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Abstract
In social and behavioral sciences, the mediation test based on the indirect effect is an important topic. There are many
methods to assess intervening variable effects. In this paper, we focus on the difference method and the product method in
mediation models. Firstly, we analyze the regression functions in the simple mediation model, and provide an expectation-
consistent condition. We further show that the difference estimator and the product estimator are numerically equivalent
based on the least-squares regression regardless of the error distribution. Secondly, we generalize the equivalence result to
the three-path model and the multiple mediators model, and prove a general equivalence result in a class of restricted linear
mediation models. Thirdly, we investigate the empirical distributions of the indirect effect estimators in the simple mediation
model by simulations, and show that the indirect effect estimators are normally distributed as long as one multiplicand of
the product estimator is large. Finally, we introduce some popular R packages for mediation analysis and also provide some
useful suggestions on how to correctly conduct mediation analysis.
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Introduction

In many disciplines, the effect of an exposure on the out-
come variable is often mediated by an intermediate vari-
able. Mediation analysis aims to identify the direct effect
of the predictor on the outcome and the indirect effect
between the same predictor and outcome via the change in
a mediator (MacKinnon, 2008). Since the seminal paper by
Baron and Kenny (1986), mediation analysis has become
one of the most popular statistical methods in social sci-
ences. For basic information on mediation analysis, one
may refer to the recent textbooks including, for example,
Hayes (2013) and MacKinnon (2008), and VanderWeele
(2015). Empirical applications of mediation analysis have
dramatically expanded in sociology, psychology, epidemi-
ology, and medicine (Lockhart et al., 2011; Newland et al.,
2013; Ogden et al., 2010; Richiardi et al., 2013; Rucker
et al., 2011). Meanwhile, modern scientific investigations
require sophisticated models for conducting mediation anal-
ysis (Frölich & Huber, 2017; Lachowicz et al., 2018;
VanderWeele & Tchetgen Tchetgen, 2017).

One important issue in mediation studies is to derive
the statistical inference of the mediated effects, for which
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three main approaches are available in the literature. The
first approach is the causal steps approach (Baron & Kenny,
1986), which specifies a series of tests of links in a
causal chain. Some variants of this method that test three
different hypotheses have been proposed (Allison, 1995;
Kenny et al., 1998). The second approach is the difference
in coefficients approach (McGuigan & Langholtz, 1988),
which takes the difference between a regression coefficient
before and after being adjusted by the intervening variable.
The third approach is the product of coefficients approach
which involves paths in a path model (MacKinnon et al.,
1998; MacKinnon & Lockwood, 2001; Sobel, 1982). To
evaluate their performance, MacKinnon et al. (2002) gave
a summary and comparison of these existing methods. For
more simulation comparison, see, for example, MacKinnon
et al. (2004), Preacher and Hayes (2008), and Preacher and
Selig (2012).

In this paper, we focus on the total indirect effect
based on the least-squares regression. Firstly, we review
the simple mediation model and some basic inference
methods, provide an expectation-consistent condition for
the model, and prove the equivalence between the difference
and product estimators using the closed-form expressions.
Meanwhile, we introduce some popular R packages
for mediation analysis and also provide some useful
suggestions on how to correctly conduct mediation analysis.
Secondly, we prove the equivalence between the difference
and product estimators in the three-path model (Taylor
et al., 2008) and in the multiple mediators model (Daniel
et al., 2015; Taguri et al., 2018). Thirdly, we prove a
general result on the numerical equivalence between the
two estimators in a general linear mediation model with
restriction. Fourthly, we report some empirical distributions
of the indirect effect estimators by simulations, and point
out some limitations of the existing inference methods
by analyzing real data on DNA methylation. Finally, we
also call for the preregistration of all mediation analyses
prior to data collection where the model specification
should take into account practical considerations, e.g., the
mediation factors must play their roles (in time) after the
treatment is conducted, or some factors should be included
based on expert suggestions. Meanwhile, we note that
the practice of searching for significant indirect effects
in the lack of significant direct effects is essentially the
same as a data snooping problem; see, e.g., White (2000)
where the uncertainty of model searching is explicitly
incorporated.

We emphasize that the main result of this paper is
Theorem 6 in Section “General Linear Mediation Models”.
To better understand this result, we first use a simple
mediation model and two more complex linear models to
illustrate this result, and then state the general result in
Theorem 6.

Simple MediationModel

The simple mediation model is given in Fig. 1, where X is
the independent variable, Y is the dependent variable, and
M is the mediating variable that mediates the effects of X

on Y . Given the observations (Xi, Mi, Yi) for i = 1, . . . , n,
the simple mediation model consists of three regression
equations:

Yi = β0 + cXi + ε0,i , (1)

Mi = β1 + aXi + ε1,i , (2)

Yi = β2 + c′Xi + bMi + ε2,i , (3)

where c represents the total effect of X on Y , a represents
the relation between X and M , c′ represents the direct effect
of X on Y after adjusting the effect of M , and b represents
the relation between M and Y after adjusting the effect of
X.

For the simple mediation model, the mediated effect, also
called the indirect effect, can be defined in two different
forms: ab or c − c′. In general, the main goal of mediation
analysis is to test whether the null hypothesis H0 : ab = 0
or H0 : c − c′ = 0 is true. In this section, we compare the
two forms of indirect effect in the least-squares regression
framework.

