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Summary. Diagonal discriminant rules have been successfully used for high-dimensional classification problems, but suffer
from the serious drawback of biased discriminant scores. In this article, we propose improved diagonal discriminant rules with
bias-corrected discriminant scores for high-dimensional classification. We show that the proposed discriminant scores dominate
the standard ones under the quadratic loss function. Analytical results on why the bias-corrected rules can potentially improve
the predication accuracy are also provided. Finally, we demonstrate the improvement of the proposed rules over the original
ones through extensive simulation studies and real case studies.
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1. Introduction
Class prediction using high-dimensional data such as microar-
rays has been recognized as an important problem since the
seminal work of Golub et al. (1999). A variety of meth-
ods have been developed and compared, including discrim-
inant analysis and its extensions (Dudoit, Fridlyand, and
Speed, 2002; Ghosh, 2003; Zhu and Hastie, 2004; Huang and
Zheng, 2006; Shen et al., 2006; Wu, 2006; Guo, Hastie, and
Tibshirani, 2007; Pang, Tong, and Zhao, 2009), random
forests (Breiman, 2001; Statnikov, Wang, and Aliferis, 2008),
support vector machines (Furey et al., 2000; Lee, Lin, and
Wahba, 2004; Vapnik and Kotz, 2006), dimension reduction
methods (Antoniadis, Lambert-Lacroix, and Leblanc, 2003;
Dai, Lieu, and Rocke, 2006), and nearest shrunken centroids
methods (Tibshirani et al., 2002, 2003; Wang and Zhu, 2007;
Dabney and Storey, 2007). Also see review papers with ex-
tensive comparison studies by Dudoit et al. (2002), Lee et al.
(2005), and Statnikov et al. (2008).

In high-dimensional microarray data classification, it is
common that the number of training samples, n, is much
smaller than the number of features examined, p. This “large
p small n” paradigm has posed numerous statistical challenges
to most classical classification methods, such as the well-
known linear discriminant analysis (LDA) and the quadratic
discriminant analysis (QDA), because the sample covariance
matrices are singular. This greatly limits the usage of both
methods in high-dimensional data classification. To overcome
the singularity problem, various approaches that rely on a di-
agonal approximation to the covariance matrices have been
proposed. This leads to the so-called diagonal discriminant

rules, which have been widely used for high-dimensional data
(Dudoit et al., 2002; Speed, 2003; Tibshirani et al., 2003;
Dettling, 2004; Ye et al., 2004; Dabney, 2005; Lee et al.,
2005; Pique-Regi, Ortega, and Asgharzadeh, 2005; Asyali
et al., 2006; Noushath, Kumar, and Shivakumara, 2006; Shieh,
Jiang, and Shih, 2006; Wang and Zhu, 2007; Natowicz et al.,
2008; Pang et al., 2009). In practice, the most commonly used
diagonal discriminant rules for high-dimensional data are the
diagonal LDA (DLDA) and the diagonal QDA (DQDA) rules
introduced by Dudoit et al. (2002). Due to the relatively small
n, the diagonal discriminant rules, which ignore the corre-
lation among features, performed remarkably well compared
with the more sophisticated methods in terms of both ac-
curacy and stability (Dudoit et al., 2002; Dettling, 2004; Lee
et al., 2005; Pang et al., 2009). In addition, DLDA and DQDA
are easy to implement and not very sensitive to the number
of predictor variables (Dudoit et al., 2002). Bickel and Levina
(2004) conducted a theoretical study of this phenomenon and
proved that diagonal discriminant rules can indeed outper-
form Fisher’s LDA when p > n.

The diagonal discriminant rules have been shown to per-
form well for high-dimensional data with small sample sizes,
but suffer from the serious drawback of biased discriminant
scores. In this article, we propose to correct the biases in the
discriminant scores of diagonal discriminant analysis. Before
we proceed, it is worth pointing out that the idea of bias cor-
rection in discriminant analysis is not entirely new (Ghurye
and Own, 1969; Moran and Murphy, 1979; McLachlan, 1992).
For instance, Moran and Murphy (1979) proposed several bias
correction methods for the plug-in discriminant scores under
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the condition that the sample size for each class, nk , is larger
than p. However, the improvement of their bias-corrected rules
is not significant (James, 1985; McLachlan, 1992), mainly
because the dominant term of the bias, p/nk , is not large.
This has, at least partially, discouraged the popularity of the
previously proposed bias-corrected discriminant rules. For mi-
croarray data, however, the ratio p/nk can be very large. As a
consequence, the commonly used discriminant rules, for exam-
ple, DQDA and DLDA, may result in low prediction accuracy,
especially when the design is fairly unbalanced.

The remainder of the article is organized as follows. In Sec-
tion 2, we introduce the notation and briefly review the di-
agonal discriminant rules. In Section 3, we derive the bias-
corrected estimators of the discriminant scores and show that
they dominate the original ones. In Section 4, we present some
analytical results on why the bias-corrected rules can poten-
tially increase the overall prediction accuracy. We then con-
duct extensive simulation studies to investigate the perfor-
mance of the proposed methods in Section 5, and apply them
to three real microarray data sets in Section 6. Finally, we
conclude the paper in Section 7 with discussions and future
directions.

2. Diagonal Discriminant Analysis
Suppose we have K distinct classes and samples from each
class follow a p-dimensional multivariate normal distribution
with mean vector μk and covariance matrix Σk , where k =
1, . . . , K . Assume we observe nk i.i.d. random samples from
the kth class, that is,

xk ,1, . . . , xk ,n k

i.i.d.∼ MV N (μk , Σk ).

The total sample size is then n =
∑K

k=1 nk . The principal goal
of discriminant analysis is to predict the class label for a new
observation, y. Let πk denote the prior probability of observ-
ing a sample from the kth class with

∑K

k=1 πk = 1. The QDA
decision rule is to assign y to class arg mink dQ

k (y), where
dQ

k (y) is the discriminant score defined as in Friedman (1989),
that is,

dQ
k (y) = (y − μk )T Σ−1

k (y − μk ) + ln |Σk | − 2 ln πk .

Minimizing dQ
k (y) over k is equivalent to maximizing the cor-

responding posterior probabilities.
In practice, the population parameters of the multivariate

normal distributions are unknown and usually are estimated
from the training data set, with μk by the sample means,
μ̂k = 1

n k

∑n k

i=1 xk ,i , and Σk by the sample covariance ma-

trices, Σ̂k = 1
n k −1

∑n k

i=1(xk ,i − μ̂k )(xk ,i − μ̂k )T . In addition,
the prior probability πk is commonly estimated by nk /n and
treated as a constant in classification problems (Friedman,
1989; Guo et al., 2007). The above estimates of parameters
lead to the following sample version of dQ

k (y):

d̂Q
k (y) = (y − μ̂k )T Σ̂−1

k (y − μ̂k ) + ln |Σ̂k | − 2 ln πk . (1)

One important special case of QDA is to assume that the
covariance matrices are all the same, that is, Σk = Σ for all
k. This leads to LDA, with the simplified discriminant score
given by

dL
k (y) = (y − μk )T Σ−1(y − μk ) − 2 ln πk .

