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High-throughput omics data are becoming more and more popular in various areas

of science. Given that many publicly available datasets address the same questions,

researchers have applied meta-analysis to synthesize multiple datasets to achieve more

reliable results for model estimation and prediction. Due to the high dimensionality of

omics data, it is also desirable to incorporate variable selection into meta-analysis.

Existing meta-analyzing variable selection methods are often sensitive to the presence

of outliers, and may lead to missed detections of relevant covariates, especially for

lasso-type penalties. In this paper, we develop a robust variable selection algorithm

for meta-analyzing high-dimensional datasets based on logistic regression. We first

search an outlier-free subset from each dataset by borrowing information across the

datasets with repeatedly use of the least trimmed squared estimates for the logistic model

and together with a hierarchical bi-level variable selection technique. We then refine a

reweighting step to further improve the efficiency after obtaining a reliable non-outlier

subset. Simulation studies and real data analysis show that our new method can provide

more reliable results than the existing meta-analysis methods in the presence of outliers.

Keywords: heterogeneity, logistic regression, meta-analysis, robust estimation, variable selection

1. INTRODUCTION

With the advances in biological sciences, omics data have been playing an important role in many
different fields of research. A typical example of such data includes gene expression data targeting
for the identification of important genes that are related to disease status or clinical outcomes (Zhao
et al., 2015). Nevertheless, as biological experiments are often measured with a relatively small
number of samples, many identified genes are in fact very sensitive to mild data perturbations
and thus lack of reliability. From another perspective, since many publicly available datasets have
addressed the same scientific problems, one may consider to integrate multiple sources of data
to borrow information across the studies and so improve the model interpretation and boost the
statistical power (Glass, 1976; Wu et al., 2019). As an example, the integration analysis of genomic
data from multiple studies has discovered new loci that are related to diseases including childhood
obesity, colorectal cancer, and Crohn’s disease (Houlston et al., 2008).

Meta-analysis is an efficient tool for integrating the scientific results from multiple studies.
The classical meta-analysis methods are mainly based on the summary statistics including the
p-values (Li and Tseng, 2011; Zhang et al., 2020) and/or the effect sizes (Choi et al., 2003;
Chang et al., 2013). Recently, He et al. (2016) proposed a sparse method for meta-analyzing
high-dimensional regression coefficients, which is based solely on the estimates of coefficients
from multiple studies. When raw data from multiple studies are available, as recommended by
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Tang and Song (2016), a retreat to the classical meta-
analysis methods is often necessary. Specifically, under such
circumstances, it becomes possible to jointly assess the effect
of selected covariates at the study and group levels, which can
incorporate heterogeneous effects from different studies so as
to outperform the classical meta-analysis with better estimation
accuracy (George, 2019).

Due to the high-dimensionality of omics data, the number
of genes is often larger than the sample size. Incorporation of
variable selection into raw data analysis has been one hot topic
in statistics. For example, Zhou and Zhu (2010) proposed a bi-
level variable selection method for selecting important genes,
which not only removes unimportant groups efficiently but
also maintains the flexibility of selecting variables within the
group. When the heterogeneity exists between multiple studies,
however, the important genes may only be remarkable in some
studies but not in others. In view of this, Li et al. (2014)
further extended the bi-level variable selection to heterogeneous
high-dimensional multiple datasets. They treated the coefficients
of each covariate from all datasets as groups, and performed
the simultaneously variable selection both on the group and
within the group. For other existing variable selection methods
including, for example, group Bridge, composite MCP, and
group exponential lasso that can be extended to meta-analyzing
multiple studies, one may refer to Zhao et al. (2015), Kim et al.
(2017), and Rashid et al. (2020).

Despite the huge popularity of variable selection methods
in meta-analysis, little attention has been paid to the extension
of these methods to handle outliers in high-dimensional data
(Chi and Scott, 2014). For biological data, it is not uncommon
that the tissue samples are mislabeled or contaminated (Wu
et al., 2019). Outliers may strongly influence the accuracy of
parameter estimation and variable selection, and as shown in
Alfons et al. (2013), even one single outlier has the potential to
make the selected variables based on the lasso penalty completely
unreliable. This motivates us to consider the robust alternatives,
especially when integrating the multiple datasets collected from
different platforms and laboratories. Needless to say, robust
estimation has a long history under the classical paradigm where
the sample size is large and the dimension is small, see, for
example, Yohai (1987), Hadi and Simonoff (1993), and Bianco
and Yohai (1996). In particular, Rousseeuw and Leroy (1987)
proposed a least trimmed squares estimator (LTS), which was
shown to have a high breakdown point and was further improved
by the well-designed fast algorithm (Fast-LTS) in Rousseeuw and
Driessen (2006). More recently, Alfons et al. (2013) and Yang
et al. (2018) extended LTS to high-dimensional data with the
alternatingminimization algorithm. Ren et al. (2019) investigated
a robust variable selection for continuous censored data, where
the least absolute deviation loss was adopted to accommodate
heavy-tailed data. For a review of recent developments on robust
regression and variable selection methods, one may refer to Wu
and Ma (2015) and Sun et al. (2020).

We note, however, that the aforementioned robust methods
have all been focused on a single study. Moreover, most of
the existing methods are based on robust loss functions that
aim to deal with heavy-tailed continuous data; see, for example,

the least absolute deviation and check loss functions (Wu and
Ma, 2015). In recent public biological database (e.g., Gene
Expression Omnibus database), many datasets are collected
from case-control studies with binary phenotypes. Therefore,
the commonly used robust loss functions may not be directly
applicable to this scenario. In this paper, inspired by the idea
of the LTS estimator and the bi-level lasso variable selection
(Zhou and Zhu, 2010; Li et al., 2014), we propose a two-step
procedure for the robust variable selection that can be applied
to meta-analyzing multiple case–control studies. In the first step,
we search a clean index subset for each study based on the Fast-
LTS algorithm and the bi-level variable selection technique. In
the second step, we further refine a reweighting rule to enhance
the estimation efficiency and the accuracy of variable selection.
The key idea in this step is to identify outliers according to the
current model obtained in the first step and to assign a small or
zero weight for outliers. Our new robust meta-analysis method
has two main advantages: (1) the Fast-LTS algorithm guarantees
the convergence of the selected clean subsets; (2) the bi-level
variable selection not only identifies important covariates with
the strength of multiple datasets, but also maintains the flexibility
of variable selection between the datasets to account for the
data heterogeneity. Consequently, in the presence of outliers,
our proposed method can provide better parameter estimation
and also identify more accurate informative covariates than the
existing strategies, especially when the dimension is large.