Zero-Mean Error Condition for Model Consistency

Note that the regression Eqs. 1–3 are interrelated in the
simple mediation model. We substitute Eq. 2 into Eq. 3 to
obtain the following equation:

Yi = β2 + c′Xi + b(β1 + aXi + ε1,i ) + ε2,i

= (β2 + bβ1) + (c′ + ab)Xi + εi, (4)

where εi = bε1,i + ε2,i . Assume also that ε1,i and ε2,i

are zero-mean distributed, where “zero-mean” indicates

Fig. 1 Causal diagram of the simple mediation model, where X is the
independent variable, M is the mediating variable (or mediator), and
Y is the dependent variable. There is only one pathway through the
mediator M (X → M → Y ). For the regression parameters, c is the
total effect of X on Y , c′ is the direct effect of X on Y after adjusting
the effect of M , a quantifies the relation between X and M , and b

quantifies the relation between M and Y after adjusting the effect of X
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their conditional means are zero, i.e., E[ε1,i |Xi] = 0
and E[ε2,i |Xi] = 0. Then consequently, εi is also zero-
mean distributed by noting that E[εi |Xi] = bE[ε1,i |Xi] +
E[ε2,i |Xi] = 0. Further by Eqs. 1 and 4, we have

E[Yi |Xi] = β0 + cXi,

E[Yi |Xi] = (β2 + bβ1) + (c′ + ab)Xi .

This shows that c = c′ + ab. The two expressions of
E[Yi |Xi] also imply that εi in Eq. 4 is equal to ε0,i in Eq. 1.

Theorem 1 For the simple mediation model, assume that
εj,i are zero-mean distributed with E[εj,i |Xi] = 0 for j =
1, 2. Then we have the equality

ab = c − c′.

In particular, if εj,i
i.i.d.
∼ N

(
0, σ 2

j

)
for j = 1, 2, then

they satisfy the zero-mean condition, where i.i.d . is an
abbreviation of “independent and identically distributed”.
And if we further assume that ε1,i and ε2,i are independent,
then ε0,i is also normally distributed with variance σ 2

0 =
b2σ 2

1 + σ 2
2 .

Least-Squares Regression

The standard mediation analysis uses the least-squares
regression to estimate the regression parameters. Specif-
ically, by minimizing the sum of squared errors, where
arg min represents obtaining the optimal values of argu-
ments by minimizing the the sum of squared errors, we
have

(β̂0, ĉ)
T = (X̃T X̃)−1X̃T Y = arg min

β0,c

n∑
i=1

(Yi − β0 − cXi)
2, (5)

(β̂1, â)T = (X̃T X̃)−1X̃T M = arg min
β1,a

n∑
i=1

(Mi − β1 − aXi)
2, (6)

(β̂2, ĉ
′, b̂)T = (X̌T X̌)−1X̌T Y = arg min

β2,c′,b

n∑
i=1

(Yi − β2 − c′Xi − bMi)
2, (7)

where X = (X1, . . . , Xn)
T , M = (M1, . . . , Mn)

T , Y =
(Y1, . . . , Yn)

T , I = (1, . . . , 1)T , X̃ = (I, X), and X̌ =
(I, X, M). Moreover, if we assume that ε1,i

i.i.d.
∼ N

(
0, σ 2

1

)
,

ε2,i
i.i.d.
∼ N

(
0, σ 2

2

)
, and they are independent. Then the

least-squares estimators in Eqs. 5- 7 follow the normal
distributions as

ĉ ∼ N
(
c, σ 2

0 eT
2,2(X̃

T X̃)−1e2,2

)
,

â ∼ N
(
a, σ 2

1 eT
2,2(X̃

T X̃)−1e2,2

)
,

ĉ′ ∼ N
(
c′, σ 2

2 eT
2,3(X̌

T X̌)−1e2,3

)
,

b̂ ∼ N
(
b, σ 2

2 eT
3,3(X̌

T X̌)−1e3,3

)
,

where e2,2 = (0, 1)T , e2,3 = (0, 1, 0)T , e3,3 = (0, 0, 1)T ,
and σ 2

0 = b2σ 2
1 + σ 2

2 .
The above results are straightforward and hence the

proof is omitted. When the random errors are normally
distributed, it is known that the least-squares estimator is
the most efficient estimator, the minimum variance unbiased
estimator, and also the maximum likelihood estimator. In
principle, the normality of the errors is too strong for
model consistency, and the least- squares estimator does
not need the normality assumption, but only requires that
the expectations of the errors are zero. As an example, the
error distribution that is symmetric about zero satisfies the
zero-mean condition.

Equivalence Between the Difference and Product
Estimators

The indirect effect of X on Y can be estimated by two
methods: the difference of the estimated coefficients ĉ − ĉ′,
and the product of the estimated coefficients âb̂. In this
subsection, we show that the two methods provide the same
estimate in mediation analysis.

Theorem 2 In the simple mediation model, the difference
estimator is equivalent to the product estimator, i.e.

âb̂ = ĉ − ĉ′,

regardless of the error distribution.

The proof of Theorem 2 is provided in Appendix
A. This theorem shows that, no matter what the error
distribution is, the two estimators for the indirect effect
are exactly the same in the closed expression of the least-
squares estimators. The equivalence of the two estimators is
attributed to three facts: complete data, the linear equation,
and a least-squares regression. If there are missing data, or
if the model is multilevel or logistic, or if we apply the
least absolute deviation or the other loss functions, then the
equivalence between the two estimators will no longer hold,
i.e., in the logistic regression model (Eshima et al., 2001).
From the viewpoint of the collapsibility, Guo and Geng
(1995) and Guo et al. (2001) gave further discussions.