The corresponding sample version of dL
k (y) is then

d̂L
k (y) = (y − μ̂k )T Σ̂−1(y − μ̂k ) − 2 ln πk , (2)

with the pooled sample covariance matrix estimate Σ̂ =
1

n−K

∑K

k=1(nk − 1)Σ̂k .
QDA and LDA are expected to perform well if the multi-

variate normal assumption is satisfied and good “plug-in” es-
timates of the population parameters are available (Friedman,
1989). In general, LDA is more popular than QDA, largely due
to its simplicity and robustness to the violations of the un-
derlying distribution assumption and the common covariance
matrices assumption (James, 1985). To make LDA work, we
require that n � p to ensure the nonsingularity of Σ̂. Similarly
for QDA, we require that nk � p for each class.

When p is greater than n, we may regularize the covariance
matrix estimates with generalized matrix inverse or shrinkage
to address the singularity problem. However, these estimators
are usually unstable due to the limited number of observations
(Guo et al., 2007). In 2002, Dudoit et al. proposed to use
DQDA and DLDA for classifying tumors using microarray
data. Specifically, they assumed the covariance matrices to
be diagonal by replacing the off-diagonal elements of Σ̂k or
Σ̂ with zeros. For DQDA, we have Σ̂k = diag(σ̂2

k 1, . . . , σ̂
2
k p ),

which simplifies equation (1) to

d̂Q
k (y) =

p∑
i=1

(yi − μ̂k i )2/σ̂2
k i +

p∑
i=1

ln σ̂2
k i − 2 ln πk . (3)

For DLDA, we have Σ̂ = diag(σ̂2
1 , . . . , σ̂

2
p ), which simplifies

equation (2) to

d̂L
k (y) =

p∑
i=1

(yi − μ̂k i )2/σ̂2
i − 2 ln πk . (4)

3. Bias-Corrected Diagonal Discriminant Analysis
In this section, we first show that d̂Q

k (y) and d̂L
k (y) are biased.

We then propose several bias-corrected estimators for the dis-
criminant scores and demonstrate their superiority over the
original ones. Denote equation (3) as

d̂Q
k (y) = L̂k 1 + L̂k 2 − 2 ln πk ,

where L̂k 1 =
∑p

i=1(yi − μ̂k i )2/σ̂2
k i and L̂k 2 =

∑p

i=1 ln σ̂2
k i . De-

note the true discriminant score as

dQ
k (y) = Lk 1 + Lk 2 − 2 ln πk ,

where Lk 1 =
∑p

i=1(yi − μk i )2/σ2
k i and Lk 2 =

∑p

i=1 ln σ2
k i . In

Web Appendix A, we show that the following two estimators
are unbiased for Lk 1 and Lk 2, respectively,

L̃k 1 =
nk − 3
nk − 1

L̂k 1 −
p

nk

,

L̃k 2 = L̂k 2 − p

{
Ψ

(
nk − 1

2

)
− ln

(
nk − 1

2

)}
,

where Ψ(·) is the digamma function (Abramowitz and Stegun,
1972). Based on the above two unbiased estimators, we define

d̃Q
k (y) = L̃k 1 + L̃k 2 − 2 ln πk ,
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which is a bias-corrected discriminant score of DQDA. We
refer to the corresponding rule as the bias-corrected DQDA
(BQDA).

For DLDA, we denote equation (4) as d̂L
k (y) = L̂k −

2 ln πk and the corresponding true discriminant score as
dL

k (y) = Lk − 2 ln πk , where L̂k =
∑p

i=1(yi − μ̂k i )2/σ̂2
i and

Lk =
∑p

i=1(yi − μk i )2/σ2
i . Also in Web Appendix A, we show

that the following estimator is unbiased for Lk :

L̃k =
n − K − 2

n − K
L̂k − p

nk

,

which leads to the bias-corrected DLDA (BLDA) with

d̃L
k (y) = L̃k − 2 ln πk .

Further, we have

Theorem 1. Under the quadratic loss function, we have

(i) the discriminant score of BQDA, d̃Q
k , dominates the dis-

criminant score of DQDA, d̂Q
k , when nk > 5; and

(ii) the discriminant score of BLDA, d̃L
k , dominates the dis-

criminant score of DLDA, d̂L
k , when n > K + 4.

The proof of Theorem 1 is shown in Appendix A. The maxi-
mum likelihood estimators (MLE), σ̂2

k i,ML = n k −1
n k

σ̂2
k i , are also

common for estimating σ2
k i (Guo et al., 2007). By plugging

σ̂2
k i,ML into equation (3), we obtain the discriminant score of

MLE-based DQDA (MQDA). In practice, there is usually no
clear indication between σ̂2

k i,ML and σ̂2
k i , as to which estima-

tor performs better when n is small. It is worth pointing out
that, when the bias correction technique is applied, DQDA
and MQDA lead to the same discriminant score so that we do
not need to distinguish the two methods any more. A similar
result can be established for the MLE-based DLDA (MLDA).

4. Prediction Accuracy
In this section, we compare the performance of the bias-
corrected discriminant rules with that of the original ones.
The prediction accuracy is a common measure for evalu-
ating the performance of a discriminant rule. It is defined
as the proportion of samples classified correctly in the test
set and is usually used for a balanced experimental design
(Dudoit et al., 2002). However, when the design is unbal-
anced, a classification method favoring the majority class
may have a high prediction accuracy (Qiao and Liu, 2009).
There are many evaluation criteria for unbalanced designs,
for example, G-mean, F-measure, recall, class-weighted accu-
racy (CWA), among others (Chen, Liaw, and Breiman, 2004;
Cohen et al., 2006; Qiao and Liu, 2009). All of the above
performance metrics can be viewed as functions of the classi-
fication matrix formed by the probabilities Pr(True Class =
i, Predicted Class = j). Each matrix has its own advantages
and limitations (Chen et al., 2004; Cohen et al., 2006). In
this article, we apply the CWA criterion (Cohen et al., 2006),
which is defined as

CW A =
K∑

k=1

wk ak ,

where ak are the per-class predication accuracies and wk are
nonnegative weights with

∑K

k=1 wk = 1. For simplicity, we as-
sume equal weights, that is, wk = 1/K , and set the prior

probability πk = 1/K as well. Note that CWA is equivalent
to one of the criteria proposed by Qiao and Liu (2009), which
they referred to as the “mean within group error with one-step
fixed weights” criterion.