The rest of this paper is organized as follows. In section 2, we
describe the model setting and develop the new algorithm for our
two-step robust meta-analysis method. The selection of tuning
parameters involved in the algorithm is also discussed. In section
3, we conduct simulation studies to assess the performance of
the our robust estimation in meta-analyzing multiple datasets.
We further apply the new method to robustly analyze a real data
example in section 4. Finally, we conclude the paper with some
future work in section 5, and provide the technical results in
the Appendix.

2. METHODS AND ALGORITHM

In this section, we first formulate the model in section 2.1, then
propose a two-step robust meta-analysis method in section 2.2,
and finally, we present the selection of tuning parameters in
section 2.3.

2.1. Data and Models
Suppose there are M independent studies, and each study
contains nk subjects for k = 1, . . . ,M. Let also Dk =

{(xki, yki), i = 1, . . . , nk} be the raw data, where yki ∈ {0, 1} is
a binary response variable and xki = (xki,1, . . . , xki,p)

T ∈ Rp is
the covariate vector. Throughout this paper, we assume that the
dimension p is common for all the studies. To link yki to xki, we
consider the logistic model with

πki = P(yki = 1|xki) =
exp(βk0 + x

T
ki
βk)

1+ exp(βk0 + x
T
ki
βk)

, (2.1)
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where βk = (βk1, . . . ,βkp)
T ∈ Rp is the unknown coefficient

vector for the kth study that captures the effect of each covariate.
Since the intercept βk0 can be readily handled, without loss of
generality, we will suppress it for convenience. To model the
heterogeneity between the studies, we allow βk to vary with k.
For omics data, as mentioned earlier, the number of covariates
p is often much larger than the sample size n, and meanwhile
only a small proportion of covariates will be related to the
response variable. We divide the covariates into two disjoint
sets: the informative set Ik1 = {j = 1, . . . , p :βkj 6= 0} and
the noninformative set Ik1 = {j = 1, . . . , p :βkj = 0} for
k = 1, . . . ,M. Our main goals are to identify the informative sets
and to estimate the coefficients of the informative covariates.

Note that each covariate hasM coefficients across the studies.
When the M datasets come from studies that focus on the same
biological questions, theM coefficients may share some common
information. This makes it possible to integrate information
across multiple datasets and make simultaneous coefficient
estimation and variable selection. On the other side, however,
outliers and data contamination have been widely observed in the
predictors and responses, and as a consequence, they will yield
the lasso-type penalties largely unreliable.

2.2. Robust Meta-Analysis Method
In this section, we propose a new two-step procedure for robustly
meta-analyzing multiple omics data.

2.2.1. Simultaneous Estimation
Let Hk ⊆ {1, 2, . . . , nk} be a subset of the indexes from the kth
study with the cardinality |Hk| = hk for k = 1, . . . ,M, and
H = {H1, . . . ,HM} be a subset of the indexes for the M studies.
Then by following Zhou and Zhu (2010) and Li et al. (2014), we
define the objective function as

Q(H,β) =

M∑

k=1

∑

i∈Hk

d(xTkiβk, yki)+ λ

p∑

j=1

(
M∑

k=1

|βkj|

)1/2

, (2.2)

where β = (βT
1 , . . . ,β

T
M)T is the stack of the coefficient vectors,

and

d(xTkiβ , yki) = −yki logπki − (1− yki) log(1− πki) (2.3)

is the deviance. When the set H is outlier-free, minimizing the
objective function (2.2) gives the robust and sparse estimator for
the coefficients as

β̂H = (β̂
T
1 , . . . , β̂

T
M)T = argminβQ(H,β),

where β̂k = (β̂11, . . . , β̂1p)
T is the estimate of the coefficient

vector in the kth study.
Note that the square root penalty (or L1/2 norm) in (2.2) treats

β1j, . . . ,βMj as a group for each covariate j, and conducts a group-
type variable selection. In addition, the L1 norm used inside
the square root penalty can perform a study-specific variable
selection that shrinks the small coefficients to zero and keeps
only the large coefficients (Tsybakov and Vande, 2005). Then, in

total, the penalty term in (2.2) essentially plays a role for the bi-
level variable selection; that is, it cannot only borrow common
information across the studies, but also take into account the
data heterogeneity and maintain the flexibility of parameter
estimation between the studies. From this perspective, with
the penalty term in (2.2), the optimization procedure actually
borrows the strength across the M studies and is quite different
from performing a separate variable selection in each individual
study (Li et al., 2014).

In practice, to determine a set that can well approximate
the outlier-free set H, it will involve iteratively optimizing the
objective function (2.2). Note also that the square root penalty
in (2.2) is not a convex function and has a complex nonlinear
form. To solve the problem, we first give a simpler and equivalent
version for the optimization.

THEOREM 1. Let βkj = αjγkj for k = 1, . . . ,M and j = 1, . . . , p.

Let also α = (α1, . . . ,αp)
T and γ k = (γk1, . . . , γkp)

T . Consider
the following objective function:

Q1(H,α, γ ) =

M∑

k=1

∑

i∈Hk

d(xkiβk, yki)+

p∑

j=1

|αj| + λ1

M∑

k=1

p∑

j=1

|γkj|,

(2.4)
where H is a set of indexes as in (2.2) and γ = (γ T

1 , . . . , γ
T
M)T .

For the minimization problems of (2.2) and (2.4) with tuning
parameter λ1 = λ2/4, (a) if (̂αH, γ̂H) is a solution of (2.4), then
β̂H with β̂kj = α̂jγ̂kj is a solution of (2.2); and (b) if β̂H is a
solution of (2.2), then there exists a solution (̂αH, γ̂H) of (2.4) such
that β̂kj = α̂jγ̂kj.

The proof of Theorem 1 is given in Appendix A. This theorem
further verifies that the penalty term in (2.2) performs a bi-level
variable selection. By a decomposition of βkj, the parameter αj
controls the sparsity of the jth group β1j, . . . ,βMj, and γkj reflects
the sparsity within the jth group. If αj is shrunk to zero, all
βkj, k = 1, . . . ,M in the jth group will be zero. Since the objective
function (2.4) only has two lasso penalties without interaction,
Zhou and Zhu (2010) and Li et al. (2014) applied the lasso
algorithm to solve α and γ , iteratively. Moreover, they have also
implemented this algorithm by the “glmnet” in the R software.

