation y to class
argmink d̃S

k (y), where

d̃S
k (y)= (y−μ̃k(r̂opt))

T [diag(�̂)]−1(y−μ̃k(r̂opt))−2logπ̂k . (8)

We refer to it as shrinkage-mean-based DLDA (SmDLDA).
Similarly, we can propose a shrinkage-mean-based version for
DQDA as well. The behavior of the proposed SmDLDA will be
studied in the next section under various scenarios.

3.1 Simulated study
In this section, we conduct simulations to compare the performance
of SmDLDA with DLDA. We consider a binary classification with
simulate data from multivariate normal distributions MVN(μ1,�)
and MVN(μ2,�), respectively.

The first simulation study considers an identity covariance matrix,
i.e. �= IG. To differentiate the two classes, without loss of generality
we assume the first d, 0≤d ≤G, components of μ1 and μ2 are
the same and the left ones are different. Specifically, we let μ1 =
{0,...,0,μ1,d+1,...,μ1G} and μ2 =−μ1, where {μ1,d+1,...,μ1G}
is a random sample of size G−d from the uniform distribution
U(0,0.5). We consider two choices of G (50 and 200), and for each
G, we consider six different d values at 0, 0.1×G, …, 0.5×G,
respectively. For each simulation, we generate a training set of size
nk for each class k under the simulation setting described above,
and a test set of size 5nk under the same setting to assess the
misclassification rate. The overall misclassification rate is calculated
by the percentage of misclassified observations over the total number

0 5 10 15 20 25

0.
05

0.
10

0.
15

0.
20

G=50, n=10

d

M
is

cl
as

si
fic

at
io

n 
R

at
e

DLDA
SmDLDA

0 5 10 15 20 25

0.
04

0.
08

0.
12

G=50, n=20

d

M
is

cl
as

si
fic

at
io

n 
R

at
e

DLDA
SmDLDA

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

G=200, n=10

d
M

is
cl

as
si

fic
at

io
n 

R
at

e

DLDA
SmDLDA

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0

G=200, n=20

d

M
is

cl
as

si
fic

at
io

n 
R

at
e

DLDA
SmDLDA

Fig. 1. Plots of the average misclassification rates for DLDA and SmDLDA
when the observations are independent.

of observations in the test sets. Finally, we repeat the procedure 1000
times and report the average misclassification rates in Figure 1 for
n1 =n2 =10 and 20, respectively. It is evident that SmDLDA has a
smaller misclassification rate than DLDA in all settings.

To evaluate and compare the performance of DLDA and
SmDLDA under more realistic situations, we conduct here another
simulation study in the case where the observations are correlated.
Similarly as in Guo et al. (2007) and Pang et al. (2009), we use
the following block diagonal structure to mimic the true covariance
matrix,

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ρ 0 ··· ··· ...

0 �−ρ 0 ··· ...

... 0 �ρ 0
...

...
... 0 �−ρ

...

··· ··· ··· ··· ···

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G×G

,

where each diagonal block has the following auto-regressive
structure

�ρ =

⎛
⎜⎜⎜⎝

1 ρ ··· ρ9

ρ 1 ··· ρ8

...
...

. . .
...

ρ9 ··· ρ 1

⎞
⎟⎟⎟⎠

10×10

.

We consider five different values of the correlation coefficient ρ,
ranging between 0, 0.2, 0.4, 0.6 and 0.8, to represent different
levels of dependence. Note that ρ=0 corresponds to the independent
situation in the previous simulation. All other settings are the same
as before except that we set d =0.1×G in this new simulation.
We repeat the procedure 1000 times and report the average
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Fig. 2. Plots of the average misclassification rates for DLDA and SmDLDA
when the observations are correlated.

misclassification rates in Figure 2 for both DLDA and SmDLDA.
Once again, SmDLDA outperforms DLDA in most situations. The
comparison result is more evident when the correlation coefficient
ρ is not large.

Though we have restricted to a balanced binary classification with
n1 =n2 due to the page limitation, extensive simulations (not shown)
indicate that the above comparative conclusions remain the same for
unbalanced designs as well as for other simulation settings, including
the multiclass comparison problems.

4 APPLICATION TO LEUKEMIA DATA
In this section, we apply the proposed discriminant rule, SmDLDA,
to the leukemia data of Golub et al. (1999). The dataset is
available in the website of www.bioconductor.org. By following
the same pre-processing steps (thresholding, filtering and logarithm
transformation) as described in Dudoit et al. (2002), we end up
with a gene expression dataset with a total of 3571 genes for 47
acute lymphoblastic leukemia (ALL) patients and 25 acute myeloid
leukemia (AML) patients. We further standardize the dataset so that
each array has mean zero and variance one across genes.

Note that in general, the shrinkage methods work well for dense
data rather than sparse data. Thus, to better reveal the practical
performance of SmDLDA we perform a preliminary screen of
informative features before the case study. Different screen methods
are available in the literature so as to identify biologically significant
gene functional groups or pathways via Gene Ontology annotations
(Pan, 2006; Tai and Pan, 2007). In this study for simplicity, we will
not carry out the screen by integrating the real biological knowledge,
but instead, will perform it based on the ratio of the between-group
to within-group sums of squares as in Dudoit et al. (2002). Note
that the gene selection can also be based on other proposals, see for
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Fig. 3. Plots of the average misclassification rates for DLDA and SmDLDA
using leukemia data.

example, Bayesian variable selection (Lee et al., 2003), analysis of
variance (Draghici et al., 2003) and independent component analysis
(Calò et al., 2005). Let ALL be class 1 and AML be class 2. The
ratio for gene j is given as

BW(j)=
∑2

k=1
∑nk

i=1(X̄k.j −X̄..j)2∑2
k=1

∑nk
i=1(Xkij −X̄..j)2

,

where X̄..j is the averaged expression values across all samples and
X̄k.j is that across samples belonging to class k. We select the top G
genes (50 and 200) with the largest BW ratios for further study.