In what follows, we establish some analytical results for
the bias-corrected rules. For simplicity of exposition, we con-
sider the binary classification (K = 2) with the following three
assumptions:

(i) the variances are known and equal (without loss of gen-
erality, we assume that σ2

k i = 1);
(ii) n1 < n2, that is, the class 1 is the minority class and the

class 2 is the majority class; and
(iii) the covariance matrix of the test data is diagonal.

Under the above assumptions, we have d̂L
k =∑p

i=1 (yi − μ̂k i )2 for DLDA, and d̃L
k = d̂L

k − p/nk for BLDA.
Denote D̂ = d̂L

1 − d̂L
2 . For DLDA, we assign y to the minority

class if D̂ < 0; otherwise, we assign it to the majority class.
For BLDA, the decision boundary is U = p( 1

n 1
− 1

n 2
) instead

of a usual zero. It is easy to see that the expected change of
prediction accuracy caused by the bias correction, PrD̂ ,k , is
given as

PrD̂ ,k = Pr(0 < D̂ < U |y ∈ class )k, k = 1, 2.

Note that for an unbalanced design, the prediction accuracy
of the minority class always increases and that for the major-
ity class always decreases because of the bias correction. The
overall CWA change, PrΔ, is given as

PrΔ = PrD̂ ,1 − PrD̂ ,2, (5)

where a positive PrΔ indicates an overall improvement on the
classification performance.

By the Lindeberg condition of the central limit theorem
(Lehmann, 1998), it can be shown that when p → ∞, D̂ con-
verges in distribution to N (−δ + U, 4b1δ + c) if y is from class
1, and D̂ converges in distribution to N (δ + U, 4b2δ + c) if y is
from class 2, where δ =

∑p

i=1(μ1i − μ2i )2, b1 = 1 + 1/n2, b2 =
1 + 1/n1, and c = 2p{(2n1 + 1)/n2

1 + (2n2 + 1)/n2
2}. Note that

δ is the squared Euclidean distance between two samples. Fur-
ther, we have

Theorem 2. Under Assumptions (i)–(iii), the overall
CWA change, PrΔ, is positive when 0 < δ/p � 2 and p → ∞.

The proof of Theorem 2 is shown in Appendix B. Theo-
rem 2 suggests that the bias correction improves the over-
all predication accuracy as p goes large and δ is bounded
by 2p. It is also worth mentioning that the proposed de-
cision boundary U is asymptotically optimal under certain
situations. By the definition of PrΔ, it is easy to see that
the optimal decision boundary, Uopt , can be achieved at
the intersection of the two limiting normal distributions,
N (−δ + U, 4b1δ + c) and N (δ + U, 4b2δ + c). When δ is not
large and/or the sample sizes, n1 and n2, are at least mod-
erately large, we have 4b1δ + c ≈ 4b2δ + c and thus Uopt ≈ U .
In general, as 4b1δ + c < 4b2δ + c, Uop t is slightly larger than
U when δ is close to zero, and vice versa when δ is large.
Note that Uopt depends on the quantity of δ so it is unknown
in practice. Simulation study (not shown) indicates that the
discriminant rules based on U and an estimated Ûop t perform
similarly when an accurate estimate of the unknown δ can be
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obtained. While if a less-accurate estimate of δ is employed,
the performance of Ûop t can be unsatisfactory. In addition,
Uopt is obtained only in the asymptotic sense so it may not
work well when p is small. For the above reasons, in what
follows we will only focus on the decision boundary U but not
Ûop t . Note that the cross-validation (CV) method can be used
as an alternative to select the decision boundary. Simulation
study (not shown) indicates that it performs similarly as U
when the sample size of each class is large. While for a small
n1 or n2, CV is unstable and consequently the performance
of BLDA is not satisfactory, as indicated in Braga-Neto and
Dougherty (2004), Fu et al. (2005), and Isaksson et al. (2008).

When p is small, the overall change of CWA is given as

PrΔ =
∫ +∞

−∞
PrD̂ |yf1(y)dy −

∫ +∞

−∞
PrD̂ |yf2(y)dy, (6)

where ft (y) =
∏p

i=1 φ(yi , μti , σ
2
t i ) is the joint density function,

and PrD̂ |y is the expected change of prediction accuracy given
an observation y. One way to obtain PrΔ in equation (6) is to
use the numerical integration approach as shown in Appen-
dix C.

5. Simulation Studies
In this section, we conduct extensive simulation studies to
assess the performance of different discriminant rules under
various settings. We explain in detail both simulation de-
signs and results of the simple binary classification, as well
as some more complicated scenarios such as the multiple
classification.

5.1 Simulation Design
We draw nk training samples, xk ,i , and mk test samples,
yk ,j , from a G-dimensional multivariate normal distribu-
tion, xk ,i , yk ,j

i.i.d.∼ MV N (μk , Σk ), where i = 1, . . . , nk and j =
1, . . . , mk . Usually G is large for microarray studies. For bi-
nary classification problem, we have K = 2. Note that we only
choose p genes from all G genes for classification based on cer-
tain feature selection criteria.

We first evaluate CWA directly under different simulation
settings with the assumptions stated in Section 4. We as-
sume that all p genes are informative and the differences
of the two group means are the same across all p genes.
Note that if we increase p, the overall strength of the signal,
δ =

∑p

i=1(μ1i − μ2i )2, becomes stronger and eventually both
the bias-corrected methods and the biased methods will clas-
sify samples with 100% accuracy. To visualize the comparison
results for different p values, we fix δ as a constant. For large
p, we compute the change of CWA directly from equation
(5); otherwise, CWA is approximated by integrating equation
(6) numerically. In both cases, we assume genes are indepen-
dent from each other with variances equal to one. When the
genes are dependent with unknown variances, we go through
the regular classification procedure to estimate the prediction
accuracy as outlined below.

Next, we consider simulation settings that are closer to real
data structures where genes are correlated to each other. We
set the first g genes are informative, for example, μ1i = 0.5
and μ2i = 0, i = 1, . . . , g, and the rest of (G − g) genes have
μ1i = μ2i = 0, i = g + 1, . . . , G. Note that no feature selection
procedure is involved here yet. We select the first p genes for

classification. If p � g, all p genes are informative. If p > g, all
of the g informative genes and (p − g) noninformative genes
are selected. Usually we let g 	 G due to the fact that most
of the genes are not differentially expressed in microarray ex-
periments, for example, G = 10,000 and g = 50. Similarly as
in Guo et al. (2007), we use block diagonal correlation struc-
tures to model the dependence among genes. Specifically, we
partition the G genes into H equal-sized blocks with H = G/g.
We have

Σk =

⎛
⎜⎜⎜⎜⎜⎝

Σk ,1 0 · · · 0

0 Σk ,2 · · · 0

...
...