Next, to find an approximate outlier-free subset for the M
studies, we propose to combine the bi-level variable selection
technique with Fast-LTS (Rousseeuw and Driessen, 2006; Alfons
et al., 2013). We first introduce a definition that will be useful for
the searching algorithm.

DEFINITION 1. Let β̂H = (β̂
T
1,H, . . . , β̂

T
M,H)T be the estimate

of β based on the set H = {H1, . . . ,HM}. Then, an approximate
clean subset for the kth study based onH is given as

H̃k|H = argminG∈G̃k

∑

i∈G

d(xTkiβ̂k,H, yki), (2.5)

where G̃k = {G :G ⊆ {1, . . . , nk} and |G| = hk}. Furthermore, an
approximate clean subset for the M studies based on H is defined
as H̃|H = {H̃1, . . . , H̃M}.
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FIGURE 1 | The flow chart of the two-step procedure for meta-analyzing multiple studies, which provides a summarization for the searching procedure for H∗ and the

reweighting step.

Accordingly, let H0 and β̂H0
be the initial subset for the studies

and the corresponding estimate of β , respectively. By using (2.5)
recursively, we can obtain the approximate clean subset for the
kth study in the tth iteration, denoted as Hk,t . Consequently, the
approximate clean subset for all studies in the tth iteration is
given as Ht = {H1,t , . . . ,HM,t}. A similar procedure was also
adopted in Rousseeuw and Driessen (2006) and Alfons et al.
(2013); that is, selecting a subset with minimal deviance may
gradually exclude outlier samples.

THEOREM 2. For any given initial set H0, by recursively
applying (2.5), we have

Q(Ht+1, β̂Ht+1
) ≤ Q(Ht , β̂Ht

).

This theorem, with the proof in Appendix A, shows that the
objective function decreases in each iteration. Since there are only
a finite number of index subsets of the collected observations,
we can obtain a decreasing finite-length sequence, e.g., Q1 ≥

Q2 ≥ · · · ≥ QtM with Qt = Q(Ht , β̂Ht
), this shows

that a convergence can be reached after a finite number of
iterations (Rousseeuw and Driessen, 2006; Alfons et al., 2013).
For convenience, we refer to the searching procedure in (2.5)
as the concentration step (C-step). Note that the selected
subset after convergence of the C-step is related to the initial
subset; to alleviate this problem, we perform this searching
procedure with several different initial subsets as in Alfons
et al. (2013). Throughout this paper, we consider 500 initial
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FIGURE 2 | The coefficient estimates with clean data for M = 2 and (n,p) = (100, 50). The blue points and lines represent the mean values and the interval estimates

of coefficients over 100 simulations. Rows from top to bottom correspond to π0 = 0.2, 0.5, 0.9, respectively.

sets as H
(s)
0 = {H

(s)
1,0, . . . ,H

(s)
M,0} for s = 1, . . . , 500, where

H
(s)
k,0

is the initial subset for the kth study. To construct H
(s)
k,0
,

we adopt a similar procedure as in Kurnaz et al. (2018),
where the indexes of four observations from the kth study
are randomly selected, two from each of the groups. This
construction method leads to a high possibility of having no
outliers in the initial subsets.

Assume that H∗
s = {H∗

s,1, . . . ,H
∗
s,M} is the converged

approximate clean subset based on H
(s)
0 and β̂H∗

s
=

(β̂1,H∗
s
, . . . , β̂M,H∗

s
)T is the resulting coefficient estimate. Then

for the kth study, the index of the best clean subset among

H∗
1,k
, . . . ,H∗

500,k
can be given as

s∗k = arg min
s∈{1,...,500}

∑

i∈H∗
s,k

ψ(xTkiβ̂k,H∗
s
, yki) for k = 1, . . . ,M,

where ψ(x, y = 0) = φ(x), ψ(x, y = 1) = φ(−x), and φ(x) is
given in Definition A1 of the Appendix. As mentioned in Bianco
and Yohai (1996) and Crous andHaesbroeck (2003), the function
ψ(x, y) provides a robust loss measure for binary classification,
which assigns a nearly zero score to the points with correct
classification and a high score to the points withmisclassification.
Hence, the best clean subset for the kth study indicates the lowest
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FIGURE 3 | The coefficient estimates with clean data for M = 2 and (n,p) = (150, 1, 000). The blue points and lines represent the estimated values and the interval

estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π = 0.2, 0.5, 0.9, respectively.

classification loss among all those identified clean subsets for this
study. Finally, the best clean set for the M studies is given as
H∗ = {H∗

s∗1 ,1
, . . . ,H∗

s∗M ,M
}.

Also, in view of the heavy computation in the C-step on each
of the 500 initial subsets. As alternative, we propose an alternative
to perform two C-steps and find the best 10 subsets for the M
studies as initial subsets. The rest searching procedure is similar
as above paradigm. To summarize, we have the new algorithm
as follows.

1. Let H
(s)
o = {H

(s)
1,o, . . . ,H

(s)
M,o} be the initial sets for s =

1, 2, . . . , 500.

2. LetH = H
(s)
o and compute the estimator for β by minimizing

(2.4), denoted as β̂
H

(s)
o

= (β̂
T

1,H
(s)
o
, . . . , β̂

T

M,H
(s)
o
)T .

3. Search the approximate clean subset for the kth study as

H
(s)
k,1

= argminG∈G̃k

∑

i∈G

d(xTkiβ̂k,H
(s)
o
, yki),

where G̃k is the index set as in (2.5). The approximate clean

subset for theM studies isH
(s)
1 = {H

(s)
1,1, . . . ,H

(s)
M,1}.
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TABLE 1 | Results for low-dimensional data with clean data.

