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Summary. High-dimensional data such as microarrays have brought us new statistical challenges. For example, using a large
number of genes to classify samples based on a small number of microarrays remains a difficult problem. Diagonal discriminant
analysis, support vector machines, and k-nearest neighbor have been suggested as among the best methods for small sample
size situations, but none was found to be superior to others. In this article, we propose an improved diagonal discriminant
approach through shrinkage and regularization of the variances. The performance of our new approach along with the existing
methods is studied through simulations and applications to real data. These studies show that the proposed shrinkage-based
and regularization diagonal discriminant methods have lower misclassification rates than existing methods in many cases.
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1. Introduction
High throughput gene expression technologies have opened
a whole new path in the development of novel ways to
treat cancer and other diseases. The availability of these
data has motivated the development of reliable biomarkers
for disease diagnosis and prognosis, and the identification of
drug targets for treatment. Many methods have been devel-
oped in the literature, such as diagonal linear discriminant
analysis (DLDA; Dudoit, Fridlyand, and Speed, 2002), ran-
dom forests (Breiman, 2001), support vector machines (SVM;
Vapnik and Kotz, 2006), and penalized discriminant methods
(Ghosh, 2003). These methods have been applied to many
studies (e.g., Huang and Zheng, 2006; Moon et al., 2006; Mon-
taner et al., 2006; Barrier et al., 2007). One particular disease
area that has contributed most in shaping the development
of microarray data collection and analysis is cancer. A well-
known paper published by Golub et al. (1999) is a leukemia
study using microarray data to identify cancer molecular sub-
types. They used a weighted nearest-neighbor scoring method
for discrimination between acute myeloid leukemia and acute
lymphoblastic leukemia.

The three main statistical problems in cancer genomics re-
search are (1) the identification of subclasses within a partic-
ular tumor type; (2) the classification of patients into known
classes; and (3) the selection of biomarkers, i.e., genes that
characterize a particular tumor subtype. In this article, we
will mainly focus on (2), discriminant methods for classifying

human tumors based on microarray data, which is unique in
the sense that the number of samples is much smaller than
the number of features (genes). The data available in public
databases now contain mainly expression data ranging be-
tween 10,000 and 55,000 probes or probe sets for fewer than
100 samples. For some cancers, e.g., brain tumors, it is not un-
common to see fewer than 10 subjects per tumor group (e.g.,
Pomeroy et al., 2002; Dong et al., 2005). Therefore, there is a
need to develop methods that have good performance when
the sample size is small.

In 2002, Dudoit et al. performed a comprehensive compar-
ison of various discriminant methods on different microarray
data sets for different types of cancer. They compared near-
est neighbors, classification trees, and linear and quadratic
discriminant analysis, and found that nearest neighbors and
DLDA had the smallest error rates. In more recent stud-
ies, SVM has been found to be one of the better classifiers
(e.g., Lee et al., 2005; Shieh, Jiang, and Shih, 2006). Many
researchers have pointed out that for high-dimensional data
with small sample sizes, the naive Bayes classifier, sometimes
known as DLDA and diagonal quadratic discriminant analysis
(DQDA), has comparable or better performance than SVM,
see for example Ye et al. (2004), Lee et al. (2005), and Shieh
et al. (2006). Moreover, in situations where the sample size
of each group is less than 10, it is clear that regularization
and shrinkage techniques will enhance and improve estima-
tion. The reason is that the commonly used estimators for
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the class-specific variances or the pooled variance in DQDA
or DLDA can become unstable and thus reduce the classifi-
cation accuracy.

One solution to the challenge of having a small number of
samples compared to the large number of genes in the microar-
ray settings is to make use of shrinkage-based variance esti-
mators. Tong and Wang (2007) derived a family of shrinkage
estimators for gene-specific variances raised to a fixed power
(nonzero) extending the idea from Cui et al. (2005) to a more
general setting. These estimators borrow information across
genes by shrinking each gene-specific variance estimator to-
ward bias-corrected geometric mean of variance estimators
for all genes. Their method has been applied to multiple test-
ing problems by introducing an F-like statistic. To the best
of our knowledge, their James–Stein shrinkage-based variance
estimation has not been explored as a tool for improving dis-
criminant analysis in microarray data analysis. This has given
us the motivation to propose new shrinkage-based discrimi-
nant methods and to perform a comprehensive study on their
performance.

In this article, we propose a new approach to improve
DLDA and DQDA by applying shrinkage and regularized
techniques to discrimination. We first improve upon the orig-
inal DLDA and DQDA by performing shrinkage, which is in
essence a method to borrow information across genes to im-
prove estimation of the gene-specific variances by shrinking
them toward a pooled variance. Secondly, we further improve
the shrinkage-based DLDA and DQDA by using regulariza-
tion, which is essentially a weighted version of the shrinkage-
based DLDA and DQDA. Combining shrinkage-based
variance in diagonal discriminant analysis and regularization
results in a new classification scheme that shows improvement
over the original DLDA, DQDA, SVM, and k-nearest neigh-
bor (k-nn) in many scenarios, especially in small sample size
settings.

2. Regularized Shrinkage-based Diagonal
Discriminant Analysis

2.1 Diagonal Discriminant Analysis
The main purpose of discriminant analysis is to assign an
unknown subject to one of K classes on the basis of a multi-
variate observation x = (x1 , . . . , xp )T , where p is the number
of features. For simplicity of notation, the class labels yi are
defined to be integers ranging from 1 to K. We assume that
there are nk observations in class k with

xk ,1, . . . , xk ,n k

i.i .d .∼ Np (μk , Σk ), k = 1, . . . , K,

where μk and Σk are the corresponding mean vector and
covariance matrix of the p-dimensional multivariate nor-
mal distribution. The total number of observations is n =
n1 + · · · + nK .