MacKinnon et al. (1995) provided the result in Theorem
1, by explicitly deriving the formulas of ab and c − c′;
we provide an alternative proof without explicit derivation.
MacKinnon et al. (1995) claimed the numerical equivalence
of âb̂ and ĉ−ĉ′ by examining some samples, but no rigorous
proof was provided; Theorem 2 fills this gap.

Inference

In mediation analysis, the main aim is to test whether the
estimated indirect effect is significantly different from zero.
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For the difference and product estimators, the test statistics
can be constructed as

zp = âb̂

σ̂p

(8)

and

zd = ĉ − ĉ′

σ̂d

, (9)

where σ̂p and σ̂d are the standard errors of the two
estimators, respectively. Since the two estimators are
equivalent, their variances should satisfy σ 2

p = σ 2
d , where

σ 2 without a hat means the variance, and with a hat
means an estimator of the variance. Under the assumption
of normality, the variance estimation is a key step for
inference. There are many works on the variance estimation.

For the product estimator, Sobel (1982) applied the
multivariate delta method and proposed an approximate
formula for the standard error as

σ̂p =
√

â2σ̂ 2
b + b̂2σ̂ 2

a ,

For the difference estimator, McGuigan and Langholtz
(1988) developed a method to study binary health measures
and proposed to estimate the standard error of ĉ − ĉ′ by

σ̂d =
√

σ̂ 2
c + σ̂ 2

c′ − 2ρ̂σ̂cσ̂c′ ,

where ρ̂ is the sample correlation between c and c′. For
more estimators of the standard error, one may refer to
MacKinnon et al. (2002). Thus the (1 − α) confidence
intervals of ab and c − c′ are

[âb̂ − z1−α/2σ̂p, âb̂ + z1−α/2σ̂p], (10)

[ĉ − ĉ′ − z1−α/2σ̂d , ĉ − ĉ′ + z1−α/2σ̂d ], (11)

respectively, where α is the specified significance level,
and z1−α/2 is the (1 − α/2) quantile of the standard
normal distribution. Usually, the variance estimators are
numerically different, and so are the inference results,
even though the same data and the same estimate of the
indirect effect are given. This motivates us to derive rigorous
statistical theory for the inference of the indirect effect.

Remark 1 Although the estimators â and b̂ are normally
distributed, the product âb̂ is not normally distributed, no
matter whether or not the two estimators are independent
(Cui et al., 2016; Nadarajah & Pogány, 2016). Due to the
equivalence of the two estimators, the distribution of the
difference between ĉ and ĉ′ is not normally distributed
either, which implies that ĉ and ĉ′ are not jointly normally
distributed.

Since the sampling distributions of zp and zd are not
normally distributed, but are skewed and leptokurtic in most
cases (Kisbu-Sakarya et al., 2014; MacKinnon et al., 2002;

MacKinnon et al., 2004; Preacher & Hayes, 2004; 2008),
the tests based on the statistics Eqs. 8 and 9 have low powers
and are often criticized in the literature. Some remedies
are proposed by MacKinnon et al. (1998), MacKinnon and
Lockwood (2001), and Shrout and Bolger (2002). In the
literature, there are many methods for inference of the
indirect effect: the method based on the correct distribution
of the product, the resampling method, the Monte Carlo
method, the method based on Bayesian credible intervals,
and the joint significance test. The distribution of the
product strategy explores the correct distribution of âb̂

rather than assumes its normality. The distribution function
of the product of two standardized normal variables are
presented in Meeker et al. (1981). Preacher and Selig (2012)
indicated:“This method performs well in simulation studies,
but until recently required recourse to tables with limited
availability and knowledge of the population values of either
a or b”. The bootstrap is a popular resampling method to
conduct inference (MacKinnon et al., 2004; Preacher &
Hayes, 2008). To improve the finite-sample performance,
other bias-corrected and bias-adjusted versions are also
provided (Hayes, 2013; MacKinnon, 2008; Preacher &
Selig, 2012). The Monte Carlo simulation is an alternative
method to the bootstrap, which directly generates sample
statistics from their joint distribution, not resampling the
original data (MacKinnon et al., 2004; Preacher & Selig,
2012). Drawbacks to the sampling method include slight
inconsistency among replications of the same experiment
with the same data due to resampling variability and no
theoretical results to guarantee their asymptotic consistency.

R Packages for Mediation Analysis

In total, there are more than thirty R packages developed
for all types of mediation models. Specifically for the basic
mediation model, the R packages include: JSmediation,
medflex, mediation, powerMediation and RMediation. In
JSmediation, Batailler et al. (2020) suggested reporting and
testing component paths. In medflex, Steen et al. (2020)
suggested running flexible mediation analysis in presence
of nonlinear relations. In mediation, Tingley et al. (2019)
implemented parametric and nonparametric mediation
analysis. In powerMediation, Qiu (2020) calculated the
minimal detectable slope for a mediator given sample size
and power, and calculated the power for testing mediation
effect. Finally in RMediation, Tofighi and MacKinnon
(2016) computed confidence intervals for a nonlinear
function of the model parameters. In addition, we note
that there are also R packages for high-dimensional data
analysis, likelihood analysis, correlated-error analysis, and
nonparametric analysis.