(n,p) = (100, 50)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.689 (0.019) 0.714 (0.018) 0.623 (0.020) 0.563 (0.013)

Recall 0.910 (0.007) 0.934 (0.007) 0.762 (0.016) 0.909 (0.008)

F1 0.769 (0.012) 0.795 (0.012) 0.653 (0.010) 0.684 (0.011)

RMSE 0.303 (0.011) 0.272 (0.010) 0.224 (0.003) 0.202 (0.005)

π = 0.5

Precision 0.861 (0.008) 0.879 (0.007) 0.806 (0.015) 0.708 (0.012)

Recall 0.950 (0.006) 0.976 (0.040) 0.358 (0.018) 0.763 (0.018)

F1 0.820 (0.008) 0.835 (0.007) 0.566 (0.010) 0.710 (0.008)

RMSE 0.295 (0.005) 0.253 (0.004) 0.578 (0.010) 0.456 (0.008)

π = 0.9

Precision 0.861 (0.008) 0.879 (0.007) 0.806 (0.015) 0.708 (0.012)

Recall 0.959 (0.006) 0.978 (0.040) 0.358 (0.018) 0.727 (0.016)

F1 0.900 (0.005) 0.920 (0.045) 0.457 (0.015) 0.069 (0.010)

RMSE 0.302 (0.005) 0.259 (0.034) 0.706 (0.010) 0.643 (0.013)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.721 (0.009) 0.729 (0.010) 0.597 (0.008) 0.531 (0.007)

Recall 0.949 (0.004) 0.953 (0.004) 0.767 (0.011) 0.942 (0.003)

F1 0.815 (0.005) 0.821 (0.005) 0.665 (0.006) 0.676 (0.006)

RMSE 0.138 (0.002) 0.110 (0.001) 0.179 (0.002) 0.141 (0.001)

π = 0.5

Precision 0.706 (0.007) 0.691 (0.006) 0.658 (0.007) 0.588 (0.006)

Recall 0.987 (0.002) 0.992 (0.001) 0.626 (0.011) 0.928 (0.004)

F1 0.820 (0.005) 0.812 (0.004) 0.634 (0.006) 0.718 (0.005)

RMSE 0.189 (0.003) 0.176 (0.004) 0.306 (0.005) 0.266 (0.003)

π = 0.9

Precision 0.889(0.005) 0.905 (0.005) 0.754 (0.008) 0.671 (0.006)

Recall 0.992 (0.001) 0.995 (0.007) 0.469 (0.002) 0.774 (0.011)

F1 0.936 (0.003) 0.947 (0.003) 0.578 (0.007) 0.712 (0.005)

RMSE 0.209 (0.002) 0.187 (0.001) 0.634 (0.005) 0.565 (0.011)

The presented values are the means of Precision, Recall, F1, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for Presicion,

Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

4. Repeat Step 2 on H = H
(s)
1 . Let also β̂

H
(s)
1

=

(β̂
T

1,H
(s)
1
, . . . , β̂

T

M,H
(s)
1
)T be the corresponding coefficient

estimate.
5. For H

(s)
k,1

∈ H
(s)
1 with s = 1, . . . , 500 and k = 1, . . . ,M, let

eks =
∑

i∈H
(s)
k,1

ψ(xTkiβ̂k,H
(s)
1
, yki).

Search a subset of indexes such that {πk,1, . . . ,πk,10} ⊂

{1, . . . , 500} with ek,πk,1 ≤ . . . ≤ ek,πk,10 . The best

10 sets among H
(1)
1 , . . . ,H

(500)
1 are given as H̃

(s)
1 =

{H
(π1,s)
1,1 , . . . ,H

(πM,s)
M,1 } for s = 1, . . . , 10.

6. Let H = H̃
(s)
1 be the initial set for s = 1, . . . , 10, respectively,

and repeat Steps 2–3 for a total of t times until convergence
such that ||β̂

H
(s)
t
− β̂

H
(s)
t−1

||2 ≤ ǫ, where || · ||2 is the Euclidean

norm and ǫ is a pre-specified small constant. The converged
approximate clean subset and the coefficient estimate for all
M studies are denoted as H∗

s = {H∗
s,1, . . . ,H

∗
s,M} and β̂H∗

s
=

(β̂
T
1,H∗

s
, . . . , β̂

T
M,H∗

s
)T , respectively.

7. For H∗
s,k

∈ H∗
s with s = 1, . . . , 10 and k = 1, . . . ,M, let

s∗k = arg min
s∈{1,...,10}

∑

i∈H∗
s,k

ψ(xTkiβ̂k,H∗
s
, yki).

The best clean subset for all M studies is given as H∗ =

{H∗
s∗1 ,1

, . . . ,H∗
s∗M ,M

}, and the corresponding estimate of β is

β̂H∗ = (β̂
T
1,H∗ , . . . , β̂

T
M,H∗ )T .

Finally, we observe that in the first several C-steps, the algorithm
for minimizing (2.4) may not stable. For this, we may restrict that
α1 = · · · = αp = 1.

2.2.2. Reweighting Step
Note that the LTS-type estimator only uses a subset of data and
may suffer from a low efficiency. To further improve the model
estimation, Kurnaz et al. (2018) proposed a reweighting step
such that the identified outliers based on the current estimated
model will be assigned with a small or zero weight. For our
robust meta-analysis method, we adopt a similar reweighting
procedure, which is based on the Pearson residuals r̂ki =

(yki − π̂ki)/
√
π̂ki(1− π̂ki), where π̂ki = exp(xT

ki
β̂k,H∗ )/[1 +

exp(xT
ki
β̂k,H∗ )] is the conditional probability of the logistic model.
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TABLE 2 | Results for high-dimensional data with clean data.

(n,p) = (150, 1, 000)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.536 (0.015) 0.489 (0.014) 0.633 (0.024) 0.807 (0.015)

Recall 0.900 (0.007) 0.934 (0.007) 0.740 (0.016) 0.878 (0.006)

F1 0.658 (0.011) 0.632 (0.012) 0.642 (0.013) 0.833 (0.010)

RMSE∗ 0.276 (0.047) 0.239 (0.071) 0.208 (0.054) 0.226 (0.014)

π = 0.5

Precision 0.747 (0.012) 0.665 (0.011) 0.716 (0.021) 0.787 (0.011)

Recall 0.965 (0.005) 0.974 (0.010) 0.321 (0.012) 0.684 (0.013)

F1 0.835 (0.007) 0.785 (0.007) 0.417 (0.011) 0.721 (0.009)

RMSE∗ 0.253 (0.040) 0.157 (0.089) 0.447 (0.091) 0.452(0.102)

π = 0.9

Precision 0.722 (0.012) 0.759 (0.011) 0.762 (0.025) 0.790 (0.013)

Recall 0.850 (0.010) 0.975 (0.004) 0.178 (0.008) 0.448 (0.015)