Let πk denote the prior probability of observing a class k
member with π1 + · · · + πK = 1. Under the normal distribu-
tion assumption, we assign a new subject x to class k, which
minimizes the following discriminant score

Dk (x) = (x − μk )T Σ−1
k (x − μk ) + ln |Σk | − 2 ln πk , (1)

i.e., we assign x to k̂ = argmink Dk (x). This is the so-called
quadratic discriminant analysis (QDA) since the boundaries

that separate the disjoint regions belonging to each class
are quadratic. The first term on the right-hand side of
equation (1) is known as the squared Mahalanobis distance
between x and μk . When the covariance matrices are all the
same, i.e., Σk = Σ for all k, the discriminant score can be
simplified as

dk (x) = (x − μk )T Σ−1(x − μk ) − 2 ln πk . (2)

This is referred to as the linear discriminant analysis (LDA).
LDA assigns a new subject to k̂ = argmink dk (x) which uses
linear boundaries.

Note that both mean vectors μk and covariance matrices
Σk are unknown for microarray data, and need to be esti-
mated from the training set. In practice, the most commonly
used estimators are their maximum-likelihood estimates,

μ̂k =
1
nk

n k∑
i=1

xk ,i , Σ̂k =
1
nk

n k∑
i=1

(xk ,i − μ̂k )(xk ,i − μ̂k )T ,

Σ̂ =
1
n

K∑
k=1

nk Σ̂k .

The prior probabilities are usually estimated by the fraction
of each class in the pooled training sample, i.e., π̂k = nk /n.

The sample version rule for QDA is C(x) = argmink D̂k (x),
where

D̂k (x) = (x − μ̂k )T Σ̂−1
k (x − μ̂k ) + ln |Σ̂k | − 2 ln π̂k .

Similarly, the sample version rule for LDA is C(x) =
argmink d̂k (x), where

d̂k (x) = (x − μ̂k )T Σ̂−1(x − μ̂k ) − 2 ln π̂k .

These so-called “plug-in” estimates are straightforward to
compute, but do not enjoy optimality properties (Anderson,
1958; Friedman, 1989). Classification rules based on QDA are
known to require generally larger samples than those based
on LDA (Wald and Kronmal, 1977) and are more sensitive to
departures from basic model assumptions.

QDA requires that min{n1 , . . . , nK } is greater than or equal
to p, the number of features, to ensure that the sample co-
variance matrices are nonsingular. LDA requires that n � p
to make Σ nonsingular. For high-dimensional data, especially
for microarray data, it is common that the dimension is much
larger than the sample size, i.e., p � n. This implies that tra-
ditional methods based on QDA and LDA cannot be applied
to microarrays directly. Though we may use the generalized
matrix inverse or use a regularized covariance matrix such as
λΣk + (1 − λ)I or λΣ + (1 − λ)I , such estimates are usually
unstable due to the lack of observations.

To overcome the singularity problem, Dudoit et al. (2002)
introduced two simplified discriminant rules by assuming in-
dependence between covariates and replacing off-diagonal el-
ements of the sample covariance matrices with zeros. The
first rule is called DQDA. Specifically, they estimate Σ̂k =
diag(σ̂2

k 1, . . . , σ̂
2
k p ), and give the discriminant rule as C(x) =

argmink D̂D
k (x), where

D̂D
k (x) =

p∑
j=1

(xj − μ̂k j )2
/
σ̂2

k j +
p∑

j=1

ln σ̂2
k j − 2 ln π̂k . (3)
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The second rule is called DLDA. Specifically, they assume
a common diagonal covariance matrix and estimate Σ̂ =
diag(σ̂2

1 , . . . , σ̂
2
p ). The discriminant rule is then

C(x) = argmin
k

(
p∑

j=1

(xj − μ̂k j )2
/
σ̂2

j − 2 ln π̂k

)
. (4)

Due to the small sample size, DLDA and DQDA, which ig-
nore correlations between genes, performed remarkably well in
practice and produced lower misclassification rates than more
sophisticated classifiers (Dudoit et al., 2002). In addition, the
scoring of DLDA and DQDA is easy to implement and not
very sensitive to the number of predictor variables. DQDA
and DLDA classifiers are sometimes called “naive Bayes” be-
cause they arise in a Bayesian setting. The reason why DLDA
is a success is that even when the diagonal of the covariance
matrices is substantially different, the drop in variance result-
ing from the use of the pooled estimate may lead to better
performance, especially when the sample size is small.

For a more theoretical account on why the “naive Bayes”
classifier that assumes independent covariates works well
when p > n, see Bickel and Levina (2004). Specifically, they
show in their Section 2 that under the worst-case scenario the
“naive Bayes” classifier, which assumes independent covari-
ates, greatly outperforms Fisher’s linear discriminant func-
tion. They also demonstrate that under the assumption of
known covariance matrix the “naive Bayes” rule is still at par
with the original rule.

2.2 Shrinkage-based Diagonal Discriminant Analysis
Because n is typically much smaller than the number of fea-
tures p for microarray data, the performance of DQDA or
DLDA might not even be satisfactory due to the unreliable
estimates of the sample variances. Therefore, we propose mod-
ifications to the original DQDA and DLDA to further im-
prove their performance. This is achieved by developing sev-
eral regularized discriminant rules to improve the variance
estimation. For ease of notation, in what follows we focus on
the derivation of the shrinkage-based DLDA only. The cor-
responding result for DQDA will be presented at the end of
the section. Recall that for DLDA, the diagonal discriminant
score is

d̂D
k (x) =

p∑
j=1

(xj − μ̂k j )2
/
σ̂2

j − 2 ln π̂k ,

where the first term on the right side is the so-called squared
Mahalanobis distance.