In practical applications, however, little attention has
been paid to the application scope of these mediation
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models and the corresponding statistical theory. Beyond the
qualified scope of these models, they are very likely to yield
invalid inference or even wrong results. This motivates us to
propose three useful suggestions for practitioners. First, one
should correctly understand the mediation models and the
corresponding statistical theory; second, one should choose
the suitable mediation model and R packages for the real
data; third, one should interpret the results obtained from the
mediation model via software, and explain the reasons why
these results are sound.

Beyond Simple MediationModel

In the previous section, we have focused on the simple
mediation model with only one mediator, in which the only
mediator transmits the influence of the independent variable
to the dependent variable. In applications, the mediation
chain with more than two paths or one mediator is also
popular (Allen & Griffeth, 2001; Kim & Cicchetti, 2010;
Nübold et al., 2015; Tein et al., 2000; Tekleab et al., 2005).
In this section, we consider two such mediation models: the
three-path mediation model (Taylor et al., 2008) and the
multiple mediators model (Preacher & Hayes, 2008), and
prove the equivalence of the two least-squares estimators for
indirect mediation effects.

Three-Path MediationModel

In a three-path mediation (or serial) model, two mediators
M1 and M2 intervene in a series between an independent
variable and a dependent variable (Taylor et al., 2008),
which is depicted as a path diagram in Fig. 2. It consists of
four regression equations:

Yi = β0 + cXi + ε0,i , (12)

M1,i = β1 + a1Xi + ε1,i , (13)

M2,i = β2 + a2Xi + dM1,i + ε2,i , (14)

Yi = β3 + c′Xi + b1M1,i + b2M2,i + ε3,i , (15)

where the coefficients can be similarly interpreted as in the
simple mediation model.

The total indirect effect, the effect passing through
all paths, is defined as the sum of the products of the
coefficients:

a1b1 + a2b2 + a1db2.

Taylor et al. (2008) indicated that:“Although it may be
possible to develop a three-path test of mediation based
on differences in coefficients, this method would likely be
cumbersome in comparison to the product-of-coefficients
test.” As a result, the difference method is not considered
in Taylor et al. (2008). In this subsection, we consider the

Fig. 2 Causal diagram of three-path (or serial) mediation model,
where X is the independent variable, M1 and M2 are two mediators,
and Y is the dependent variable. There are two pathways through one
mediator (X → M1 → Y ; X → M2 → Y ), and one pathway through
two mediators (X → M1 → M2 → Y )

indirect effect based on both the product and difference
methods.

Following the discussion in Section “Simple Mediation
Model”, we have a similar equivalence result.

Theorem 3 In the three-path mediation model, assume that
εj,i for j = 1, 2, 3 are zero-mean distributed. Then we have

(1) the parameters of the regression model satisfy the
equality

c − c′ = a1b1 + a2b2 + a1db2;
(2) the least-squares estimates of parameters satisfy the

equality

ĉ − ĉ′ = â1b̂1 + â2b̂2 + â1d̂ b̂2.

The proof of Theorem 3 is provided in Appendix B.

Multiple Mediators Model

In this subsection, we consider the general mediation model
with multiple mediators (Preacher & Hayes, 2008). For
simplicity, we consider a model with only two mediators,
with mediators M1 and M2, which can be expressed in the
form of four regression equations (Fig. 3):

Yi = β0 + cXi + ε0,i , (16)

M1,i = β1 + a1Xi + ε1,i , (17)

M2,i = β2 + a2Xi + ε2,i , (18)

Yi = β3 + c′Xi + b1M1,i + b2M2,i + ε3,i . (19)

This form of the model is a special case of the three-path
model with d in Eq. 14 equal to zero. The total indirect
effect, the effect passing through either mediator, is defined
as the sum of the products of the coefficients:

a1b1 + a2b2.
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Fig. 3 Causal diagram of parallel mediation model with two
mediators, where X is the independent variable, M1 and M2 are two
mediators, and Y is the dependent variable. There are two pathways,
each one through only one mediator (X → M1 → Y ; X → M2 → Y )

A similar equivalence relationship between the product
and difference estimators can be established.

Theorem 4 In the two mediators model, assume that εj,i

for j = 1, 2, 3 are zero-mean distributed. Then we have

(1) the parameters of the regression model satisfy the
equality

c − c′ = a1b1 + a2b2;
(2) the least-squares estimates of parameters satisfy the

equality

ĉ − ĉ′ = â1b̂1 + â2b̂2.

The proof of Theorem 4 is simpler than that of Theorem
3, and thus is omitted.

We can extend Theorem 4 to the case with k > 2
mediators. Now, the model is expressed as

Yi = β0 + cXi + ε0,i ,

Mj,i = βj + ajXi + εj,i , j = 1, · · · , k,

Yi = βk+1 + c′Xi +
∑k

j=1
bjMj,i + εk+1,i .

Corollary 5 In the multiple mediators model with k > 2
mediators, we have the estimation equality

ĉ − ĉ′ =
k∑

j=1

âj b̂j ,

where âj b̂j is the estimated indirect effect through mediator
Mj .

This corollary is a special case of the general result in the
next section.