. . .
...

0 0 · · · Σk ,H

⎞
⎟⎟⎟⎟⎟⎠

,

where the hth block on the diagonal line is defined as

Σk ,h =

⎛
⎜⎜⎜⎜⎜⎝

σ2
k ,h ,1,1 σ2

k ,h ,1,2 · · · σ2
k ,h ,1,g

σ2
k ,h ,2,1 σ2

k ,h ,2,2 · · · σ2
k ,h ,2,g

...
...

. . .
...

σ2
k ,h ,g ,1 σ2

k ,h ,g ,2 · · · σ2
k ,h ,g ,g

⎞
⎟⎟⎟⎟⎟⎠

,

with σ2
k ,h ,i ,j = ρ|i−j |σk ,h ,i , i σk ,h ,j,j and the predefined correla-

tion coefficient ρ. We simulate the diagonal elements σ2
k ,h ,i , i

from the uniform distribution, U(0.5, 1.5). To model the situ-
ation with equal covariance matrices between two classes, we
set Σ = Σ1 = Σ2; otherwise, we use Σ1 
= Σ2.

The simulation design of multiple classification is similar to
that of a binary classification. For simplicity, we consider the
following three-class case where the first g genes are informa-
tive with μ1i = 0.5, μ2i = 0, and μ3i = −0.5, i = 1, . . . , g. We
choose the two-fold cross-validation scheme to estimate CWA.
Specifically for each simulation, we randomly take two-thirds
of the samples from each class as the training set and the
rest as the test set, that is, nk /(mk + nk ) = 2/3. The av-
erage CWA is computed by repeating this random division
and testing procedure 100 times for each simulation and then
averaging for 1000 simulations.

5.2 Simulation Results
Results that assess the CWA change assuming constant vari-
ances are shown in Figure 1. The sum of squared mean vector
difference is set as δ = 10 (except for the lower right panel of
Figure 1). The positive PrΔ values, that is, overall changes
of CWA, indicate that the bias-corrected discriminant rules
outperform the original ones (the top panels). The PrΔ val-
ues computed from equation (5) are very close to those from
equation (6) even when p is as small as 10. In the upper
left panel, we fix the degree of unbalance, n2/n1 = 5, and
vary p. We observe that as p increases, PrΔ increases sharply
first and then decreases slowly after reaching its maximum
value. The tail becomes heavier when n1 increases, that is,
the improvement always keeps for large sample sizes. For
example, with n1 = 20 and n2 = 100, we still have about 5%
gain of CWA at p = 100 and the maximum 20.6% is reached
at p = 874. In the upper right panel, n2 is fixed at 40. When
n1 changes from 4 to 40, PrΔ decreases as n1 increases for
small p. For large p, P rΔ increases first then decreases as n1
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Figure 1. PrΔ as functions of different factors (p, n1, and δ). The solid lines represent results using equation (5). The symbols
on the lines represent results using equation (6). The dashed lines represent PrΔ = 0. We set n2/n1 = 5 except for the upper
right panel and δ = 10 except for the lower right panel. Upper left: the results for different values of n1 are shown. Upper
right: the results for different values of p are shown (n2 = 40). Lower left: use equation (6) for small p(n1 = 4). Lower right:
use equation (5) for large δ (n1 = 4 and p = 50).

increases. For example, when p = 500, the maximum improve-
ment of 19.4% can be obtained at n1 = 10. The bottom panels
show that we may have PrΔ < 0 under certain conditions. The
lower left panel shows that PrΔ is negative when p < 5 and
increases with p (n1 = 4 and n2 = 20). The lower right panel
shows that PrΔ becomes negative when δ > 133.9 and reaches
a minimum at δ = 142.9(n1 = 4, n2 = 20, and p = 50).

The bias-corrected discriminant scores do not always out-
perform the original ones (Section 4). Under certain condi-
tions, we may have PrΔ < 0 (Figure 1, the bottom panels).
This implies that either (i) a very small number of features
is selected, or (ii) a strong signal exists in differentiating the
two classes. In practice, a classifier with more than 50 fea-
tures is often used for classification in microarray analysis
(Dudoit et al., 2002; Lee et al., 2005; Golub et al., 1999). Sim-
ulation studies suggest PrΔ increases rapidly as p increases
(Figure 1, the left panels). When the signal is strong, for
example, 2p = 100 < δ, both bias-corrected methods and the
original methods work quite well. Simulation studies suggest
that PrΔ ≈ 0 (Figure 1, the lower right panel).

For the more general simulation settings, we set ρ =
0.3, H = 200, and G = 10,000. We use the equal diagonal

covariance matrix to generate samples for both classes. The
left column of Figure 2 shows the simulation results for
p = 100, n2 = 40, and n1 varying from 4 to 40. We exam-
ine the accuracy of the proposed bias-corrected discriminant
scores in terms of the squared biases (Bias2) and the mean
squared errors (MSE) in logarithmic scales for the top and
middle panels. We observe that both BQDA and BLDA have
smaller Bias2 and MSE compared with their biased counter-
parts. When n1 increases, the difference between unbiased and
biased discriminant rules decreases. The bottom panel shows
the corresponding results of CWA. Similar to those in Fig-
ure 1, the improved prediction accuracy of bias-corrected dis-
criminant scores is consistent; larger improvement happens
at smaller sample sizes with higher degrees of unbalance, and
becomes indistinguishable for the balanced data.

The right column of Figure 2 displays the effect of p on the
estimation and prediction accuracy (n1 = 20 and n2 = 100).
It is clear that the bias-corrected discriminant scores provide
more accurate and more stable estimates than the original
ones consistently (the top and middle panels). The bottom
panel shows that the bias-corrected scores have slight im-
provement when p is small, for example, CWA increases about
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Figure 2. Comparison between bias-corrected discriminant rules and the original ones. Left column: n2 = 40 and p = 100.
Right column: n1 = 20 and n2 = 100. Top row: Bias2 in a logarithmic scale. Middle row: MSE in a logarithmic scale. Bottom
row: CWA.