Denote ν = n − K, σ̂2t
j = (σ̂2

j )
t , σ̂2t

pool =
∏p

j=1(σ̂
2
j )

t/p and

hν,p (t) =
(

ν

2

)t
(

Γ(ν/2)
Γ(ν/2 + t/p)

)p

,

where Γ(·) is the gamma function. Tong and Wang (2007)
proposed the following family of shrinkage estimators for σ2t

j ,

σ̃2t
j (α) =

(
hν,p (t)σ̂2t

pool

)α (
hν,1(t)σ̂2t

j

)1−α
, (5)

where hν,1(t)σ̂2t
j is an unbiased estimator of σ2t

j , and
hν,p (t)σ̂2t

pool is an unbiased estimator of σ2t when σ2
j = σ2 for

all j. The shrinkage parameter α ∈ [0, 1] controls the degree

of shrinkage from the individual variance estimate toward
the bias-corrected pooled estimate. There is no shrinkage
when α = 0, and all variance estimates are shrunken to the
pooled estimate when α = 1. Let σ2t =
(σ2t

1 , . . . , σ2t
p ), σ̂2t = (σ̂2t

1 , . . . , σ̂2t
p ), and Ψ (· · ·) = Γ′ (· · ·)

Γ (· · ·) the digamma function. Under the Stein loss function
LStein(σ2, σ̃2) = σ̃2/σ2 − ln(σ̃2/σ2) − 1, Tong and Wang (2007)
proved that for any fixed p, ν, and t > −ν/2, there exists
a unique optimal shrinkage parameter α∗ as the solution to
(∂/∂α)RStein(σ2t , σ̃2t ) = 0, where the average risk is given by

RStein(σ2t , σ̃2t ) =
hα

ν,p (t)h1−α
ν ,1 (t)

hp−1
ν ,1 (αt/p) hν,1 ((1 − α + α/p)t)

(
σ2

pool

)α t

× 1
p

p∑
j=1

(σ2
j )

−α t − ln
(
hα

ν,p (t)h1−α
ν ,1 (t)

)

− tΨ
(

ν

2

)
+ t ln

(
ν

2

)
− 1.

In practice, α∗ is unknown and needs to be estimated because
σ2 = (σ2

1 , . . . , σ2
p ) are unknown. For microarray data with at

least four replicates for each class, a consistent estimator of
α∗ exists for both σ̃2

j (α) and σ̃−2
j (α). Otherwise, Tong and

Wang (2007) suggested an alternative two-step procedure to
estimate the optimal shrinkage parameter (see Section 3.3 of
their paper for more details).

An important insight of Tong and Wang (2007) is that a
better variance estimator does not necessarily lead to a more
powerful test. In their paper, an F-test using the inverse of
the variance is more powerful than using the reciprocal of an
estimator. Note that a similar argument holds in discriminant
analysis since the variances σ2

j appear in the denominator too.
Therefore, for the estimation procedures that we propose, we
consider using shrinkage estimators for σ2

j (t = 1) or estima-
tors for 1/σ2

j (t = −1). The formulas, as well as the imple-
mentation of our methods, can be developed analogously. In
practice it turns out that this choice is not important, and
results are very similar in every situation that we studied.
Thus, for simplicity we focus in the remainder of the paper on
t = −1. Results for t = 1 can be requested from the authors.

Specifically, the shrinkage-based discriminant rule is
argmink d̃−D

k (x), where

d̃−D
k (x) =

p∑
j=1

(xj − μ̂k j )2σ̃−2
j (α̂∗) − 2 ln π̂k , (6)

where σ̃−2
j (α̂∗) is the estimate of 1/σ2

j . We will subsequently
call this method SDLDA which is short for shrinkage-based
DLDA.

Similarly, we can propose shrinkage-based DQDA by
shrinking variances within each class k. Denote σ2t

k =
(σ2t

k 1 , . . . , σ2t
k p ) and σ̃2t

k = (σ̃2t
k 1, . . . , σ̃

2t
k p ) for any k = 1 , . . . , K .

Let

α∗
k = argmin

α∈[0,1]
RStein

(
σ2t

k , σ̃2t
k

)
.

Then the shrinkage-based discriminant rule is

argmin
k

(
p∑

j=1

(xj − μ̂k j )2σ̃−2
k j

(
α̂∗

k

)
−

p∑
j=1

ln σ̃−2
k j

(
α̂∗

k

)
− 2 ln π̂k

)
.
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Following our naming conventions, we refer to this as
SDQDA.

2.3 A Regularization Approach
In this section, we propose a new Regularized Shrinkage-
based Diagonal Discriminant Analysis (RSDDA) based on the
shrinkage variances introduced in the previous section. Regu-
larization techniques are not new in statistics. The estimation
of parameters can be highly unstable when the number of pa-
rameters to be estimated outnumbers the sample size by a
few folds. In our case, regularization attempts to improve the
estimates by biasing them away from their shrinkage-based
class values toward the shrinkage-based pooled values. It in-
troduces biases, which is compensated for the reduction in the
variances associated with the class-based estimate.

In this setting, λ is the parameter that controls the strength
of biasing toward the pooled parameter. For a given value
of λ, the increase in bias will depend on how closely the
pooled value represents that of the population. Depending on
whether the pooled value is a good measure or not, one would
adjust and employ a small or high degree of regularization.

Denote D̂t
k = diag(σ̂2t

k 1, . . . , σ̂
2t
k p ), V̂ t

k = diag(ln σ̂2t
k 1, . . . ,

ln σ̂2t
k p ), and 1 = (1 , . . . , 1)T . For DQDA, we have

D̂D
k (x) = (x − μ̂k )D̂−1

k (x − μ̂k ) + 1T V̂k 1 − 2 ln π̂k

= Lk 1 + Lk 2 − 2 ln π̂k ,

where Lk 1 = (x − μ̂k )D̂−1
k (x − μ̂k ) and Lk 2 = 1T V̂k 1. To im-

prove the estimates of the discriminant score, D̂D
k (x), is then

equivalent to improve the estimators Lk 1 and Lk 2, given that
the prior probabilities π̂k s stay the same.