General Linear MediationModels

There are many linear mediation models with more than
two mediators or more than two paths. A mediation graph
consists of a set V of vertices and a set E of edges that
connect some pairs of vertices (Pearl, 2009). The vertices
in mediation graphs correspond to variables including the
independent variable X, the dependent variable Y and the
mediating variables Mj , and the edges denote a certain
linear relationship between pairs of variables in linear
mediation models. A path is defined as a sequence of edges
(e.g. ((X, M1), (M1, M2), (M2, Y ))) that start from X and
end at Y , and each edge starts with the vertex ending the
preceding edge. In the general linear mediation models, we
assume all paths start from X; in other words, Mj cannot
start a path.

In this section, we consider the cases where each edge is
directed, which means that each edge in a path is an arrow
that points from the first to the second vertex of the pair.
However, the mediation graph is restricted to be acyclic, i.e.,
contains no directed cycles (e.g., X → M , M → X) and
no self-loops (M → M). Now a specific group of linear
regression equations is one-to-one to a mediation graph.

Based on the discussion in the previous sections,
we provide a theorem on the equivalence between the
difference and product estimators in the general linear
mediation model.

Theorem 6 In a linear mediation model, if

(i) the mediation graph is acyclic;
(ii) the errors are zero-mean distributed;
(iii) each Mj equation contains X as a regressor;

then the least-squares estimates of parameters satisfy the
equivalence relationship: the difference estimator equals
the sum of the product of the estimated parameters in each
path.

The assumption (iii) that each Mj equation contains X

as a regressor cannot be dropped; see the simulation in the
following Section “Empirical Distributions when X is Not a
Regressor of an M Equation” for an illustration. The proof
of Theorem 6 is provided in Appendix C.

Simulation Studies

In this section, we conduct simulations to illustrate the
empirical distributions of the indirect effect estimators. The
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first subsection consider the simple mediation model and the
second subsection considers the three-path mediation model
in Fig. 2 where the edge from X to M2 is deleted. We do
not intend to evaluate test methods under the assumption of
normal error distribution.

Empirical Distribution in a Simple MediationModel

In this simulation study, the independent variable and
error are generated from the standard normal distribution
independently. The values of ab were chosen to be zero (0),
medium (0.02, −0.02), and large (2), corresponding to the
cases where (a, b) is equal to (0, 0)/ (0.2, 0.1) , (0.02, 1)/
(−0.2, 0.1), (−2, 0.01) and (2, 1), respectively. The sample
size is 100, and the number of replications is set to be 10000
for each case.

Figure 4 shows the empirical distributions of the indirect
effect estimators in red color. For comparison, we plot the
corresponding normal distributions with the same mean
and variance as the empirical distributions. None of the
distributions are normal. However, some may approach or
approximate normality as discussed in MacKinnon et al.
(2007b) and Tofighi and MacKinnon (2011). For the
zero indirect effect with (a, b) = (0, 0), the empirical
distribution is not normally distributed, because it has a
sharper peak than the corresponding normal distribution.

For the small indirect effects with (a, b) = (0.2, 0.1)

and (−0.2, 0.1), the empirical distributions are skewed,
right-skewed for the positive effect and left-skewed for the
negative effect. For the small indirect effects with (a, b) =
(0.02, 1) and (−2, 0.01), the empirical distributions are
still normally distributed. For the large indirect effect with
(a, b) = (2, 1), the empirical distribution is also normally
distributed. The empirical distribution is asymptotically
normally distributed as long as one of the values of a and b

is large in the simple mediation model.

Empirical Distributions when X is Not a Regressor
of anM Equation

In the three-path mediation model of Fig. 2, suppose there
is no edge from X to M2. Other parameters are set as
β1 = β2 = β3 = a1 = b1 = b2 = c′ = d = 1 for
simplicity, and the errors ε1, ε2 and ε3 are independently
normal distributed with the same variance 1. The sample
sizes are set at n = 100 and 1000, and the number of
replications is set to be 10000.

The upper two graphs in Fig. 5 show the histograms
of the difference between the difference and product
estimators when n = 100 and 1000. For comparison,
we also report in the lower two graphs the histograms
of the difference between the two estimators when the

Fig. 4 The empirical
distribution (red) vs the normal
distribution (black) with the
same mean and variance as the
empirical distribution: the
upper-left, upper-right, middle-
left, middle-right, lower-left and
lower-right figures correspond
to the cases where (a, b) is
equal to (0, 0), (0.2, 0.1),
(−0.2, 0.1), (2, 1), (−2, 0.01)

and (0.02, 1), respectively. It
shows that the empirical
distribution is asymptotically
normal as long as either a or b is
far away from zero
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Fig. 5 Histograms of the
difference between the
difference and product
estimators with and without X

as a regressor: the left two
graphs and right two graphs
correspond to n = 100 and
n = 1000, respectively; the
upper two graphs and lower two
graphs correspond to a2 = 0 and
a2 �= 0, respectively

edge from X to M2 is added in and a2 is set at zero.
It shows that the two estimators with X as a regressor
are numerically equivalent, while they are not without X

as a regressor. Simulation results match the prediction of
Theorem 6. Specifically, the mean and standard error for
the difference between the two estimators are computed as
(−1.17 × 10−7, 5.29 × 10−6), (2.22 × 10−3, 7.24 × 10−2),
(1.05×10−9, 3.00×10−6) and (1.45×10−4, 2.27×10−2),
which correspond to the cases: n = 100 without X, n =
1000 and without X, n = 100 and with X, n = 1000 and
with X, respectively.

