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Abstract
High-throughput RNA sequencing is rapidly emerging as a favourite method for gene expression studies. We

review three software packages — edgeR, DEGseq and baySeq — from Bioconductor http://bioconductor.org

for analysing RNA-sequencing data. We focus on three aspects: normalisation, statistical models and the testing

employed on these methods. We also discuss the advantages and limitations of these software packages.

Keywords: statistical software, RNA-sequencing analysis, normalisation, sequencing data

Introduction

High-throughput genome-wide RNA profiling by

deep sequencing (RNA-seq) is rapidly emerging as

a favourite method for gene expression studies.

RNA-seq provides more precise measurement of

levels of transcripts at a wide dynamic range and

the ability to quantitate and detect known and

novel isoforms by comparison with hybridisation-

based technology (oligonucleotide and cDNA

microarrays). In every sequencing run, tens of

millions of short reads are simultaneously

sequenced in each lane by the next generation

sequencer. After pre-processing and mapping

against a reference genome, the total number of

counts for each mappable transcript is reported. It

has been reported that the sequencing results are

highly reproducible.1 One of the main applications

of RNA-seq is to identify differential expression

(DE) genes under two or more different pheno-

types (eg cancer versus normal samples).

Several statistical methods have been proposed to

identify DE.1–5 When choosing a statistical analysis

approach, some aspects need to be considered:

(a) Normalisation. It was noticed that the

observed number of reads for a gene depends

on the expression level and the length of the

gene, and also on the RNA composition of

the sample.6,7 The purpose of the normalisa-

tion is to minimise the influences of gene

length and total sample RNA composition so

that the normalised read counts represent a

direct reflection of the targeted gene

expression level. It has been shown that the

normalisation procedure has a great impact

on DE detection.2,7 Depending on the

experimental design, different normalisation

methods are required.

(b) Statistical model. The Poisson distribution is

commonly used to model count data. Due to
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biological and genetic variations, however,

for sequencing data the variance of a read is

often much greater than the mean value.

That is, the data are over-dispersed. In such

cases, one natural alternative to Poisson is the

negative binomial (NB) model. In addition to

these two commonly used models, other

choices have also been proposed in the

literature.8,9

(c) Testing. In terms of tag detection, there are

mainly two types of methods: exact testing

methods — such as Fisher’s exact test (FET),

and tests based on large sample approxi-

mation.1,10,11

In this paper, we review three publicly available

software packages from Bioconductor, which are

specifically designed for RNA-seq data analyses.

Our main goal was to provide detailed descriptions

for each package to guide software selections for

identifying DE for a given study design.

Software packages surveyed

1. edgeR

The R Bioconductor package, edgeR,12 provides

statistical routines for detecting DE in RNA-seq

data. The package is extremely flexible and can

handle the count data irrespective of whether or

not they are over-dispersed. If the data are over-

dispersed, the NB model is used. Conversely, the

Poisson model is used when there is no over-

dispersion detected in the data. edgeR requires the

data to be in either one of two formats: a single file

containing a table of counts, with the first column

containing the read (refer to ‘tag’ in the package)

identifiers and the remaining columns containing

the tag counts for each sample sequenced; or an

individual file for each library, each with the first

column for tag identifier and second column for

counts.

Normalisation

The quantile-adjusted method is used to standardise

total read counts (library sizes) across samples.11

Samples are assumed to be independent and

identically distributed from NB distribution (M*p, f)

(see details in the Model section), where f is

initially estimated from all the samples, M* is the

geometric mean of original library sizes and p, the

proportion of tag g in the sequenced sample, can

then be estimated, providing values for M and f.

Linear interpolation of quantile function is used to

equate the quantiles across samples. The process is

updated with new f and p until f converges.