Consider the following regularized covariance matrix for V̂k ,

Ṽ t
k (αk ) = (1 − αk )V̂ t

k + αk ln
(
hνk ,p (t)σ̂2t

k , pool

)
Ip , (7)

where νk = nk − 1, Ṽ t
k (αk ) = diag(ln σ̃2t

k 1, . . . , ln σ̃2t
k p ), V̂ t

k =
diag(ln σ̂2t

k 1, . . . , ln σ̂2t
k p ), σ̂2t

k , pool =
∏p

j=1(σ̂
2t
k j )

1/p , and I p is the
identity matrix of size p. Then it is easy to see that

σ̃−2
k j (αk ) =

(
hνk ,p (−1)σ̂−2

k , pool

)α k
(
hνk ,1(−1)σ̂−2

k j

)1−α k
,

which reduces to (5), if we estimate 1/σ2
k j directly by σ̃−2

k j ,
with t = −1. As in Friedman (1989), we now propose a regu-
larized discrimination, called RSDDA, by taking the following
regularization for the matrix Ṽ t

k . Specifically, we estimate

V̆ t
k (λ, α) = (1 − λ)Ṽ t

k (αk ) + λṼ t (αpool ), for t > −ν/2, (8)

where α = (αk , αpool ), Ṽ t (αpool ) = (1 − αpool )V̂ t + αpool ×
ln(hν,p (t)σ̂2t

pool )Ip with V̂ t = diag(ln σ̂2t
1 , . . . , ln σ̂2t

p ). The
regularization parameter λ takes value within [0, 1], with λ
= 0 giving rise to SDQDA and λ = 1 to SDLDA. It is also
interesting to see that (8) is equivalent to estimating σ2t

k j by

σ̆2t
k j (λ, α) =

{
σ̃2t

k j (αk )
}1−λ {

σ̃2t
j (αpool )

}λ

=
{(

hνk ,p (t)σ̂2t
k ,p oo l

)α k
(
hνk ,1(t)σ̂2t

k j

)1−α k
}1−λ

×
{(

hν,p (t)σ̂2t
pool

)α pool
(
hν,1(t)σ̂2t

j

)1−α pool
}λ

.

As mentioned in Section 3.2, in what follows we focus only
on t = −1 and we refer to RSDDA as RSDDA (t = −1).

And correspondingly, we replace D̂t
k in Lk 1 by D̆t

k =
diag(σ̆−2

k 1 (λ, α), . . . , σ̆−2
k p (λ, α)).

RSDDA provides a fairly rich class of regularization alter-
natives. The following four special cases define well-known
classification rules:

i) (α1 = 0 , . . . , αK = 0, αpool = 0, λ = 0) represents
DQDA;

ii) (α1 = 1 , . . . , αK = 1, αpool = 1, λ = 0) represents
weighted nearest-means classifier;

iii) (α1 = 0 , . . . , αK = 0, αpool = 0, λ = 1) represents
DLDA;

iv) (α1 = 1 , . . . , αK = 1, αpool = 1, λ = 1) represents
the nearest-means classifier.

In addition, keeping all the αs equal to 0 and varying λ gives
the down-weighted nearest-means classifier, with no weight at
λ = 1. While keeping λ = 0 and varying αk leads to SDQDA
and keeping λ = 1 and varying αpool leads to SDLDA.

Note that the values of αs and λ are not likely to be known
in advance, and usually need to be estimated from the training
set. In practice, there are two possible choices for estimating
α and λ:

Approach 1. Estimate αk and αpool by α∗
k and α∗

pool , respec-
tively as in Tong and Wang (2007), and use a cross-validation
or bootstrapping method to estimate λ within [0, 1] through
a grid search.

Approach 2. Use a cross-validation or bootstrapping method
to choose the K + 2 parameters for the K-class discrimination
problem, (α1 , . . . , αK , αpool , λ) through a grid search in the
(K+2)-dimensional space [0, 1]K+2. Due to high-dimensional
search, this is difficult given the computational load.

In this article, we take Approach 1 since it is computation-
ally less expensive.

3. Simulation Studies
3.1 Simulation Design
In this section we describe the design of our simulations to
assess the performance of the proposed shrinkage-based di-
agonal discriminant rules. We consider both misclassification
rates and the accuracy of the proposed shrinkage-based dis-
criminant scores.

First, we examine the misclassification rates. We will in-
vestigate how our new methods work in a simulation study.
Three different simulation setups were devised to investigate
the behavior of the proposed SDQDA, SDLDA, and RSDDA
in a controlled manner. We chose SVM and k-nn, two well-
known classification schemes for comparison. Four different
kernels for SVM were chosen in our analysis: radial basis, lin-
ear, polynomial, and sigmoid. For k-nn, we also tried k = 1,
3, and 5. Grid search was performed to identify the degree
of regularization, our λ of equation (12) was equally spaced
between 0 and 1 with a 0.01 step size.

In Setup (A), we consider two classes of multivariate nor-
mal distributions: N p (μ1, Σ) and N p (μ2, Σ). All components
of μ1 are 0 and for μ2 are 0.5. The covariance is of indepen-
dent structure with Σ = I p . We simulated data with three
different dimensions of p : p = 30, 50, 100 and 300. Setup (B)



Shrinkage-based Diagonal Discriminant Analysis 1025

is basically the same as Setup (A) except that this time μ2 is
equal to 1, i.e., the two classes have better separations.

Misclassification rates were calculated as follows: for each
simulation, a training set of size n was generated using the
setups described above, and a validation set of size 2n was
generated with the identical setup in order to assess the error
rate. The mean error rates for each method were obtained by
running 500 simulations and taking an average over them. For
each setup, we generated training sets of n = 4, 5, 8, 10, and
15 for the respective validation set of size 2n.