1% for BQDA versus DQDA when p = 10. The improvement
becomes more evident when p increases, for example, CWA
increases 6.9% for BQDA versus DQDA at p = 100. CWA of
all methods peak around p = g. As more noninformative genes

are included in the classifier, the class predication will tend
to be random with a final CWA at 50%. However, we observe
that even for such situations the bias-corrected discriminant
rules still outperform the biased ones.
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For multiple classification, we consider three sets of designs:
(1) keep n1 = n3; (2) keep n2 = n3; (3) keep n2/n3 = 1/2. For
all settings, we vary n1 and n2 the same way as in the bi-
nary classification settings. In the left columns of Web Fig-
ures 1–19, n1 varies from 4 to 40 with n2 = 40 and p = 100.
In the right columns, p varies from 10 to 1000 with sample
sizes fixed. We observe similar patterns as in binary classifi-
cation simulation studies. For the results of using unequal co-
variance matrices and MLE-based discriminant rules (MLDA
and MQDA), see Web Figures. As in Guo et al. (2007), we
also conduct simulations with a feature selection procedure
(Section 6) and incorporate different degrees of correlations,
for example, ρ = 0.5 or 0.7. The comparisons also have similar
patterns as shown for binary classifications (see Web Figures).
As the simulation results suggest, the improved performance
of the bias-corrected discriminant rules over the original ones
is evident for unbalanced classification analyses, especially
when the degree of unbalance, for example, the ratio n2/n1,
is far from 1.

6. Case Studies
In this section, we apply the proposed bias-corrected meth-
ods to three real microarray data sets and compare them
with several other popular classification methods, including
the original diagonal discriminant analysis (DQDA, DLDA,
MQDA, and MLDA), support vector machines (SVM), and k-
nearest neighbors (kNN). SVM is a supervised machine learn-
ing method that aims to find a separating hyperplane into
the input space that maximizes the margin between classes
(Boser, Guyon, and Vapnik, 1992). It is one commonly used
classification method for high-dimensional data with small
sample sizes. See for example in Ye et al. (2004), Lee et al.
(2005), and Shieh et al. (2006). kNN is a simple algorithm
that classifies a sample by the majority voting of its neigh-
bors. This nonparametric classification method is widely used
in discriminant analysis and works well in many studies (Du-
doit et al., 2002; Lee et al., 2005). In this article, we use the
radial basis kernel for SVM and take the three nearest neigh-
bors in Euclidean distance for kNN.

For the binary classification, we first analyze the B-cell lym-
phoma (BCL) data set in Shipp et al. (2002). The authors
applied the weighted voting classification algorithm to differ-
entiate diffuse large B-cell lymphoma (DLBCL) from follicu-
lar lymphoma (FL), a related germinal centers BCL. The gene
expression data based on oligonucleotide microarray are avail-
able for 58 DLBCL and 19 FL pretreatment biopsy samples
with 6817 genes. Although DLBCL and FL have different re-
sponses to cancer therapy, they share similar morphologic and
clinical features over time. The authors showed that the two
types of tumors may be distinguished by using their molecu-
lar markers. The second data set studied embryonal tumor of
central nervous system (CNS), about which little is known bi-
ologically, but is believed to have heterogeneous pathogenesis
(Pomeroy et al., 2002). The authors investigated the molec-
ular heterogeneity of the most common brain tumor type,
medulloblastomas, including primarily the desmoplastic sub-
class and the classic subclass. The desmoplastic subclass is of-
ten seen with a high frequency with Gorlin’s syndrome. They
analyzed nine desmoplastic samples and 25 classic samples
with oligonucleotide microarrays of 6817 genes. The results

suggested that the Sonic Hedgehog (SHH) signaling pathway
is involved in the pathogenesis of desmoplastic medulloblas-
toma. In the same study, the authors also investigated the
problem of distinguishing multiple types of embryonal CNS
tumors at gene expression level. In the original data set, there
are 60 medulloblastomas, 10 malignant gliomas, 10 AT/RT
(5 CNS, 5 renal-extrarenal), 6 supratentorial PNETs, and 4
normal cerebellums. We exclude the class of normal samples
in the study as BQDA requires a minimum of four training
samples and one test sample for each class.

All data sets with raw intensity values can be down-
loaded from the Broad institute website (http://www.broad.
mit.edu) and are preprocessed with the standard mi-
croarray data preprocessing R package from Bioconductor
(http://www.bioconductor.org). We normalize all of the
data sets with robust multichip average (RMA) as described
in Irizarry et al. (2003). The array control probe sets are re-
moved from analysis after normalization. As in Dudoit et al.
(2002), we perform a simple gene selection procedure using
the ratios of the between-groups sum of squares (BSS) to
the within-groups sum of squares (WSS) for the training set.
Specifically, for the jth gene, the ratio is

BSS(j)
W SS(j)

=

K∑
k=1

n k∑
i=1

(x̄k .j − x̄. .j )2

K∑
k=1

n k∑
i=1

(xk ij − x̄. .j )2

,

where x̄. .j is the averaged expression values across all samples
and x̄k .j is that across samples belonging to the kth class. We
select the top p genes with the largest BSS/W SS ratios for
classification. Similar to the simulation studies in Section 5,
we randomly divide the samples of each class into the training
set and the test set. The training sample size for the smallest
class varies from 4 to n1 + m1 − 1 (we always set the first class
be the smallest one), where n1 + m1 is the total sample size for
the smallest class. For other classes, we hold the same number
of samples, m1, for testing, and use the rest for training. We
repeat this procedure 1000 times and report the average CWA
for each method.

The results for the binary classification are summarized
in Figure 3, where CWA is treated as a function of n1 with
p = 100.

It is clear that the performance of the bias-corrected rules
is consistently better than that of the original ones. It is also
interesting to see that the large improvement by the bias cor-
rection may result in the change of order of CWA. For ex-
ample, in the top right panel, when n1 = 4, BQDA performs
the best, even when SVM and kNN have higher CWA than
DQDA and MQDA. We observe similar patterns of CWA as p
varies (results not shown). Although there is little difference
between the MLE and the sample variance estimator when nk

is large, for data sets with small sample sizes, MQDA usually
has lower prediction accuracy than DQDA (the top panels)
while MLDA performs slightly better than DLDA (the bot-
tom panels).

For the multiclass classification, we show the results with
only one test sample but at a series number of selected
features p in Table 1. We observe that the bias-corrected
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Figure 3. CWA (%) as a function of n1 for the DLBCL (left) and CNS (right) data sets. The top two panels show the
comparison of QDA-based methods; the bottom two panels show the comparison of LDA-based methods. All panels include
SVM and kNN.

Table 1
CWA (%) for the multiclass CNS data set

p 10 50 100 150 200

BQDA 68.480 73.618 78.438 76.160 75.180
DQDA 63.517 68.630 69.735 69.253 69.303
MQDA 62.923 68.152 69.165 68.955 69.185
BLDA 68.643 77.082 76.040 73.807 72.655
DLDA 68.135 74.703 75.415 73.715 72.137
MLDA 68.230 74.807 75.422 73.723 72.155
SVM 63.415 71.405 74.838 74.038 72.473
kNN 61.520 61.830 62.817 63.770 63.570

The top ranked CWA values are in bold text.

discriminant rules outperform the other methods for all p val-
ues, among which BQDA performs the best when p � 100 and
BLDA performs the best when p < 100 (Table 1 with the top
ranked CWA highlighted in bold text).