F1 0.778 (0.010) 0.849 (0.007) 0.274 (0.010) 0.548 (0.012)

RMSE∗ 0.261 (0.074) 0.196 (0.014) 0.489 (0.075) 0.446 (0.071)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.694 (0.015) 0.709 (0.012) 0.573 (0.014) 0.783 (0.008)

Recall 0.957 (0.004) 0.840(0.002) 0.630 (0.008) 0.863 (0.004)

F1 0.796 (0.007) 0.811 (0.008) 0.587 (0.007) 0.818 (0.004)

RMSE∗ 0.321 (0.068) 0.311 (0.075) 0.509 (0.063) 0.451 (0.045)

π = 0.5

Precision 0.687 (0.005) 0.688 (0.005) 0.664 (0.014) 0.769 (0.007)

Recall 0.988 (0.002) 0.994 (0.001) 0.395 (0.008) 0.784 (0.006)

F1 0.809 (0.004) 0.812 (0.003) 0.483 (0.006) 0.774 (0.005)

RMSE∗ 0.416 (0.064) 0.316 (0.087) 0.447 (0.076) 0.435 (0.081)

π = 0.9

Precision 0.942 (0.002) 0.952 (0.001) 0.712 (0.012) 0.760 (0.006)

Recall 0.988 (0.001) 0.964 (0.003) 0.198 (0.004) 0.473 (0.008)

F1 0.965 (0.002) 0.958 (0.002) 0.305 (0.004) 0.579 (0.007)

RMSE∗ 0.574 (0.072) 0.475 (0.031) 0.639 (0.064) 0.622 (0.105)

The presented values are the means of Precision, Recall, F1, and RMSE∗ with standard errors in parentheses, respectively, averaged over 100 simulations. RMSE∗= 10× RMSE. The

bold values for Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

Since rki is a standardized statistic and is approximately normally
distributed, the weights for the observations are given as

ŵki =

{
0, |̂rki| > 8−1(1− δ),
1, |̂rki| ≤ 8−1(1− δ),

for k = 1, . . . ,M and

i = 1, . . . , nk, (2.6)

where 8 is the cumulative distribution function of the standard
normal distribution. Throughout this paper, we select δ = 0.0125
as in Alfons et al. (2013) and Kurnaz et al. (2018) such that 2.5%
of the observations from the standard normal distribution are
considered as outliers. The reweighed objective function is

Qw(β) =

M∑

k=1

nk∑

i=1

ŵkid(x
T
kiβk, yki)+ λ

p∑

j=1

(
M∑

k=1

|βkj|

)1/2

, (2.7)

Consequently, the robust estimator for meta-analyzing multiple
studies is given as

β̃ = (β̃
T
1 , . . . , β̃

T
M)T = argmin

β
Qw(β),

where β̃k is the estimate of the coefficient vector for the kth study.
Obviously, when the data do not have outliers or only have a

small proportion of outliers, the reweighing procedure uses more
observations and hence may improve the estimation accuracy.

Finally, to give more insights on the algorithms in sections
2.2.1 and 2.2.2, we present a flow chart of the two-step
procedure for meta-analyzing multiple studies in Figure 1, which
provides a summary for the searching procedure for H∗ and the
reweighting step.

2.3. Selection of the Tuning Parameters
In section 2.2, we need to pre-specify the cardinalities h1, . . . , hM
before searching the approximate clean subset H̃∗. If some
studies contain a large proportion of outliers, then the
cardinalities of the selected subsets from the studies ought to be
small, e.g., hk ≈ nk/2, and vice versa. In practice, if we do not
have prior knowledge for the number of outliers, we recommend
to use hk ≈ 0.75nk as adopted in Rousseeuw and Driessen (2006),
Alfons et al. (2013), and Kurnaz et al. (2018).

Note that the optimization problems in (2.2) and (2.7) can be
rewritten as (2.4), and hence we only need to select the tuning
parameter in (2.4). Various data-driven techniques have been
well developed in the literature including, for example, the cross-
validation, the generalized cross-validation, and the Bayesian
information criterion (BIC) procedures. We adopt the BIC to
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FIGURE 4 | The coefficient estimates with contamination data for M = 2 and (n,p) = (100, 50). The blue points and lines represent the mean values and the interval

estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π0 = 0.2, 0.5, 0.9, respectively.

select the tuning parameter as recommended in Alfons et al.
(2013). Specifically, we compute the BIC after obtaining H∗ in
the C-steps, which is given as

BIC(λ1) =

M∑

k=1

{
−2Lk(β̂k,H∗ ,H∗)+ df(β̂k,H∗ ) log(hk)

}
, (2.8)

where Lk(β̂k,H∗ ,H∗) =
∑Hk

i=1 d(xkiβ̂k,H∗ , yki) with Hk ∈ H∗,

and df(β̂k,H∗ ) is the number of non-zero components in β̂k,H∗ . A
similar procedure is also performed in the reweighting procedure
to select the tuning parameter.

3. NUMERICAL STUDIES

In this section, we conduct simulations to evaluate the
numerical performance of our new robust lasso-type meta-
analysis method (RL-meta) and compare it with some existing
methods. Specifically, we consider the state-of-the-art methods
from Li et al. (2014), Alfons et al. (2013), and Friedman
et al. (2010). Noting that the latter two methods perform
the variable selection on each study individually, hence for
convenience, we refer to them as L-meta, RL-each, and L-
each, respectively.

Let TP, FP, and FN be the number of true positives, false
positives, and false negatives, respectively. Then to evaluate
the performance of these methods, we consider four criteria
including Precision = TP/(TP+FP), Recall = TP/(TP+FN), the F1
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TABLE 3 | Results for low-dimensional data with contamination.