Setup (C) considers a more realistic covariance matrix
structure. Let us consider the case like (A) where μ1 are 0
and μ2 are 0.5. This time the covariance matrix Σ is a block-
diagonal matrix of size 2500 by 2500 with each of the 50 by
50 diagonal blocks Σρ alternating in sign, and the rest of the
matrix is zero, where

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σρ 0 . . . . . . . . .
...

0 Σ−ρ 0
. . .

. . .
...

... 0 Σρ 0
. . .

...
...

. . . 0 Σ−ρ 0
...

...
. . .

. . . 0 Σρ

...

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2500×2500

,

Σρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ . . . ρ48 ρ49

ρ 1
. . . . . . ρ48

...
. . .

. . .
. . .

...

ρ48 . . .
. . . 1 ρ

ρ49 ρ48 . . . ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

50×50

.

This is a similar setup as the one in Guo, Hastie, and
Tibshirani (2007) except that we took a smaller covariance
matrix to ease the memory and computational load. Since
having 50 genes in a pathway is reasonable, the block matrix
of size 50 × 50 was chosen. Matrices with an autocorrelation
of |ρ| = 0.5, 0.7, 0.8, and 0.9 were chosen for Setup (C). Mis-
classification rates were calculated the same way as in the
first two setups, except that we first performed a gene selec-
tion procedure. The selection of the top genes of size 30, 50,
and 100 was done according to the ratio of between-group to
within group sums of squares (Dudoit et al., 2002). Specifi-
cally, the ratio for gene j is:

BSS (j)
WSS (j)

=

∑
i

∑
k

I(yi = k)(x̄k j − x̄∗j )2

∑
i

∑
k

I(yi = k)(xij − x̄k j )2
. (9)

Second, we examine the accuracy of the estimation. We
compare the mean squared errors (MSE) from the simulated
data for d̂D

k , d̃D
k , and d̃−D

k for both DLDA and DQDA using
the setups we have described above.
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Figure 1. A comparison between the original DLDA, SVM,
k-nn, and the newly proposed RSDDA for simulation setup
(A). This plot investigates the effect of number of samples in
each class on the improvement RSDDA over other methods.
It shows a general pattern for other setups that RSDDA does
better than all the other existing methods. The difference is
more evident for smaller sample sizes, i.e., less than 8.

3.2 Simulation Results
There is no clear pattern as to which of the variants of SVM
and k-nn performed better than others. Therefore, we have
decided to keep the defaults in the following figures and tables.
See Figure 1 for a comparison between the original DLDA,
SVM, k-nn, and our RSDDA for Setup (A) with p = 50. In
this simple setup, we see that RSDDA performs better than
both SVM and k-nn. RSDDA shows mean misclassification
errors that are comparable to the shrinkage-based method, see
Table 1 for sample size 5. The original DLDA is close to SVM
and k-nn in a majority of the scenarios. But the shrinkage-
based and regularization discrimination methods are better
and in a league of their own. This result is more evident when
the ratio of the number of features to the sample size gets
larger.

Table 1
A comparison of mean misclassification rates between the

original DQDA, DLDA, SVM, k-nn, and the newly proposed
classifiers for simulation Setup (A) and 10 samples (five

samples in each group)

Method 30 genes 50 genes 100 genes

DQDA 0.341 0.324 0.271
DLDA 0.242 0.202 0.116
SVM 0.247 0.194 0.089
k-nn (k = 3) 0.278 0.215 0.136
SDLDA 0.226 0.171 0.070
RSDDA 0.229 0.169 0.070
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Figure 2. A comparison between the original DLDA, SVM,
k-nn, and the newly proposed RSDDA for simulation setup
(A). This plot investigates the effect of number of genes in
each class on the improvement RSDDA over other methods.
It shows a general pattern for other setups that RSDDA does
better than all the other existing methods.

Figure 2 illustrates the effect of the number of genes on
misclassification rates for DLDA, SVM, k-nn, and RSDDA
for 10 samples (5 per group). RSDDA once again shows im-
provement over existing methods for less than 100 genes. For
300 genes, all the methods except k-nn have misclassification
rates close to zero.

In Setup (B), we see a similar trend that RSDDA �
SDLDA � DQDA/DLDA; although, this time, SVM and k-
nn’s performance is only slightly worse than SDLDA. Due to
the high degree of separation between the means of the two
groups, we only observe a tiny improvement over the tradi-
tional methods, see Web Table 3.

For Setup (C), we see that RSDDA outperforms all other
methods under this setup that more closely resembles real
microarray data, see Table 2 for the case p = 50 and |ρ| =
0.5. SDLDA follows RSDDA closely and only does slightly
worse. Although SVM and k-nn outperform both DQDA and

Table 2
A comparison of mean misclassification rates between the

original DQDA, DLDA, SVM, k-nn, and the newly proposed
RSDDA for simulation Setup (C), ρ = 0.5, 10 samples

(5 samples in each group)

Method 30 genes 50 genes 100 genes

DQDA 0.236 0.177 0.137
DLDA 0.139 0.089 0.035
SVM 0.131 0.074 0.027
k-nn (k = 3) 0.131 0.069 0.025
RSDDA 0.126 0.063 0.020

DLDA in the majority of cases, they do worse than the newly
proposed SDLDA and RSDDA for |ρ| � 0.7, except for one
case when SVM slightly edges out RSDDA. SVM performs
best when |ρ| is more than 0.8 with RSDDA and k-nn just
behind in those cases. For the cases of p = 30 and p = 100,
we see similar results. Overall, DLDA performs better than
DQDA. SDLDA improves upon the original DLDA and it is
in turn slightly inferior to the regularized method.

As for the accuracy of the estimated discriminant scores, we
observe that for Setups (A) and (B), the shrinkage-based esti-
mates have smaller MSEs in almost all cases than the original
DQDA and DLDA with SDQDA doing slightly better. Due to
page constraints, we have left more simulation studies regard-
ing the misclassification rates comparison and the accuracy
of the discriminant scores estimation to the Supplementary
Materials.