Model

edgeR is based on NB distribution. Let Ygij denote

the observed data; where g is the gene (tag, exon,

etc.), i is the experimental group and j is the index of

samples. The counts can be modelled as Ygij �
NB(Mjpgi,fg), with mean mgi ¼Mjpgi and variance ¼

mgi þ mgi
2f, where Mj represents the library size, (ie

the sum of the counts of tags in a sample) and pgi rep-

resents the proportion of tag g of the sequenced

sample for group i. fg is the over-dispersion par-

ameter (relative to Poisson) for accounting for bio-

logical or sample-to-sample variation. There are two

options for fg in the package; one is to use a

common dispersion for all the tags and the other is to

assume tagwise dispersion.3,11 For many applications,

using a common dispersion will be adequate. For the

tagwise dispersion, edgeR moderates the estimates

towards a common dispersion. Moderation is deter-

mined using an empirical Bayes rule.3 It is noted in

general that tagwise dispersion penalises tags with

great variability within groups. If the common dis-

persion estimate is much greater than 0, it indicates

that there is more variability in the data than the

Poisson model can account for, and NB distribution

should be used. With fg ¼ 0, the NB distribution

reduces to Poisson distribution.

Testing

edgeR employs an exact test for the NB distri-

bution based on the normalised data. The test par-

allels with FET. The ‘exactTest’ function allows

pairwise comparisons of groups. One of the objects

produced by the function includes logFC, the

log-fold change difference in the counts between

the groups, and exact p-values. The results of the

NB test can be accessed using the ‘topTags’
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function, in which the adjusted p-values for mul-

tiple testing are reported using Benjamini and

Hochberg’s approach13 as the default method of

adjustment. Users can also supply their own desired

adjustment method.

2. DEGseq

DEGseq is another R package specifically designed

to identify DE from RNA-seq data.9 The package

includes two novel methods, the MA plot-based

method (where M is the log ratio of the counts

between two experimental conditions for gene g,

and A is the two group average of the log concen-

trations of the gene) with a random sampling

model (MARS) and the MA plot-based method

with technical replicates (see details in the Models

section), along with three existing methods: FET,

the likelihood ratio test (LRT) and samWrapper.

samWrapper was developed previously for microar-

ray data analysis.14 In this paper we focus our atten-

tion on MARS, FET and the LRT. Unlike edgeR,

which allows over-dispersion, DEGseq assumes a

binomial or Poisson distribution (which limits its

application to data with no over-dispersion) and is

extremely easy to use. The user needs only to

specify the model, the normalisation methods and

the input data, and the results will be saved to the

user’s designed folder. The input of the package is

uniquely mapped reads (or tags), gene annotation

of the corresponding genome and gene expression

counts for each sample. The output includes a text

file and a summary. The text file contains the orig-

inal sample counts, p-value, and two q-values, indi-

cating the expression difference between the two

treatment groups for each gene, which are the

adjusted p-values.

Normalisation

There are several choices for normalisation: ‘none’,

‘loess’ and ‘median’. The recommended (or

default) method is ‘none.’

Models

(i) MARS

In the MARS model, RNA sequencing is

modelled as a random sampling process.15

Each read is sampled independently and uni-

formly from every possible nucleotide in the

sample. The number of tags coming from a

gene follows a binomial distribution, which

can be approximated by a Poisson distri-

bution. The model identifies and visualises

DE genes based on the MA plot. It follows

that M and A are both normally distributed,

given that the samples from the two con-

ditions are independent. The conditional dis-

tribution of M, given that A ¼ a, is also

normally distributed. Under the null

hypothesis that the probabilities of the tag

coming from a specific gene are the same

between the two experimental conditions, a

Z-score statistic for the gene can be calcu-

lated, and the p-value can be converted to

indicate if the gene g is differentially

expressed. The MA plot has been widely

used to detect and visualise the intensity-

dependent ratio of microarray data.16

(ii) LRT

LRT was used by Marioni1 to identify differ-

entially expressed genes from sequencing data.

In the dataset used, samples from each group

are technical replicates. Let Ygij represent the

number of reads mapped to gene g for the j-th

lane (sample) from group i, as described earlier

for the edgeR model. Ygij then can be mod-

elled as a Poisson random variable with mean

mgi ¼Mjpgi. Under the null hypothesis, the

two groups A and B have the same value for

gene g, pgi ¼ pj and, under the alternative

hypothesis, pgi¼ pj
A for samples from group A

and pgi ¼ pj
B for samples from group

B. Poisson regression is then performed where

the standard LRT is computed to test for

differences in expression between the two

groups.