(n,p) = (100, 50)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.635 (0.019) 0.248 (0.027) 0.338 (0.007) 0.764 (0.032)

Recall 0.854 (0.016) 0.184 (0.019) 0.848 (0.010) 0.138 (0.011)

F1 0.728 (0.014) 0.362 (0.013) 0.480 (0.009) 0.301 (0.010)

RMSE 0.376 (0.015) 0.449 (0.023) 0.207 (0.009) 0.456 (0.017)

π = 0.5

Precision 0.664 (0.017) 0.537 (0.001) 0.374 (0.015) 0.898 (0.018)

Recall 0.768 (0.026) 0.113 (0.026) 0.634 (0.023) 0.135 (0.010)

F1 0.701 (0.020) 0.252 (0.013) 0.465 (0.017) 0.243 (0.010)

RMSE 0.470 (0.021) 0.725 (0.024) 0.615 (0.019) 0.725 (0.026)

π = 0.9

Precision 0.715 (0.021) 0.340 (0.029) 0.391 (0.015) 0.921 (0.012)

Recall 0.636 (0.030) 0.089 (0.008) 0.518 (0.021) 0.077 (0.005)

F1 0.658 (0.025) 0.188 (0.010) 0.445 (0.017) 0.159 (0.006)

RMSE 0.608 (0.027) 0.817 (0.031) 0.707 (0.026) 0.813 (0.034)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.682 (0.009) 0.568 (0.043) 0.291 (0.005) 0.592 (0.032)

Recall 0.899 (0.010) 0.105(0.010) 0.842 (0.011) 0.051 (0.003)

F1 0.770 (0.012) 0.251 (0.005) 0.432 (0.006) 0.104 (0.004)

RMSE 0.216 (0.014) 0.289(0.021) 0.219 (0.018) 0.927 (0.013)

π = 0.5

Precision 0.691 (0.010) 0.128 (0.017) 0.358 (0.010) 0.840 (0.018)

Recall 0.923 (0.011) 0.042 (0.005) 0.724 (0.012) 0.102 (0.003)

F1 0.787 (0.005) 0.118 (0.007) 0.479 (0.008) 0.181 (0.005)

RMSE 0.251 (0.016) 0.473 (0.021) 0.352 (0.019) 0.480 (0.023)

π = 0.9

Precision 0.828 (0.010) 0.238 (0.028) 0.358 (0.007) 0.939 (0.011)

Recall 0.866 (0.010) 0.053 (0.006) 0.519 (0.012) 0.052 (0.002)

F1 0.839 (0.013) 0.161 (0.008) 0.423 (0.008) 0.098 (0.004)

RMSE 0.516 (0.027) 0.701(0.029) 0.680 (0.015) 0.699 (0.030)

The presented values are the means of Precision, Recall, F1 score, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for

Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

score (F1), and the root mean squared error (RMSE), where

F1 =
2× Presicion× Recall

Presicion+ Recall
and

RMSE =
( 1
M

M∑

k=1

p∑

j=1

(β̂kj − βkj)
2
)1/2

.

Note that Precision, Recall, and F1 all range from 0 to 1, which
measure the accuracy of variable selection with a larger value
being preferred. As an addition, RMSE measures the loss of
coefficient estimation, for which a small value is favorable.

3.1. Clean Data
In the first simulation, we consider clean data with no outliers.
Specifically, we generate M studies and each has n observations.
The covariate vector xki = (xki1, . . . , xkip)

T are randomly
sampled from the multivariate normal distribution N(0, Ip) for
k = 1, . . . ,M and i = 1, . . . , n, where Ip is the identity matrix.
Then the response variables are generated as yki = 1 if xkiβk +

εki > 0, otherwise, yki = 0, where βk = (βk1, . . . ,βkp)
T ,

εki is the independent noise sampled from N(0, 1). To access
the performance of our RL-meta under different levels of
heterogeneity, we let βkj = zkjbkj for k = 1, . . . ,M and j =

1, . . . , 10 and βkj = 0 for j = 11, . . . , p, where zkj is randomly
sampled from a Bernoulli distribution with the success rate π0
and bkj is randomly sampled from N(1.5, 0.52). This means that
only the first 10 covariates may be possibly related to the response
variable in each study, it is informative with probability π0 and
uninformative with probability 1 − π0. We consider π0 = 0.2,
0.5, or 0.9 to represent three levels of heterogeneity between the
studies. In addition, we also consider (n = 100, p = 50) or
(n = 150, p = 1, 000) as a low or large dimension, respectively,
and the numbers of studies asM = 2 or 8.

To visualize the coefficient estimation for more insights, we
plot the average values of the estimates for each coefficient with
the confidence intervals (mean ±3× standard error) for M = 2
studies (see Figures 2, 3). To save space, we move the plots of
L-each and RL-each to Appendix B (see Figures S1, S2). When
there is no outlier, RL-meta and L-meta both provide good
estimates for the coefficients, where they are close to the true
coefficients especially with a low dimension (e.g., p = 50).
Figure A1 shows that RL-each and L-each can provide an accurate
variable selection, whereas the estimates for nonzero coefficients
tend to be smaller than the true coefficients, especially when the
dimension is larger than the sample size. This phenomenon was
also observed in Zhao and Yu (2006), where they showed that
the convex penalty often shrinks the estimates of the nonzero
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TABLE 4 | Results for high-dimensional data with contamination data.

(n,p) = (150, 1, 000)

M = 2 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.510 (0.017) 0.076 (0.006) 0.878 (0.009) 0.273 (0.043)

Recall 0.873 (0.009) 0.324 (0.014) 0.261 (0.005) 0.018 (0.005)

F1 0.613 (0.013) 0.125 (0.007) 0.202 (0.003) 0.246 (0.001)

RMSE∗ 0.298 (0.032) 0.379 (0.045) 0.161 (0.008) 0.316(0.032)

π = 0.5

Precision 0.463 (0.024) 0.104 (0.009) 0.139 (0.006) 0.314 (0.044)

Recall 0.685 (0.027) 0.082 (0.004) 0.553 (0.020) 0.015 (0.003)

F1 0.563 (0.023) 0.082 (0.005) 0.226 (0.009) 0.136 (0.002)

RMSE∗ 0.387 (0.069) 0.548 (0.093) 0.425(0.060) 0.500 (0.073)

π = 0.9

Precision 0.414 (0.036) 0.029 (0.004) 0.108 (0.007) 0.583 (0.046)

Recall 0.531 (0.030) 0.055 (0.006) 0.348 (0.023) 0.022 (0.003)

F1 0.499 (0.025) 0.070 (0.003) 0.181 (0.010) 0.107 (0.003)

RMSE∗ 0.435 (0.070) 0.548 (0.071) 0.489 (0.083) 0.561 (0.071)

M = 8 RL-meta L-meta RL-each L-each

π = 0.2

Precision 0.660 (0.011) 0.053 (0.001) 0.120 (0.002) 0.374 (0.033)

Recall 0.915 (0.007) 0.664(0.009) 0.810 (0.008) 0.040 (0.004)