Real Data Analysis

In this section, we apply the least-squares methods to
a real data set to estimate the indirect effects (IE) of
socioeconomic status (SES) on body mass index (BMI)
that might be mediated by DNA methylation CpG sites on

chromosome 17, where SES is quantified by a scalar index
ranging from 0 to 100, and BMI is a body mass index of an
individual as in Loucks et al. (2016). To compare the two
estimators, we choose three possible continuous mediators
from DNA methylation: cg05157340, cg05156120 and
cg05157970, take SES as the exposure X, and BMI as the
outcome Y .

For the simple mediation analysis, the IEs are esti-
mated using the least- squares method in Section
“Simple Mediation Model”, the standard errors (SE) are
estimated by the formulas σ̂p and σ̂d for product and dif-
ference estimators, and the 95% confidence intervals (CI)
based on variance estimation (which are denoted by CI1)
are constructed using formulas Eqs. 10 and 11, and the
bootstrap CIs (which are denoted by CI2) are constructed
through 1000 bootstrap samples. Table 1 summarizes the
estimated IE values, SEs and the two 95% CIs.

It can be seen that the difference and product estimators
are numerically equivalent, while their SEs are different

Table 1 The indirect effects in the SES-BMI data: IE1 and IE2 are the difference and product estimators, CI1 and CI2 are the confidence intervals
based on variance estimation and the bootstrap, respectively

Estimate SE 95% CI1 95% CI2

cg05157340

IE1 –0.0056 0.0056 [-0.0166, 0.0054] [-0.0337, 0.0220]

IE2 –0.0056 0.0205 [-0.0457, 0.0345] [-0.0381, 0.0222]

cg05156120

IE1 –0.0227 0.0104 [-0.0373, -0.0080] [-0.0465, 0.0106]

IE2 –0.0227 0.0156 [-0.0532, 0.0078] [-0.0462, 0.0110]

cg05157970

IE1 –0.0922 0.0174 [-0.1264, -0.0580] [-0.1431, -0.0265]

IE2 –0.0922 0.0272 [-0.1455, -0.0388] [-0.1410, -0.0303]
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because different formulae are employed, which results
in different CIs and sometimes even different inference
conclusions, e.g., when the mediator is cg05156120, we can
reject the null that the indirect effect is zero based on CI1

of IE1 but cannot reject based on CI1 of IE2. In summary,
the same inference method (e.g., CI1) applied to the two
estimators can generate different inference conclusions,
which makes the choice of estimator (beyond the choice of
inference method) a topic deserving further exploration.

Discussions

In the literature, there are two estimation methods for the
indirect mediated effect: the difference method and the
product method. Most researchers recommend using the
product form as the measure of the indirect effect, because
it is in line with the causal interpretation of the mediation
effect (MacKinnon et al., 2007a; Pearl, 2009; Yuan &
MacKinnon, 2014).

In this paper, we provided an identification condition
for expectation consistency in the simple mediation
model, shown that the difference estimator is numerically
equivalent to the product estimator in the least- squares
regression, and summarized the statistical theories. One
interesting finding is that the equivalence of the two
estimators depends only on the least-squares estimation
method, not on the error distribution. Furthermore, the
equivalence can be generalized to the three-path mediation
model and the multiple mediators model.

Since the two estimators are equivalent, they should have
the same distribution. However, inference based on the two
estimators may be different, and our real data analysis
indicates this phenomenon. MacKinnon et al. (2002),
MacKinnon et al. (2004), and Preacher and Hayes (2004)
made extensive simulations based on normal errors to assess
their Type I error rate and the power, and recommended to
use the product estimator. These empirical results depend
on the assumption of normal error distribution. As far as we
know, there are no asymptotic results for either estimator,
and thus the performance of empirical studies is not well
understood. The mathematical expressions for the indirect
effect estimators pave a way to develop the asymptotic
theory. We are currently developing the asymptotic theory
for all possible values of the model parameters, which would
be helpful to make uniformly valid statistical inferences for
the indirect effect.

In practical applications, violations of normality com-
monly encountered include heavy tails, skewness, outliers,
contamination, and multimodality. Micceri (1989) exam-
ined 440 data sets from the psychological and educa-
tional literature, including 125 psychometric measures such
as scales measuring personality, anxiety, and satisfaction.

None of these data sets are normally distributed at the
significance level of α = 0.01; rather, the distributions were
often heavy-tailed or skewed. For non-normal data, Yuan
and MacKinnon (2014) proposed the least absolute devi-
ation (LAD) estimator for the mediation effect; (Wang &
Yu, 2020) further established the asymptotic theory for two
LAD estimators based on the difference and product meth-
ods, and showed that they are not asymptotically equivalent;
and Alfons (2020) provided an R package via a fast and
robust bootstrap test. In order to further improve the esti-
mation efficiency and the power for the test, we can apply
the weighted quantile average regression (Zhao & Xiao,
2014), and the difference method by Wang et al. (2019) to
analyze the mediation model. These works deserve further
investigation.