7. Discussion
For high-dimensional data such as microarrays, we face the
challenge of building a reliable classifier with a limited num-
ber of samples. For instance, a typical microarray study has
expression levels for thousands of genes but less than one
hundred samples. Much smaller sample sizes (<10) are also

common in practice. Diagonal discriminant analysis has been
recommended for the high-dimensional data classification
problem with remarkably good performance (Dudoit et al.,
2002; Lee et al., 2005). However, the conventional estimators
of diagonal discriminant scores may not be reliable as they are
all biased. In this article, we proposed several bias-corrected
discriminant rules that improve the overall prediction accu-
racy in both simulation studies and real case studies. The
bias-corrected methods improve the prediction of the minor-
ity class, but sacrifice some performance for the majority class
in terms of the per-class prediction accuracy. In reality, the
minority class, for example, representing some rare disease
samples, is often of interest and may deserve more weight.
Here, we show that generally the bias-corrected methods of-
fer higher CWA than the corresponding biased ones, even with
the equal weights. The improvement may be affected by many
factors, among which the sample size of minority class, n1,
the degree of unbalance, n1/n2, and the number of features
selected, p, are the most important ones.

When the design is balanced, the bias-corrected rules per-
form similarly as the original ones, even though the bias-
corrected rules provide a better estimator of discriminant
scores. Specifically, BLDA performs exactly the same as
DLDA, and BQDA performs similarly as DQDA. For unbal-
anced designs, the change of CWA is nontrivial. As shown
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in Sections 5 and 6, the bias-corrected methods outperform
their biased counterparts under all simulation settings and
real case studies when n2/n1 > 1 and p is large. The improve-
ment is evident when the sample size of the minority class in
the training class (n1) is small. When n1 is large, the improve-
ment is still not trivial as long as the ratio of n2/n1 keeps. For
the DLBCL data set with 18 training samples in the minority
class, the overall performance improvement is still observable
with only 100 genes selected for classification. To make the
bias-corrected rules work, BQDA requires nk � 4, and BLDA
requires n � K + 2 which is less restrictive than BQDA. Most
of the publicly available microarray data sets satisfy such
requirements.

One possible future research is to propose a regularization
between BLDA and BQDA as those in Friedman (1989), Guo
et al. (2007), and Pang et al. (2009). To stabilize the vari-
ances of d̂Q

k (y) and d̂L
k (y), or equivalently to correct their

second-order biases is also of interest. Specifically, we will in-
corporate the bias correction together with the shrinkage tech-
nique in Tong and Wang (2007) and Pang et al. (2009). The
rationale behind the shrinkage estimation is to trade off the
increased bias for a possible “significant decrease” in the vari-
ance (James and Stein, 1961; Radchenko and James, 2008).
As a consequence, the good performance of the shrinkage-
based discriminant rules is mainly because of the largely
reduced variances in the corresponding discriminant scores
(Pang et al., 2009). Nevertheless, the bias terms still remain,
and more likely, the biases will be larger than that in the
original diagonal discriminant scores owing to the impact of
shrinkage. Motivated by this, we expect that to correct the
biases for the shrinkage-based discriminant rules can be of
great interest.

Finally, we reiterate that the diagonal matrix assumption
used is somewhat restrictive, so it might be necessary to drop
such condition and obtain similar results for more general
covariance matrices. Storey and Tibshirani (2001) suggested
that the clumpy dependence (i.e., the block diagonal matrix)
is a likely form of dependence in the setting of microarray data
analysis. This is also mentioned in Langaas, Lindqvist, and
Ferkingstad (2005). Inspired by this, one natural extension
is to propose the bias-corrected rules for the covariance ma-
trix Σk = diag(Σk ,1, . . . , Σk ,H ), where H is the total number of
blocks. To calculate the expectation of L̂k 1 and L̂k 2 under the
block diagonal covariance matrix, the following well-known
results can be used (Das Gupta, 1968):

E
(
Σ̂−1

k

)
=

nk − 1
nk − p − 2

E(Σ−1
k ),

E(log |Σ̂k |) = log |Σk | − p log(nk − 1) +
p∑

i=1

Ψ

(
nk − 1

2

)
,

where Σ̂k is the sample covariance matrix of class k. In addi-
tion, to avoid the singularity problem, it needs to be assumed
that each block size is not bigger than the sample size.

8. Supplementary Materials
The Web Appendix and Figures referenced in Sections 3-5 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.

Acknowledgements

The research was supported in part by NIH grant GM59507
and NSF grant DMS0714817. The authors thank Dr Xin Qi
for helpful suggestions, and Dr Joshua Sampson for a criti-
cal reading and extensive discussions of the article. Part of
the simulations were run on the Yale High Performance Com-
puting Cluster, supported by NIH grant RR19895-02. The
authors also thank the editor, the associate editor, and two
referees for their constructive comments and suggestions that
have led to a substantial improvement in the article.

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical
Functions. New York: Dover.

Antoniadis, A., Lambert-Lacroix, S., and Leblanc, F. (2003). Effective
dimension reduction methods for tumor classification using gene
expression data. Bioinformatics 19, 563–570.

Asyali, M. H., Colak, D., Demirkaya, O., and Inan, M. S. (2006). Gene
expression profile classification: A review. Current Bioinformatics
1, 55–73.

Bickel, P. J. and Levina, E. (2004). Some theory of Fisher’s linear dis-
criminant function, “naive Bayes,” and some alternatives when
there are many more variables than observations. Bernoulli 10,
989–1010.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algo-
rithm for optimal margin classifiers. In COLT ’92: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory,
144–152, Pittsburgh, Pennsylvania.

Braga-Neto, U. M. and Dougherty, E. R. (2004). Is cross-validation
valid for small-sample microarray classification? Bioinformatics
20, 374–380.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
Chan, P. (2006). Log-gamma distribution. In Encyclopedia of Statistical

Sciences, S. Kotz, C. B. Read, N. Balakrishnan, and B. Vidakovic
(eds). New York: Wiley.

Chen, C., Liaw, A., and Breiman, L. (2004). Using random forest
to learn imbalanced data. Technical Report 666, Department of
Statistics, University of California, Berkeley.

Cohen, G., Hilario, M., Sax, H., Hugonnet, S., and Geissbuhler, A.
(2006). Learning from imbalanced data in surveillance of nosoco-
mial infection. Artificial Intelligence in Medicine 37, 7–18.