F1 0.760 (0.007) 0.097 (0.001) 0.208 (0.003) 0.106 (0.004)

RMSE∗ 0.210 (0.011) 0.374 (0.039) 0.227 (0.091) 0.292 (0.018)

π = 0.5

Precision 0.660 (0.007) 0.044 (0.002) 0.145 (0.003) 0.383 (0.034)

Recall 0.906 (0.008) 0.323 (0.013) 0.675 (0.011) 0.019 (0.002)

F1 0.760 (0.005) 0.077 (0.003) 0.237 (0.005) 0.059 (0.003)

RMSE∗ 0.316 (0.098) 0.547 (0.107) 0.519 (0.095) 0.469 (0.026)

π = 0.9

Precision 0.752 (0.011) 0.048 (0.002) 0.087 (0.002) 0.584 (0.024)

Recall 0.767 (0.021) 0.219 (0.011) 0.433 (0.010) 0.032 (0.002)

F1 0.753 (0.015) 0.080 (0.004) 0.144 (0.003) 0.062 (0.003)

RMSE∗ 0.358 (0.097) 0.614(0.085) 0.503 (0.082) 0.471 (0.074)

The presented values are the means of Precision, Recall, F1 score, and RMSE with standard errors in parentheses, respectively, averaged over 100 simulations. The bold values for

Presicion, Recall, and F1 score are the highest values, and the bold value for RMSE is the lowest value.

coefficients too heavily. In contrast, since our RL-meta and L-
meta both use a nonconvex regularization, they are able to reduce
the estimation biases.

Tables 1, 2 show the scores of the measure criteria for each
scenario with clean data. Based on the evaluation criteria, L-
meta exhibits superiority than the other three methods, which
has a higher Precision, Recall, and F1 in most settings. RL-meta
is nearly as good as L-meta and is much better than L-each and
RL-each. For example, when the dimension and the number of
informative covariates tend to large, L-each and RL-each both
exhibit an inflated RMSE, whereas RL-meta and L-meat still keep
a low RMSE. This verifies that borrowing information across the
studies can improve the estimation accuracy, especially when the
dimension is large and the sample size is small.

3.2. Contamination Data
In the second simulation, we consider contamination data
with outliers. We randomly select m0 observations from
each study and add outliers to those informative covariates.
More specifically, for the observations with yki = 0
(or yki = 1), the informative covariates are replaced by
values randomly sampled from N(5, 1). To avoid high-leverage
points, those observations are assigned an opposite class label.
That is, yki = 1 − δ(xkiβk > 0), where δ(·) is an

indicator function. Throughout this section, we fix m0 =

10, and the other parameter are the same as those in
section 3.1.

Figures 4, 5 plot the mean values of the estimates for each
coefficient with the confidence intervals (mean ±3× standard
error) for M = 2 studies under contamination data. To
save space, we also move the plots of L-each and RL-each
to Appendix B (see Figures S3, S4). From those figures, it is
evident that RL-meta outperforms the other three methods
in the presence of outliers. In particular, RL-meta and L-
meta are able to select more informative covariates, whereas,
L-meta and L-each both miss most informative variables,
especially when the dimension is large. As we mentioned in the
Introduction, this may due to the fact that classical lasso-type
variable selection is sensitive to outliers and has a high-break
down point.

Tables 3, 4 show the scores of the four measure criteria
for each scenario under contamination data. RL-meta and
RL-each both exhibit a higher Precision and Recall and a smaller
RMSE than L-meta and L-each, especially when the number of
informative covariates is large. This indicates that the two robust
methods are able to identify more informative covariates and
also keep a low false discovery rate when presenting outliers.
When the number of studies and the number of informative
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FIGURE 5 | The coefficient estimates with contamination data for M = 2 and (n,p) = (150, 1, 000). The blue points and lines represent the estimated values and the

interval estimates of coefficients over 100 simulations. Rows from top to bottom correspond to π = 0.2, 0.5, 0.9, respectively.

variable are both small (e.g., M = 2 and π = 0.2), we note
that RL-each has a smaller RMSE than RL-meta, which exhibits
a good coefficient estimation. One possible reason is that when
the number of studies and informative covariates is very small,
there no or little information can be borrowed to improve the
estimation accuracy. As the number of studies and/or the number
of informative variable tend to large, our RL-meta consistently
has the best performance among the three methods including L-
meta, RL-each, and L-each. This again verifies that borrowing
information across similar studies can significantly improve
parameter estimation and the accuracy of variable selection (Liu
et al., 2011).

4. REAL DATA APPLICATION

In this section, we consider three publicly available lung cancer
datasets from GEO (https://www.ncbi.nlm.nih.gov/gds/). The
first data are the gene expression signature of cigarette smoking
(GSE10072), which contains the gene expression levels of 49
normal and 58 tumor tissues from 28 current smokers, 26
former smokers, and 20 never smokers, and each sample has
22,283 genes. The second data are the early stage non-small-
cell lung cancer (GSE19188), which contains the gene expression
levels of 65 adjacent normal and 91 tumor tissues, and each
sample has 54,675 genes. The third data are the non-smoking
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TABLE 5 | Gene selections of RL-meta, L-meta, RL-each, and L-each in three lung cancer studies.

GSE10072 GSE19188 GSE19804

RL-meta AF007147 AF007147, ACSL4, GRIA1

SVEP1 SVEP1, EHD1, LGALSL EHD1, LGALSL

COL10A1 COL10A1, FUT2 COL10A1, FUT2

L-meta COL10A1 ACSL4, COL10A1 COL10A1

AF007147 AF007147 FUT2

LINC01140 LINC01140

RL-each CA4, CD36 AGER, CA4 CA4, SGCG

SPP1, GPM6A GDF10, GAPDH MME

FAM107A, FCN3 FAM189A2, LRRC36

L-each PDE2A AOX1, AF007147, ACADL ALDH18A1, COL10A1

SPP1 GAPDH, PAFAH1B3 GOLM1, MME

TNXA LRRC36, LINC00341 EFNA4, SORD

HIST1H2BD, PPBP SPOCK2, HN1L

CCL23, FCN3

The bolded and italic bolded names are overlapped identified genes between GSE10072 and GSE19188 and between GSE19188 and GSE19804, respectively. The underlined names

are overlapped identified genes across the three studies.