Appendix A: Proof of Theorem 2

Proof We first consider the simple case where β0 = β1 =
β2 = 0. The least-squares estimators for the simplified
models are

ĉ = arg min
c

n∑
i=1

(Yi − cXi)
2 = XT Y

XT X
,

â = arg min
a

n∑
i=1

(Mi − aXi)
2 = XT M

XT X
,

(ĉ′, b̂)T = arg min
c′,b

n∑
i=1

(Yi − c′Xi − bMi)
2

=
Y

(
MT MXT − XT MMT

XT XMT − XT MXT

)

XT XMT M − XT MXT M
.

where X = (X1, . . . , Xn)
T , M = (M1, . . . , Mn)

T , and
Y = (Y1, . . . , Yn)

T . By the above least-squares estimators,
the difference estimator is

ĉ − ĉ′ = XT M(XT XMT − XT MXT )Y

XT X(XT XMT M − XT MXT M)
,

and the product estimator is

âb̂ = XT M(XT XMT − XT MXT )Y

XT X(XT XMT M − XT MXT M)
.

This shows that ĉ − ĉ′ = âb̂. That is, the difference
estimator is equivalent to the product estimator for the linear
regression models with zero intercept.

The proof can readily be generalized to the models with
non-zero intercept by replacing X and M by their demeaned
couterparts and so is omitted.
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Appendix B: Proof of Theorems 3

Proof By substituting Eqs. 13 and 14 into Eq. 15, it follows
that

Yi = β3 + c′Xi + b1M1,i

+b2(β2 + dM1,i + a2Xi + ε2,i ) + ε3,i

= (β3 + b2β2) + (c′ + a2b2)Xi + (b1 + b2d)M1,i

+(b2ε2,i + ε3,i )

= (β3 + b2β2) + (c′ + a2b2)Xi

+(b1 + b2d)(β1 + a1Xi + ε1,i ) + (b2ε2,i + ε3,i )

= (β3 + b2β2 + (b1 + b2d)β1)

+(c′ + a2b2 + a1b1 + a1db2)Xi + εi, (20)

where εi = (b1 + b2d)ε1,i + b2ε2,i + ε3,i . Since εj,i for
j = 1, 2, 3 are zero-mean distributed, εi is also zero-mean
distributed with E[εi |Xi] = 0. Taking expectation of Eqs. 12
and 20, we have

E[Yi |Xi] = β0 + cXi,

E[Yi |Xi] = (β3 + b2β2 + (b1 + b2d)β1)

+(c′ + a1b1 + a2b2 + a1db2)Xi .

This leads to β0 = β3 + b2β2 + (b1 + b2d)β1 and
c − c′ = a1b1 + a2b2 + a1db2.

For the simplified models with β0 = β1 = β2 = β3 = 0,
the least-squares estimators are

c̃ = arg min
c

(Yi − cXi)
2 = A7

A1
,

ã1 = arg min
a

(M1,i − a1Xi)
2 = A2

A1
,

(ã2, d̃)T = arg min
a2,d

(M2,i − a2Xi − dM1,i )
2 =

(
A3A4 − A2A10

A1A10 − A2A3

)

A1A4 − A2A2
,

(c̃′, b̃1, b̃2)
T = arg min

c′,b1,b2

(Yi − c′Xi − b1M1,i − b2M2,i )
2

=

⎛
⎝

(A4A6 − A5A5)A7 + (A3A5 − A2A6)A8 + (A2A5 − A3A4)A9

(A3A5 − A2A6)A7 + (A1A6 − A3A3)A8 + (A2A3 − A1A5)A9

(A2A5 − A3A4)A7 + (A2A3 − A1A5)A8 + (A1A4 − A2A2)A9

⎞
⎠

A1(A4A6 − A5A5) + A2(A3A5 − A2A6) + A3(A2A5 − A3A4)
.

where A1 = XT X, A2 = XT M1, A3 = XT M2, A4 =
MT

1 M1, A5 = MT
1 M2, A6 = MT

2 M2, A7 = XT Y , A8 =
MT

1 Y , A9 = MT
2 Y , and A10 = MT

1 M2. By the above
least-squares estimators, it is easy to verify that c̃ − c̃′ =
ã1b̃1 + ã2b̃2 + ã1d̃ b̃2. That is, the difference estimator is
equivalent to the product estimator for the linear regression
models with zero intercept.

The proof can readily be generalized to the models with
non-zero intercept and so is omitted.

Appendix C: Proof of Theorem 6

Proof Suppose there are k mediators:

Mj = βj + RT
j aj + εj , j = 1, . . . , k,

Y = βk+1 + Xc′ + RT
Y xb + εk+1,

where Rj contains the non-constant regressors in the
equation for Mj , which may include X and/or other Mj ’s,
and RY contains Mj ’s that appear in the equation for Y .

After substituting the equations for Mj, j = 1, . . . , k, into
the equation for Y , suppose we have

Y = α0 + (c′ + α1)X + ε0 ≡ α0 + cX + ε0,

where (α0, α1) are functions of the coefficients in the
equations for {Mj }kj=1 and Y , i.e.,

α0 = f (β1, . . . , βk+1; a1, . . . , ak, b),

α1 = f (a1, . . . , ak, b),

α1 does not depend on β1, . . . , βk+1 because it measures the
sensitivity of Y to X while β1, . . . , βk+1 does not contain
such information, c′ is the coefficient of X in the equation
for Y , and ε0 is a linear combination of the error terms in
these (k + 1) equations, so it satisfies E[ε0|X] = 0.