4. Applications to Microarray Data
In this section, we investigate the performance of the RSDDA
method on real microarray data sets. First, we compare our
methods with existing ones by subsetting a microarray data
with a large sample size to simulate small sample size training
data. Data from four different studies with small sample sizes
(� 10) in each class are chosen. Two of the microarray data
sets contain binary outcomes and two have more than two
outcomes. The details of these data sets are discussed below.

We vary the number of top genes chosen, from 10, 50, to
200 for each data set. The top genes are selected from the
training set for each cross-validation cut using the ratio of
between-group to within-group sums of squares as described
in Section 3.1. In addition, for each data set, we standardize
the expression data, i.e., the observations (arrays) have mean
0 and variance 1 across genes as described in Dudoit et al.
(2002). A grid search as done in the simulation is used to
tune the regularization parameter.

4.1 Subsetting Analysis on Microarray Data Set
A large Multiple Myeloma microarray data set (Zhan et al.,
2007) with 351 patients in the Therapy 2 group and 208 pa-
tients in the Therapy 3 group is used to conduct a subsetting
analysis. One hundred simulations are done and for each sim-
ulation we take a random sample of five or eight patients from
each group. A test set of size 203 or 200 from each group is
then used to assess the error rate. This is performed for the
top 10, 50, and 200 genes. This allows us to see how well our
newly proposed methods performed for small sample size mi-
croarray data compared with existing methods given a large
test set.

For the simulations based on subsetting the large microar-
ray data set, see Table 3. Consistent with what we have found
in the previous simulations, RSDDA and SDLDA outperform
the original DDA methods, SVM, and k-nn for the top 10, 50
and 200 in both settings with five samples and eight samples
per group. This is still true for other variants of SVM and
k-nn. We investigate the significance of improvements over
existing DLDA methods using paired t-test across the 100 in-
dependent runs. The p-values of the paired t-test to test for
a difference between the misclassification rates of DLDA and
RSDDA are all significant except one at the 0.05 level, see
Web Table 5.
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Table 3
Mean misclassification rates for a simulation of small sample
size data using a large data set. In each of the 100 simulations,
five or eight samples per group are used as the training set and

the rest, around 200 samples, are used as the test set

5 samples 8 samples
Method per group per group

Top 10
DQDA 0.3437 0.2206
DLDA 0.3114 0.2004
SVM 0.3168 0.2110
k-nn (k = 3) 0.3105 0.2096
SDLDA 0.3023 0.1956
RSDDA 0.3046 0.1965

Top 50
DQDA 0.3092 0.2009
DLDA 0.2585 0.1637
SVM 0.2726 0.1795
k-nn (k = 3) 0.2979 0.1913
SDLDA 0.2477 0.1595
RSDDA 0.2555 0.1613

Top 200
DQDA 0.2967 0.2070
DLDA 0.2481 0.1794
SVM 0.2767 0.1891
k-nn (k = 3) 0.2967 0.1885
SDLDA 0.2405 0.1756
RSDDA 0.2488 0.1760

4.2 Binary Outcome Data Sets
Apart from the subsetting analysis in the previous section,
we evaluate our methods using several other real data sets.
In order to assess the performance of the different methods,
we randomly divide the data into training sets and validation
sets. Approximately 60% of the samples are assigned to the
training set. The rest, about 40%, is used as a validation set
to assess the error rate. This process is repeated 100 times.
For every training set, gene selection is performed as outlined
in equation (13) in the simulations section.

In this section, we consider two data sets having binary
outcomes. Huttmann et al. (2006) is a leukemia study and
Dong et al. (2005) is a brain tumor study. Both studies use
the Affymetrix HGU-133a chips. The Huttmann et al. (2006)
data set contains 22,215 probe sets. It is a study consisting of
16 B-cell chronic lymphocytic leukemia patients, half of which
(i.e., eight subjects) have good prognosis and the other half
of poor prognosis. For the top 10, 50, and 200 genes, we see
that RSDDA dominates (Table 4). When we consider the top
200 genes, k-nn performs worst among all the methods. The
Dong et al. (2005) data set is a balanced design study with
nine specific tumor cells, pseudopalisading cells, and nine con-
trols, common tumor cells, in human glioblastoma. It is also
the same Affymetrix chipset as the Huttmann et al. i.e., con-
taining 22,215 probe sets. For Dong et al. (2005), we see that
RSDDA outperforms all of the other methods across different
numbers of top genes chosen. The results are summarized in
Table 4. Not only does it beat SVM and k-nn, we also see
that RSDDA is better than shrinkage-based DLDA which is

Table 4
Mean misclassification rates for two binary outcome data sets

Huttmann (2006) Dong (2005)
Method 2 classes 2 classes

Top 10
DQDA 0.243 0.198
DLDA 0.227 0.142
SVM 0.248 0.198
k-nn (k = 3) 0.235 0.170
SDLDA 0.219 0.142
RSDDA 0.208 0.135

Top 50
DQDA 0.225 0.167
DLDA 0.192 0.127
SVM 0.218 0.157
k-nn (k = 3) 0.252 0.112
SDLDA 0.180 0.117
RSDDA 0.155 0.090

Top 200
DQDA 0.197 0.132
DLDA 0.185 0.122
SVM 0.185 0.098
k-nn (k = 3) 0.253 0.208
SDLDA 0.178 0.115
RSDDA 0.137 0.077

in turn better than the original DQDA or DLDA. Note that
SVM is outperformed by the shrinkage-based methods for top
10, 50, and 200 genes. In the case of top 50 genes, k-nn beats
the original DLDA slightly, but performs worse than RSDDA.
Overall, RSDDA has smaller misclassification rates than all
the other methods.

4.3 Multiple Class Data Sets
To show how our methods perform on data sets with more
than two classes, we consider Pomeroy et al. (2002) and Ross
et al. (2000). These data sets contain four classes and eight
classes, respectively, see Table 5.