To assess the misclassification rates for both SmDLDA and
DLDA, we randomly divide the total 72 samples into training sets
and test sets. We let the training set size for each class ranging
from 5, 10, 15 to 20, respectively. The remaining samples are then
used as the test sets. Recall that the improvement of shrinkage is
inversely proportional to the mean heterogeneity (Section 4). To
better improve the performance of the shrinkage-based rule, we
propose an adaptive procedure that aims to reduce the possibly
large level of mean heterogeneity that may appear in real data.
Specifically, we shrink the distances between the class centroids and
the overall centroids rather than to shrink the class centroids directly.
This is a similar idea as in Tibshirani et al. (2003). Finally, for each
setting, we repeat the procedure 1000 times and report the average
misclassification rates in Figure 3. Similarly as in the simulation
studies, it is evident again that SmDLDA outperforms DLDA in all
settings.

5 DISCUSSION
In this article, we proposed an optimal shrinkage estimator for the
mean value under the ‘large G small n’ scenario. We then applied
the proposed shrinkage estimator to high-dimensional classification
problem by constructing a shrinkage-based diagonal discriminant
rule. Its improvement over the original competitor was demonstrated
through both simulations and real data analysis.

Though the independence assumption in this article is popular in
the literature (Bickel and Levina, 2004; Dudoit et al., 2002; Hwang
et al., 2009; Tong and Wang, 2007), it is unlikely to be true in
practice and so certain remedy might be necessary for a further
improvement when additional information is available. Langaas
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et al. (2005) suggested that the clumpy dependence is a likely
form of dependence, where the clumpy dependence means that
the genes are dependent within groups and independent among
groups. Inspired by that, one natural extension would be to propose
new shrinkage estimators for the mean value under the clumpy
dependence structure. To avoid the singularity problem, we might
need to assume that the largest group size is not larger than the
number of samples. Another future work is to examine if the
proposed optimal shrinkage estimator has any good in its own right,
or if it can be further improved by its positive-part estimator.

Finally, we note that the proposed SmDLDA in this article is a
shrinkage-mean-only-based DLDA, whereas in Pang et al. (2009)
the authors proposed a shrinkage-variance-only-based DLDA.
As both the mean and variance estimations are crucial in the
statistical analysis, further research might be needed to develop new
classification rules that shrink both the mean value and the variance.
Possible approaches can be either by plugging-in the existing
shrinkage estimators, respectively, or by proposing new shrinkage
estimators for the mean value and variances simultaneously.
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APPENDIX A

A1. DERIVATION OF FORMULA (4)
Noting that μ̂−μ= (X̄−μ)−rX̄/‖X̄‖2

S , the risk function is

R(μ̂,μ,D) = n

G
E(μ̂−μ)T D−1(μ̂−μ)

= n

G
E
[
(X̄−μ)T D−1(X̄−μ)

+ r2

(‖X̄‖2
S)2

X̄
T

D−1X̄

− r

‖X̄‖2
S

(X̄−μ)T D−1X̄

− r

‖X̄‖2
S

X̄
T

D−1(X̄−μ)

]

= 1+ nr2

G
E

[ ‖X̄‖2
D

(‖X̄‖2
S)2

]

−2nr

G

G∑
i=1

E

[
1

‖X̄‖2
S

X̄i(X̄i −μi)

σ2
i

]
.

By Stein formula, Eg(X)(X −μ)=σ2Eg
′
(X) where X ∼N(μ,σ2),

we have

E

[
1

‖X̄‖2
S

X̄i(X̄i −μi)

σ2
i

]
= 1

n
E

[(
X̄i

‖X̄‖2
S

)
X̄i −μi

σ2
i /n

]

= 1

n
E

[
∂

∂X̄i

(
X̄i

‖X̄‖2
S

)]

= 1

n
E

[
1

‖X̄‖2
S

− 2X̄2
i

(‖X̄‖2
S)2s2

i

]
.

This leads to

R(μ̂,μ,D)= nr2

G
E

[ ‖X̄‖2
D

(‖X̄‖2
S)2

]
− 2r(G−2)

G
E

(
1

‖X̄‖2
S

)
.

Finally, by minimizing the above quantity, we have

ropt =
(G−2)E(1/‖X̄‖2

S)

nE
[
‖X̄‖2

D/(‖X̄‖2
S)2
] .

APPENDIX B

B1. PROOF OF LEMMA
Noting that f (x)=1/x is a continuous function in (0,∞), it suffices

to show that ‖X̄‖2
S/‖X̄‖2

D
a.s.→ ρn as G→∞. By Assani (1997), the

following strong law holds under the condition supm(Nm/m)<∞
almost surely,

1

AG

G∑
i=1

ai [Zi −E(Zi)]
a.s.−→0, as G→∞.

Further, we have
∑G

i=1aiZi/AG
a.s.→ EZ1 =1/(n−3) for any

n≥4. This proves the lemma by noting that AG =‖X̄‖2
D and

‖X̄‖2
S = (n−1)

∑G
i=1aiZi.
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