Because all the coefficients are estimated by least-
squares regression, they employ the moment conditions

E

[(
1
Rj

)
(Mj − βj − RT

j aj )

]
= 0,

E

⎡
⎣

⎛
⎝

1
X

RY

⎞
⎠ (Y − βk+1 − Xc′ − RT

Y b)

⎤
⎦ = 0.
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If these moment conditions imply

E

[(
1
X

)
(Y − α0 − cX)

]
= 0,

then our result follows since we just replace E[·] by
1/n

∑n
i=1 in the least-squares estimation. However, this

indeed holds because ε0 is a linear function of {εj }k+1
j=1 so

that

E

[(
1
X

)
εj

]
= 0

implies

E

[(
1
X

)
ε0

]
= 0.

Here, note that X must be a regressor in the Mj equation,

otherwise E

[(
1
X

)
εj

]
= 0 cannot hold such that

E

[(
1
X

)
ε0

]
= 0 cannot hold and the equivalence result

fails.
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distribution of the product explains normal theory mediation
confidnce interval estimation. Multivariate Behavioral Research,
49(3), 261–268. https://doi.org/10.1080/00273171.2014.903162.

Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel
measure of effect size for mediation analysis. Psychological
Methods, 23(2), 244–261. https://doi.org/10.1037/met0000165.

Lockhart, G., MacKinnon, D. P., & Ohlrich, V. (2011). Mediation
analysis in psychosomatic medicine research. Psychosomatic
Medicine, 73(1), 29–43. https://doi.org/10.1097/PSY.0b013e3182
00a54b.

Loucks, E. B., Huang, Y. T., Agha, G., Chu, S., Eaton, C. B., Gilman,
S. E., Buka, S. L., & Kelsey, K.T. (2016). Epigenetic mediators
between childhood socioeconomic disadvantage and mid-life body
mass index: The New England family study. Psychosomatic
Medicine, 78(9), 1053–1065. https://doi.org/10.1097/PSY.000000
0000000411.

MacKinnon, D. P. (2008). Introduction to statistical mediation
analysis. Taylor & Francis Group.

MacKinnon, D. P., Fairchild, A. J., & Fritz, M.S. (2007a).
Mediation analysis. Annual Review of Psychology, 58, 593–614.
https://doi.org/10.1146/annurev.psych.58.110405.085542.

MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C.M.
(2007b). Distribution of the product confidence limits for
the indirect effect: Program PRODCLIN. Behavior Research
Methods, 39, 384–389. https://doi.org/10.3758/BF03193007.

http://www.stat.sinica.edu.tw/ythuang/JT-Comp.zip
http://www.stat.sinica.edu.tw/ythuang/JT-Comp.zip
https://doi.org/10.1037/0021-9010.86.5.1014
https://doi.org/10.1037/0021-9010.86.5.1014
https://doi.org/10.1086/230639
https://doi.org/10.1037/0022-3514.51.6.1173
https://doi.org/10.1037/0022-3514.51.6.1173
https://doi.org/10.1109/LSP.2016.2614539
https://doi.org/10.1109/LSP.2016.2614539
https://doi.org/10.1111/biom.12248
https://doi.org/10.14490/jjss1995.31.1
https://doi.org/10.1111/rssb.12232
https://doi.org/10.1111/j.2517-6161.1995.tb02029.x
https://doi.org/10.1006/jmva.2000.1957
https://doi.org/10.1006/jmva.2000.1957
https://doi.org/10.1111/j.1469-7610.2009.02202.x
https://doi.org/10.1080/00273171.2014.903162
https://doi.org/10.1037/met0000165
https://doi.org/10.1097/PSY.0b013e318200a54b
https://doi.org/10.1097/PSY.0b013e318200a54b
https://doi.org/10.1097/PSY.0000000000000411
https://doi.org/10.1097/PSY.0000000000000411
https://doi.org/10.1146/annurev.psych.58.110405.085542
https://doi.org/10.3758/BF03193007


Curr Psychol

MacKinnon, D. P., Lockwood, C., & Hoffman, J. (1998). A new
method to test for mediation. In The annual meeting of the society
for prevention research, Park City, USA.

MacKinnon, D. P., & Lockwood, C. M. (2001). Distribution of
products tests for the mediated effect. Technical Report. USA:
Arizona State University.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., &
Sheets, V. (2002). A comparison of methods to test mediation and
other intervening variable effects. Psychological Methods, 7(1),
83–104. https://doi.org/10.1037/1082-989x.7.1.83.

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confi-
dence limits for the indirect effect: Distribution of the product and
resampling methods. Multivariate Behavioral Research, 39(1),
99–128. https://doi.org/10.1207/s15327906mbr3901 4.

MacKinnon, D. P., Warsi, G., & Dwyer, J.H. (1995). A simulation
study of mediated effect measures. Multivatiate Behavioral
Research, 30(1), 41–62. https://doi.org/10.1207/s15327906mbr
3001 3.

McGuigan, K., & Langholtz, B. (1988). A note on testing mediation
paths using ordinary least-squares regression. Unpublished Note.

Meeker, W., Cornwell, L., & Aroian, L (1981). Selected table in
mathematical statistics (Volume VII). The product of two normally
distributed random variables. American Mathematical Society.

Micceri, T. (1989). The unicorn, the normal curve, and other
improbable creatures. Psychological Bulletin, 105(1), 156–166.
https://doi.org/10.1037/0033-2909.105.1.156.
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