(iii) FET

Under the random sample process, the number

of reads from a gene follows a binomial distri-

bution which can be approximated by a

Poisson distribution. The group counts and the

total counts are also Poisson distributed. FET

is then used to calculate the probability of
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observing group counts as the observed or

more extreme if the null hypothesis is true (no

difference between the two groups in the

expression of gene g) for each gene.

Testing

FET and large sample approximation, such as the

LRT and Z score test, are the choices. Multiple

testing was adjusted using the methods of either

Benjamini and Hochberg13 or Storey and

Tibshirani.17

3. baySeq

baySeq differs from the above two packages by

employing an empirical Bayesian analysis approach

to determine if there is DE between two different

conditions.18 It begins by assuming that the data

follow a distribution, either Poisson or NB, which

is defined by a set of underlying parameters. The

prior for each parameter is estimated by first boot-

strapping from the data, and then either applying

the maximum likelihood method (assuming that

the prior is from a Poisson or NB distribution), or

applying quasi-likelihood methods. For each gene

or tag, two scenarios (hypotheses) are envisaged:

one where the expression pattern is the same

across the two conditions (ie that there is no DE

between the two conditions for the gene); the

other where the expression patterns differ between

the two conditions (ie that there is DE for the

gene). Given the prior estimates and the likelihood

of the distribution of the data, one can estimate the

posterior likelihood under the two scenarios to

determine if there is DE for that gene or tag. Two

distributions are proposed for the data; one is Poisson

and the other is NB. The Poisson model is faster, yet

the NB model provides better fit for most RNA-seq

data. baySeq recommends using the NB model in

general. The required data format is the same as the

edgeR package. Parallel processing is provided

through the ‘snow’ package for faster processing.

Normalisation

No normalisation procedure is proposed in this

package.

Models

Two models are used in the package; one is to

assume a Poisson distribution on each tag that is

Ygij � (Mjpgi,), where the prior for pgi is assumed to

follow gamma distribution pgi � G(agi, bgi). This

model is therefore named the Poisson-gamma

approach. In general, a subset of data is taken

initially and more than 5,000 iterations are rec-

ommended for the bootstrapping. Gamma par-

ameters are calculated using maximum likelihood

methods. The mean of the maximum likelihood

estimates is taken to obtain a prior on pgi. An initial

prior value needs to be provided for the program

to start. The other model assumes that the data are

NB distributed, Ygij � NB(Mjpgi, fg). As there is no

conjugate prior available for this distribution, a

numerical solution for an empirical prior is

required. The program first bootstraps from the

data, with around 10,000 iterations suggested. The

parameters for an empirical prior distribution are

estimated using the quasi-likelihood approach.

Given the prior and the likelihood of the data, the

posterior likelihoods are then calculated. The

program repeatedly bootstraps to improve the accu-

racy of the prior estimation, and the posterior like-

lihood is updated accordingly.

Testing

The estimated posterior likelihoods are reported on

the natural logarithmic scale.

Conclusions

Among the three software packages surveyed,

DEGseq is the easiest to use. baySeq in general

takes much longer to run with the recommended

number of iterations for the bootstrap. edgeR is the

most flexible package and can handle both Poisson

data and over-dispersed data without the need to

pre-specify the model. baySeq also includes these

two models but one needs to pre-specify which to

use. DEGseq does not handle over-dispersed data.

Over-dispersion is extremely common among bio-

logical samples. edgeR provides estimates of the

over-dispersion parameter, which can be helpful in
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determining if a Poisson model is appropriate when

applying the other two packages.

edgeR normalises the data by scaling the

number of reads to a common value across all

samples. Recent studies have shown that gene

length and RNA composition also bias total read

counts of targeted genes. New software, providing

normalisation for gene length and RNA compo-

sition, will be expected in the future.
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