Dabney, A. R. (2005). Classification of microarrays to nearest centroids.
Bioinformatics 21, 4148–4154.

Dabney, A. R. and Storey, J. D. (2007). Optimality driven nearest
centroid classification from genomic data. PLoS ONE 2, e1002.

Dai, J., Lieu, L., and Rocke, D. (2006). Dimension reduction for classi-
fication with gene expression microarray data. Statistical Appli-
cations in Genetics and Molecular Biology 5, 6.

Das Gupta, S. (1968). Some aspects of discrimination function coeffi-
cients. Sankhya 30, 387–400.

Dettling, M. (2004). Bagboosting for tumor classification with gene
expression data. Bioinformatics 20, 3583–3593.

Dudoit, S., Fridlyand, J., and Speed, T. P. (2002). Comparison of dis-
crimination methods for the classification of tumors using gene
expression data. Journal of the American Statistical Association
97, 77–87.

Durrett, R. (1996). Probability: Theory and Examples, 2nd edition.
Belmont, California: Duxbury Press.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of
the American Statistical Association 84, 165–175.

Fu, W., Dougherty, E. R., Mallick, B., and Carroll, R. J. (2005). How
many samples are needed to build a classifier: A general sequential
approach. Bioinformatics 21, 63–70.



Bias-Corrected Diagonal Discriminant Rules for High-Dimensional Classification 1105

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer,
M., and Haussler, D. (2000). Support vector machine classification
and validation of cancer tissue samples using microarray expres-
sion data. Bioinformatics 16, 906–914.

Ghosh, D. (2003). Penalized discriminant methods for the classification
of tumors from gene expression data. Biometrics 59, 992–1000.

Ghurye, S. G. and Own, I. (1969). Unbiased estimation of some mul-
tivariate probability densities and related functions. Annals of
Mathematical Statistics 40, 1261–1271.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri,
M. A., Bloomfield, C. D., and Lander, E. S. (1999). Molecular
classification of cancer: Class discovery and class prediction by
gene expression monitoring. Science 286, 531–537.

Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear dis-
criminant analysis and its application in microarrays. Biostatis-
tics 8, 86–100.

Huang, D. and Zheng, C. (2006). Independent component analysis-
based penalized discriminant method for tumor classification us-
ing gene expression data. Bioinformatics 22, 1855–1862.

Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B.,
and Speed, T. P. (2003). Summaries of affymetrix genechip probe
level data. Nucleic Acids Research 31, e15.

Isaksson, A., Wallman, M., Göransson, H., and Gustafsson, M. G.
(2008). Cross-validation and bootstrapping are unreliable in small
sample classification. Pattern Recognition Letters 29, 1960–1965.

James, M. (1985). Classification Algorithms. New York: Wiley.
James, W. and Stein, C. (1961). Estimation with quadratic loss.

Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability 1, 361–379.

Langaas, M., Lindqvist, B. H., and Ferkingstad, E. (2005). Estimating
the proportion of true null hypotheses, with application to DNA
microarray data. Journal of the Royal Statistical Society, Series
B 67, 555–572.

Lee, J. W., Lee, J. B., Park, M., and Song, S. H. (2005). An extensive
comparison of recent classification tools applied to microarray
data. Computational Statistics and Data Analysis 48, 869–885.

Lee, Y. K., Lin, Y., and Wahba, G. (2004). Multicategory support vec-
tor machines: Theory and application to the classification of mi-
croarray data and satellite radiance data. Journal of the American
Statistical Association 99, 67–81.

Lehmann, E. L. (1998). Elements of Large Sample Theory. New York:
Springer.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern
Recognition. New York: Wiley.

Moran, M. A. and Murphy, B. J. (1979). A closer look at two alternative
methods of statistical discrimination. Applied Statistics 28, 223–
232.

Natowicz, R., Incitti, R., Horta, E. G., Charles, B., Guinot, P., Yan,
K., Coutant, C., Andre, F., Pusztai, L., and Rouzier, R. (2008).
Prediction of the outcome of preoperative chemotherapy in breast
cancer using DNA probes that provide information on both com-
plete and incomplete responses. BMC Bioinformatics 9, 149.

Noushath, S., Kumar, G. H., and Shivakumara, P. (2006). Diagonal
Fisher linear discriminant analysis for efficient face recognition.
Neurocomputing 69, 1711–1716.

Pang, H., Tong, T., and Zhao, H. (2009). Shrinkage-based diagonal dis-
criminant analysis and its applications in high-dimensional data.
Biometrics 65, 1021–1029.

Pique-Regi, R., Ortega, R., and Asgharzadeh, S. (2005). Sequential
diagonal linear discriminant analysis (SeqDLDA) for microar-
ray classification and gene identification. Proceedings of the 2005
IEEE Computational Systems Bioinformatics Conference, 112–
116, Los Alamitos, California.

Pomeroy, S., Tamayo, P., Gaasenbeek, M., Sturla, L., Angelo, M.,
McLaughlin, M., Kim, J., Goumnerova, L., Black, P., Lau, C.,
Allen, J., Zagzag, D., Olson, J., Curran, T., Wetmore, C., Biegel,

J., Poggio, T., Califano, A., Stolovitzky, G., Louis, D., Mesirov,
J., Lander, E., and Golub, T. (2002). Prediction of central nervous
system embryonal tumour outcome based on gene expression. Na-
ture 415, 436–442.

Qiao, X. and Liu, Y. (2009). Adaptive weighted learning for unbalanced
multicategory classification. Biometrics 65, 159–168.

Radchenko, R. and James, G. M. (2008). Variable inclusion and shrink-
age algorithms. Journal of the American Statistical Association
103, 1304–1315.

Shen, R., Ghosh, D., Chinnaiyan, A., and Meng, Z. (2006). Eigengene-
based linear discriminant model for tumor classification using
gene expression microarray data. Bioinformatics 22, 2635–2642.

Shieh, G., Jiang, Y., and Shih, Y. S. (2006). Comparison of support
vector machines to other classifiers using gene expression data.
Communications in Statistics: Simulation and Computation 35,
241–256.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L.,
Aguiar, R. C., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus,
G. S., Ray, T. S., Koval, M. A., Last, K. W., Norton, A., Lister,
T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster, J. C.,
and Golub, T. R. (2002). Diffuse large b-cell lymphoma outcome
prediction by gene-expression profiling and supervised machine
learning. Nature Medicine 8, 68–74.

Speed, T. P. (2003). Statistical Analysis of Gene Expression Microarray
Data. London: Chapman and Hall.

Statnikov, A., Wang, L., and Aliferis, C. F. (2008). A comprehensive
comparison of random forests and support vector machines for
microarray-based cancer classification. BMC Bioinformatics 9,
319.