Pomeroy et al. (2002) studied the central nervous system.
The number of probe sets in the array is smaller as it is one
of the earlier Affymetrix chipsets, Hu6800. It contains four
classes, 10 medulloblastomas, 10 malignant gliomas, 10 atyp-
ical teratoid/rhabdoid tumors, and eight primitive neuroec-
todermal tumors. We can see that the RSDDA method once
again beats all of the other methods across the different num-
bers of genes selected. SVM and k-nn perform poorly when
the top 50 and 200 genes are selected.

For the NCI60 data set by Ross et al. (2000), we have eight
classes of different tumors from 59 samples with 9703 genes.
These are distributed as follows: 7 breast, 6 central nervous
system, 7 colon, 8 leukemia, 8 melanoma, 9 nonsmall cell lung
carcinoma, 6 ovarian, and 8 renal. This data set contains miss-
ing values and it is processed as Dudoit et al. suggested using
the nearest neighbor method with k = 5 to impute the miss-
ing values. We see that RSDDA is similar to the performance
of DLDA in this case, both beating SVM and k-nn when the
top 50 and 200 genes are chosen. SVM comes pretty close to
RSDDA in the top 10 genes scenario.
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Table 5
Mean misclassification rates for two multiclass data sets

Pomeroy (2002) Ross (2000)
Method 4 classes 8 classes

Top 10
DQDA 0.431 0.507
DLDA 0.383 0.439
SVM 0.399 0.433
k-nn (k = 3) 0.399 0.468
SDLDA 0.382 0.432
RSDDA 0.381 0.432

Top 50
DQDA 0.307 0.399
DLDA 0.236 0.238
SVM 0.276 0.263
k-nn (k = 3) 0.309 0.308
SDLDA 0.229 0.239
RSDDA 0.231 0.239

Top 200
DQDA 0.278 0.399
DLDA 0.239 0.247
SVM 0.288 0.268
k-nn (k = 3) 0.258 0.296
SDLDA 0.234 0.242
RSDDA 0.235 0.242

5. Discussion
Microarrays have become a standard tool for biomedical stud-
ies. However, the analysis of microarray data still presents
statistical challenges as the number of genes is much larger
than the number of samples, especially with an ever increasing
number of genomic features that can be put on an array, e.g.,
tiling arrays. Due to cost and in some cases rare diseases, it is
not uncommon to see studies with fewer than 10 patients per
group. Some researchers have taken the direction of grouping
studies together known as meta-analysis (Cahan et al., 2007;
Fishel, Kaufman, and Ruppin, 2007). However, this can be
difficult as different labs utilize nonmatching gene chips and
it is not an easy task to find a good way to combine them.
More importantly, the patients from different studies may dif-
fer from each other in many aspects. In this article, we have
presented novel approaches to performing discriminant analy-
sis from microarray experiments. Our methods bring together
shrinkage and regularization to the original diagonal discrim-
inant analyses (DLDA and DQDA), which are known to do
well in many discrimination problems.

From the simulated and real data studies, we conclude that
RSDDA is a promising classifier for small sample size clas-
sification; it performs better than SVM and k-nn in many
situations. It improves upon the original DQDA and DLDA
through our shrinkage-based methods, SDQDA and SDLDA.
The regularization and shrinkage-based approaches intro-
duced in this study have the potential to increase the power
of discriminant analysis for which sample sizes are small and
there are a large number of features or genes in the microarray
setting. We have described the estimation procedure in Sec-
tion 2 using shrinkage estimator for 1/σ2 (t = −1), but this
can also be estimated with σ2 (t = 1). Since the two are very
similar in every instance studied, we presented the results for
t = −1 only.

Of course, it is difficult to predict what the real situation
might be for a particular data set, but RSDDA appears to be a
good choice for small sample sizes. We suggest using RSDDA
unless it becomes computationally infeasible. The good per-
formance of SDLDA on its own though is an indication that
RSDDA can do better than the original DQDA and DLDA.
We recommend using RSDDA when DQDA and DLDA per-
form unsatisfactorily as well as for situations where SVM or
k-nn is only slightly better than or comparable to DQDA or
DLDA.

There are many interesting problems that remain to be
addressed, for example, the theoretical justification on why
the shrinkage-based method would improve discrimination.
This problem can also be extended to gene selection purposes.
Moreover, simulations on unbalanced, multiclass, and nonnor-
mal data might be needed to further explore the properties
of the newly proposed RSDDA methods. We also see that
RSDDA did quite well for a small number of features, e.g.,
p = 10 in real data set. This implies that there is also an op-
portunity to apply this method in the pathway-based context
(Pang et al., 2006). Overall, the new RSDDA method can
substantially improve classification accuracy in small sample
size situations. RSDDA is not difficult to implement and the
corresponding R code can be found at the URL specified in
the Supplementary Materials.

6. Supplementary Materials
Detailed results of our simulations and real data analy-
sis are given in the Supplementary Materials, referenced
in Section 3, and Web Table referenced in Sections 3 and
4 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org. Our
software code in R is available from the following website
http://bioinformatics.med.yale.edu/rsdda/rsdda.htm.

Acknowledgements

This work was supported in part by the National Institutes
of Health (NIH) grants R01 GM59507, N01 HV28286, P30
DA018343, and U24 NS051869. The majority of the compu-
tation was done through the Yale University Biomedical High
Performance Computing Center that is supported by the NIH
grant RR19895. We thank Matthew Holford for proofreading
the paper. We also thank the associate editor and two referees
for their comments and suggestions which helped improve the
presentation of our work substantially.

References

Anderson, T. W. (1958). An Introduction to Multivariate Analysis. New
York: John Wiley.

Barrier, A., Roser, F., Boelle, P., Franc, B., Tse, C., Brault, D., Lacaine,
F., Houry, S., Callard, P., Penna, C., Debuire, B., Flahault, A.,
Dudoit, S., and Lemoine, A. (2007). Prognosis of stage II colon
cancer by non-neoplastic mucosa gene expression profiling. Onco-
gene 26, 2642–2648.