TABLE 6 | Gcta, L-meta, RL-each, and L-each in three lung cancer studies.

GSE10072 GSE19188 GSE19804

RL-meta COL10A1 COL10A1, ACSL4 COL10A1

SPOCK2 FUT2, GRIA1, TYRP1 FUT2

LINC01140 EHD1, AF007147 EHD1

L-meta MIF CFP, MIF CFP, MIF, GOLM1

KCNJ8 KCNJ8 KCNJ8, COL10A1

RL-each CA4 AGER, CA4 CA4, SGCG

GPM6A LRRC36, GDF10 SH3GL3, MASP1

COL10A1, SPP1

L-each FAM107A AGER, GAPDH COL10A1

SPP1 PAFAH1B3, NEK2 GOLM1

MIF, HIST1H2BD SPOCK2

The bolded and italic bolded names are overlapped identified genes between GSE10072 and GSE19188 and between GSE19188 and GSE19804, respectively. The underlined names

are overlapped identified genes across the three studies.

female lung cancer in Taiwan (GSE19804), which contains the
gene expression levels of 60 normal and 60 tumor tissues, and
each sample has 54,675 genes. Consequently, there are 13,515
common genes shared between these three datasets. We map the
probes of the raw data to gene names by annotation packages
in Bioconductor. Also as per Hui et al. (2020) and Alfons et al.
(2013), if multiple probes match a same gene, we compute the
median values of these probes as the expression values for this
gene and do the normalization for the raw expression data by the
“affy” R package. Let |tkj| be the absolute value of standardized
mean difference for the jth gene in the kth dataset and Tj =

max(|t1j|, |t2j|, |t3j|). We select the 1,000 genes with the largest
values of Tj for j = 1, . . . , 13, 515, and then perform the variable
selection for the three datasets based on RL-meta, L-meta, RL-
each, and L-each, respectively.

Figure 6 shows the density plots for each of the selected 1,000
genes in the GSE10072, GSE19198, and GSE19804, respectively.

The expression levels of some genes in GSE10072 and GSE19198
exhibit heavy-tailed distributions and may present outliers.
Table 5 shows the detected informative genes by RL-meta, L-
meta, RL-each, and L-each in the three lung cancer studies. We
observe that RL-meta detects 7more genes than L-meta, and both
of the methods identify one common gene “COL10A1” between
the three studies. In addition, RL-meta detects four overlapped
informative genes in GSE19188 and GSE19804, whereas L-meta
only detects 1 overlapped gene. Since GSE19188 and GSE19804
are both from the same Affymetrix Platform (U133 Plus 2.0),
it is expected that RL-meta has a higher detection power and
is also more reproducible than L-meta. Finally, RL-each and L-
each detect 15 and 22 genes, respectively. Nevertheless, these two
methods identify very different genes across the three studies and
so may lack of reproducibility.

To further compare the performance of the four methods, we
also consider to create outliers for the three datasets. Specifically,
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FIGURE 6 | Density plots for each of the selected 1,000 genes in the

GSE10072, GSE19198, and GSE19804, respectively.

we select the first eight samples from each of the three datasets,
and then add a number 10 to the expression levels of those
informative genes. In order to generate outliers instead of
leverage points, we assign the labels of those samples to their
opposite class. Table 6 shows the identified informative genes
with RL-meta, L-meta, RL-each, and L-each in the artificially
created three datasets. L-meta and L-each both identify quite
different genes between the artificially created datasets and
the original datasets, whereas RL-meta and RL-each identify
more common genes between the artificial created datasets
and the original datasets. In addition, RL-meta detects four
overlapped informative genes in artificially created GSE19188
and GSE19804, whereas L-meta only detects one overlapped
gene. As we discussed in the analysis of original datasets,
GSE19188 and GSE19804 are both from the same Affymetrix
Platform, and hence it is expected that RL-meta is more
reproducible than L-meta. To conclude, RL-meta is more robust
and tends to be more powerful when outliers present in the
datasets.

5. DISCUSSION

In this paper, we propose a robust method for meta-analyzing
multiple studies with high-dimensional data. Our method is
based on a two-step procedure including a search step for a clean
subset from each study and a reweighting scheme to improve the
estimation efficiency. In particular, we incorporate the bi-level
variable selection technique into both of the two steps. Our new
robust method has the capacity to capture the sparsity at both the
study and group levels so as to better integrating the structural
information that can enhance the parameter estimation and
variable selection. Simulation studies demonstrate that, in the

presence of outliers, our proposed method can provide better
parameter estimation and also identify informative covariates
more accurately than the existing strategies, especially when
the dimension is large. We also provide a comparison of
computational cost for RL-meta, RL-each, L-meta, and L-each in
Table A1. We note that RL-meta and RL-each suffer from a heavy
computational burden. The main reason is that the two robust
methods need to perform C-steps with different starting subsets,
and hence the number of iterations is considerably higher than
the classical lasso-based methods.

In addition, the lasso-based variable selection methods
usually suffer from a low power when some covariates are
highly correlated. As an alternative, Zou and Hastie (2005)
and Tibshirani et al. (2005) proposed the elastic net and the
fused lasso penalty to handle correlations among covariates.
Following this direction, our RL-meta may further be improved
by incorporating the correlated covariates. Specifically, with
the hierarchical reparameterization in Theorem 1, one possible
extension of (2.4) can be given as:

Qnet(H,α, γ ) =

M∑

k=1

∑

i∈Hk

d(xkiβk, yki)+

p∑

j=1

(|αj| + |αj|
2)+ λ1

M∑

k=1

p∑

j=1

(|γkj| + |γkj|
2).

We leave this problem for further theoretical and numerical
studies.

Finally, we note that Bayesian meta-analysis is also a popular
approach for the integration of multiple studies. Recently, Cai
et al. (2020) proposed a Bayesian variable selection approach for
joint modeling multiple datasets. They developed a hierarchical
spike-and-slab prior (a Bayesian version of the bi-level lasso
penalty) to borrow information across the studies, which is
shown to have a higher power for detecting informative single
nucleotide polymorphisms in genome-wide association studies
(GWAS). In addition, Pickrell (2014) proposed a Bayesian
hierarchical model for GWAS data by borrowing information
from functional genomic studies. As a future work, it would be
worthwhile to develop such Bayesian methods for robustly meta-
analyzing multiple datasets and make a comparison with the
RL-meta and L-meta methods introduced in the current paper.
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