Storey, J. D. and Tibshirani, R. (2001). Estimating the positive false
discovery rate under dependence, with applications to DNA mi-
croarrays. Technical Report 2001–28, Department of Statistics,
Stanford University.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Di-
agnosis of multiple cancer types by shrunken centroids of gene
expression. Proceedings of the National Academy of Sciences 99,
6567–6572.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2003). Class
prediction by nearest shrunken centroids, with applications to
(DNA) microarrays. Statistical Science 18, 104–117.

Tong, T. and Wang, Y. (2007). Optimal shrinkage estimation of vari-
ances with applications to microarray data analysis. Journal of
the American Statistical Association 102, 113–122.

Vapnik, V. and Kotz, S. (2006). Estimation of Dependences Based on
Empirical Data. New York: Springer.

Wang, S. and Zhu, J. (2007). Improved centroids estimation for the
nearest shrunken centroid classifier. Bioinformatics 23, 972–979.

Wu, B. (2006). Differential gene expression detection and sample classi-
fication using penalized linear regression models. Bioinformatics
22, 472–476.

Ye, J., Li, T., Xiong, T., and Janardan, R. (2004). Using uncorrelated
discriminant analysis for tissue classification with gene expression
data. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 1, 181–190.

Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by
penalized logistic regression. Biostatistics 5, 427–443.

Received December 2008. Revised December 2009.
Accepted December 2009.

Appendix A

Proof of Theorem 1
(i) Recall that d̃Q

k is an unbiased estimator of dQ
k while d̂Q

k is
biased. To verify var(d̃Q

k ) < var(d̂Q
k ), it suffices to show
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nk − 2
nk − 1

var(L̂k 1) + cov(L̂k 1, L̂k 2) > 0. (A1)

Denote Jk =
∑p

i=1
(y i −μk i )4

σ 4
k i

, when nk > 5, we have

var(L̂k 1) =
2(nk − 1)2

(nk − 3)2(nk − 5)

×
{

Jk +
2(nk − 2)

nk

Lk 1 +
(nk − 2)

n2
k

p

}
.

For cov(L̂k 1, L̂k 2), note that ln {σ̂2
k i (nk − 1)/σ2

k i} ∼
ln χ2

n k −1 (Chan, 2006). We have

E

(
ln σ̂2

k i

σ̂2
k i

)
=

nk − 1
(nk − 3)σ2

k i

{
Ψ

(
nk − 3

2

)
− ln

(
nk − 1
2σ2

k i

)}
.

Thus

cov(L̂k 1, L̂k 2) = −2(nk − 1)
(nk − 3)2

(
Lk 1 +

p

nk

)
.

Then equation (A1) can be simplified to

Jk +
n2

k − 3nk + 8
nk (nk − 2)

Lk 1 +
nk + 4

n2
k (nk − 2)

p > 0,

which holds for any nk > 5.
(ii) The proof of (ii) is skipped since it is essentially the

same as that of (i).

Appendix B

Proof of Theorem 2
For ease of notation, denote

νt = (−1)t δ + U,

τ 2
t = 4bt δ + c.

Note that for any integers 0 < n1 < n2, we have U = p( 1
n 1

−
1

n 2
) < 2p. We establish Theorem 2 via the following two steps:

(i) When 0 < δ � U < 2p (i.e., δ − U � 0 < δ). As τ1 < τ2,
we have

PrD̂ ,1 = Φ

(
δ

τ1

)
− Φ

(
δ − U

τ1

)

> Φ

(
δ

τ2

)
− Φ

(
δ − U

τ2

)

> Φ

(
δ + U

τ2

)
− Φ

(
δ

τ2

)

= Φ

(
U − ν2

τ2

)
− Φ

(
−ν2

τ2

)

= PrD̂ ,2.

The second inequality is obtained as the standard nor-
mal density is a unimodal function and the interval
[ δ−U

τ 2
, δ

τ 2
] contains the mode. The last equality is ob-

tained by the symmetry of the standard normal density
function.

(ii) When U < δ � 2p (i.e., 0 < δ − U < δ � 2p). Denote
the length of interval [ δ−U

τ 1
, δ

τ 1
] as I1 = U/τ1, and the

length of interval [ δ
τ 2

, δ+U
τ 2

] as I2 = U/τ2. We have I1 > I2

as τ1 < τ2. Thus by the monotone decreasing property of
the N (0, 1) density on (0,∞), as long as the lower bound
of I1 is not larger than that of I2, that is, if δ−U

τ 1
� δ

τ 2
,

we can claim that Theorem 2 holds.

In what follows, we verify the condition δ−U
τ 1

� δ
τ 2

, or equiv-
alently to verify that

δ − U

δ
� τ1

τ2
. (A2)

By the condition that δ � 2p, the left-hand side of the equa-
tion (A2) is

LHS = 1 − p

δ

(
1
n1

− 1
n2

)

� 1 − 1
2

(
1
n1

− 1
n2

)

= 1 − n2 − n1

2n1n2
.

Meanwhile, by Lemmas 1 and 2 shown below, the right-hand
side of equation (A2) is

RHS =

√
τ 2

1

τ 2
2

>

√
4b1δ

4b2δ
=

√
n1n2 + n1

n1n2 + n2
> 1 − n2 − n1

2n1n2
.

Hence, equation (A2) is established and Theorem 2 holds.

Lemma 1. For any 0 < a < b, the function f (x) =
(a + x)/(b + x) is a monotone increasing function of x on
(0,∞).

Lemma 2. For any integers 0 < n1 < n2, we have√
n1n2 + n1

n1n2 + n2
� 1 − n2 − n1

2n1n2
.

Appendix C

PrΔ in equation (6)
Under the assumptions in Section 4, note that if y is given,
we can write D̂ = d̂L

1 − d̂L
2 as a linear combination of two in-

dependent noncentral chi-square random variables, both with
p degrees of freedom, i.e.,

D̂ =
1
n1

χ2
p (λ1) −

1
n2

χ2
p (λ2),

where λk =
∑p

i=1 nk (yi − μk i )2. The expected change of CWA
for any fixed observation is defined as PrD̂ |y = Pr(0 < D̂ <
U |y). One way to obtain PrD̂ |y is to use the inversion formula
of probability characteristic function (Durrett, 1996), that is,

PrD̂ |y =
1
2π

lim
T →∞

∫ T

−T

1 − e−iη U

iη
T (η)dη,

where T (η) is the characteristic function for D̂, and

T (η) =
[

n1n2

(n1 − 2iη)(n2 + 2iη)

] p
2
exp

(
iλ1η

n1 − 2iη
− iλ2η

n2 + 2iη

)
.

To compute PrΔ in equation (6), we can sample y from both
classes and integrate PrD̂ |y numerically.