Bickel, P. J. and Levina, E. (2004). Some theory of Fisher’s linear dis-
criminant function, ‘naive Bayes’, and some alternatives when
there are many more variables than observations. Bernoulli 10,
989–1010.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
Cahan, P., Rovegno, F., Mooney, D., Newman, J. C., St Laurent, G.,

and McCaffrey, T. A. (2007). Meta-analysis of microarray results:



Shrinkage-based Diagonal Discriminant Analysis 1029

Challenges, opportunities, and recommendations for standardiza-
tion. Gene 401, 12–18.

Cui, X., Hwang, J. T., Qiu, J., Blades, N. J., and Churchill, G. A.
(2005). Improved statistical tests for differential gene expression
by shrinking variance components estimates. Biostatistics 6, 59–
75.

Dong, S., Nutt, C. L., Betensky, R. A., Stemmer-Rachamimov, A. O.,
Denko, N. C., Ligon, K. L., Rowitch, D. H., and Louis, D. N.
(2005). Histology-based expression profiling yields novel prognos-
tic markers in human glioblastoma. Journal of Neuropathology
and Experimental Neurology 64, 948–955.

Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of dis-
crimination methods for the classification of tumors using gene
expression data. Journal of the American Statistical Association
97, 77–87.

Fishel, I., Kaufman, A., and Ruppin, E. (2007). Meta-analysis of gene
expression data: A predictor-based approach. Bioinformatics 23,
1599–1606.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of
the American Statistical Association 84, 165–175.

Ghosh, D. (2003). Penalized discriminant methods for the classifica-
tion of tumors from gene expression data. Biometrics 59, 992–
1000.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri,
M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular
classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286, 531–537.

Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear dis-
criminant analysis and its application in microarrays. Biostatis-
tics 8, 86–100.

Huang, D. S. and Zheng, C. H. (2006). Independent component
analysis-based penalized discriminant method for tumor classi-
fication using gene expression data. Bioinformatics 22, 1855–
1862.

Huttmann, A., Klein-Hitpass, L., Thomale, J., Deenen, R., Carpin-
teiro, A., Nückel, H., Ebeling, P., Führer, A., Edelmann, J., Sell-
mann, L., Dührsen, U., and Dürig, J. (2006). Gene expression
signatures separate B-cell chronic lymphocytic leukaemia prog-
nostic subgroups defined by ZAP-70 and CD38 expression status.
Leukemia 20, 1774–1782.

Lee, J. W., Lee, J. B., Park, M., and Song, S. H. (2005). An exten-
sive comparison of recent classification tools applied to microar-
ray data. Computational Statistics and Data Analysis 48, 869–
885.

Montaner, D., Tarraga, J., Huerta-Cepas, J., Burguet, J., Vaquer-
izas, J., Conde, L., Minguez, P., Vera, J., Mukherjee, S., Valls,
J., Pujana, M., Alloza, E., Herrero, J., Al-Shahrour, F., and

Dopazom, J. (2006). Next station in microarray data analysis:
GEPAS. Nucleic Acids Research 34, W486–W491.

Moon, H., Ahn, H., Kodell, R. L., Lin, C. J., Baek, S., and Chen,
J. J. (2006). Classification methods for the development of ge-
nomic signatures from high-dimensional data. Genome Biology
7, R121.

Pang, H., Lin, A., Holford, M., Enerson, B. E., Lu, B., Lawton, M. P.,
Floyd, E., and Zhao, H. (2006). Pathway analysis using random
forests classification and regression. Bioinformatics 22, 2028–
2036.

Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L., Angelo, M.,
McLaughlin, M., Kim, J., Goumnerova, L., Black, P., Lau, C.,
Allen, J., Zagzag, D., Olson, J., Curran, T., Wetmore, C., Biegel,
J., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky,
G., Louis, D., Mesirov, J., Lander, E., and Golub, T. (2002).
Prediction of central nervous system embryonal tumour outcome
based on gene expression. Nature 415, 436–442.

Ross, D. T., Scherf, U., Eisen, M. B., Perou, C., Rees, C., Spellman, P.,
Iyer, V., Jeffrey, S., Van de Rijn, M., Waltham, M., Pergamen-
schikov, A., Lee, J., Lashkari, D., Shalon, D., Myers, T., Wein-
stein, J., Botstein, D., and Brown, P. (2000). Systematic variation
in gene expression patterns in human cancer cell lines. Nature Ge-
netics 24, 227–235.

Shieh, G. S., Jiang, Y. C., and Shih, Y. S. (2006). Comparison of sup-
port vector machines to other classifiers using gene expression
data. Communications in Statistics: Simulation and Computation
35, 241–256.

Tong, T. and Wang, Y. (2007). Optimal shrinkage estimation of vari-
ances with applications to microarray data analysis. Journal of
the American Statistical Association 102, 113–122.

Vapnik, V. and Kotz, S. (2006). Estimation of Dependences Based on
Empirical Data. New York: Springer.

Wald, P. M. and Kronmal, R. A. (1977). Discriminant functions when
covariates are unequal and sample sizes are moderate. Biometrics
33, 479–484.

Ye, J., Li, T., Xiong, T. and Janardan, R. (2004). Using uncorrelated
discriminant analysis for tissue classification with gene expression
data. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 1, 181–190.

Zhan, F., Barlogie, B., Arzoumanian, V., Huang, Y., Williams, D.,
Hollmig, K., Pineda-Roman, M., Tricot, G., van Rhee, F., Zan-
gari, M., Dhodapkar, M., Shaughnessy, J. Jr. (2007). Gene-
expression signature of benign monoclonal gammopathy evident
in multiple myeloma is linked to good prognosis. Blood 109, 1692–
1700.

Received October 2007. Revised October 2008.
Accepted October 2008.


