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Abstract—Single-cell RNA-Sequencing (scRNA-Seq),
an advanced sequencing technique, enables biomedical
researchers to characterize cell-specific gene expression
profiles. Although studies have adapted machine learning
algorithms to cluster different cell populations for scRNA-
Seq data, few existing methods have utilized machine
learning techniques to investigate functional pathways
in classifying heterogeneous cell populations. As genes
often work interactively at the pathway level, studying the
cellular heterogeneity based on pathways can facilitate
the interpretation of biological functions of different cell
populations. In this paper, we propose a pathway-based
analytic framework using Random Forests (RF) to identify
discriminative functional pathways related to cellular
heterogeneity as well as to cluster cell populations for
scRNA-Seq data. We further propose a novel method to
construct gene-gene interactions (GGIs) networks using
RF that illustrates important GGIs in differentiating cell
populations. The co-occurrence of genes in different
discriminative pathways and ‘cross-talk’ genes connecting
those pathways are also illustrated in our networks. Our
novel pathway-based framework clusters cell populations,
prioritizes important pathways, highlights GGIs and
pivotal genes bridging cross-talked pathways, and groups
co-functional genes in networks. These features allow
biomedical researchers to better understand the functional
heterogeneity of different cell populations and to pinpoint
important genes driving heterogeneous cellular functions.
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I. INTRODUCTION

S INGLE-CELL RNA-Sequencing (scRNA-Seq) is one of the
latest advances in high-throughput sequencing technolo-

gies. It enables the resolution of gene expression profiling at the
level of individual cells and allows to study biological processes
with a smaller number of cells compared to the traditional bulk
RNA-Sequencing (RNA-Seq) [1]. scRNA-Seq also provides
insights into cell-specific questions including: (a) cell lineage
and differentiation states [2], [3], (b) identification of cell types
or sub-cell types [4], [5], and (c) intra-tumor heterogeneity [6],
[7].

The rapid growth of interest in scRNA-Seq has led to an
increasing demand of appropriate computational methods for
understanding the cellular heterogeneity. A number of machine
learning based methods have been developed for unsupervised
clustering of cell populations for scRNA-Seq data. Related
methods include clustering cells based on reduced dimension-
ality of data through principal component analysis (PCA) [8], t-
distributed stochastic neighbor embedding (t-SNE) [9], and dif-
fusion maps [10]; multiple kernels learning [11]; consensus clus-
tering [12]; multiobjective evolutionary clustering imposed with
non-negative matrix factorization [13]; and Random Forests
based similarity learning [14], [15]. Despite these advance-
ments, assigning biological functions to clustered or known
cell populations from scRNA-Seq data is still a challenge [16].
As genes often work interactively but not individually, identi-
fying discriminative pathways can improve our understanding
of functional heterogeneity of cell populations. In addition,
few existing machine learning based methods for scRNA-Seq
data have been adapted to study cellular heterogeneity at the
pathway level. Gene set enrichment analysis (GSEA) developed
for bulk RNA-Seq can be applied to scRNA-Seq. However,
as scRNA-Seq data is sparser [17] and noisier than the bulk
RNA-Seq data [18], conventional methods for bulk RNA-Seq
data may not be optimal for scRNA-Seq data.

Inspired by the biological importance of pathways and the
lack of pathway-relevant analytic methods for scRNA-Seq, we
developed a pathway-based framework for analyzing scRNA-
Seq using Random Forests (RF). RF is an ensemble learning
method based on classification trees [19]. Superiority of RF
over other popular learning methods for bulk RNA-Seq gene
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expression data has been demonstrated [20]–[22]. The idea of
prioritizing pathways through RF was previously proposed for
bulk RNA-Seq data for the binary classification [23]. In this
paper, we extend the idea to the field of scRNA-Seq data for
identifying discriminative functional pathways in explaining the
cellular heterogeneity among multiple cell populations. Our new
framework can cluster cell populations by utilizing pathway
information, and can construct gene-gene interactions (GGIs)
networks by connecting ‘cross-talk’ genes of discriminative
pathways using RF. We have also implemented our framework
in a publicly available R package scPathwayRF (single-cell
pathway-based random forests classification, clustering and con-
struction of GGIs networks), which can be accessed from the fol-
lowing link: http://web.hku.hk/∼herbpang/scPathwayRF.html.

II. BACKGROUND

RF is the backbone machine learning algorithm for our novel
classification, clustering, and construction of GGIs networks
tool. RF is an ensemble classifier that aggregates multiple in-
dependent decision trees [19]. Each tree is built based on a
bootstrapped set of observations with the same dimension as
the original set of observations. Since samples are randomly
selected with replacement, some samples are left out in each tree
in RF, which are called out-of-bag (OOB) samples. Each set of
OOB samples in a tree in RF can be used as a built-in testing
set. During the construction of the tree, a random subset of input
features is selected to split each node of the tree. Classification
and regression tree (CART) methodology [24] is adapted to grow
the tree to maximum depth without pruning. The prediction of
the class for an observation is the majority vote over all trees
in the RF classifier. In RF, randomness is introduced in both
sampling and feature selection for node splitting. Consequently,
this unique character of RF makes it robust to outliers and noise
[19].

III. MATERIALS AND METHODS

In this section, we describe the methodology of our proposed
approach. In Section III-A, we present RF classification for
prioritizing discriminative pathways. This is followed by the
presentation of RF clustering for grouping cell populations in
Section III-B. In Section III-C, we present the methodology
for GGIs networks construction. Following the introduction of
methodologies in Sections III-A to III-C, we present the meth-
ods used for the comparison of our proposed RF classification
and RF clustering with other algorithms in Section III-D. We
describe in Section III-E a simulation study for understand-
ing the influence of informative genes on the performance of
pathway-based RF for scRNA-Seq data. A schematic diagram
of the whole proposed analytic framework is illustrated in Sup-
plementary Fig. 1(a).1

Let X ∈ Rme×n denote a scRNA-Seq gene expression matrix
of size me-by-n, corresponding to the number of expressed
genes by the number of observed cells, respectively. Suppose

1Supplementary materials can be downloaded from the link http://web.hku.
hk/∼herbpang/IEEE_JBHI_Supplementary2019Jun.pdf.

Fig. 1. Effect of ntree on the classification performance and speed.
(a) The classification accuracy has little change as ntree increases from
the default value (ntree = 500). (b) The computational time increases
proportionally with ntree.

n observed cells in X have been labelled into different cell
populations based on the known information or pre-clustering.
Let y = {y1, . . . , yn} denote the labels of cell populations for
n cells. Let P ∈ Rmg×p denote a binary matrix of functional
pathways database which contains mg number of genes and p
number of pathways, and let

Pij =

{
1 if the ith gene is involved in the jth pahtway,
0 otherwise,

(1)

where i = 1, . . . ,mg , and j = 1, . . . , p. Two sources of
pathways databases: BioCarta (http://www.biocarta.com/) and
KEGG [25], have been added as the built-in choices of databases
in scPathwayRF package. Given X, y, and P, our framework
enables the identification of discriminative pathways through
classification of cell populations, clustering of cell populations,
and construction of GGIs networks using pathway information
and RF.

A. Discriminative Functional Pathways in Differentiating
Cell Populations

Recall that the scRNA-Seq gene expression matrix X contains
me unique genes and the functional pathways database matrix P
containsmg unique genes. Suppose Me is the set of unique genes
in X, and Mg is the set of unique genes in P. Let MI denote the
intersectionMe ∩Mg , which contains mI number of genes with
mI ≤ min(me,mg). In the first step, a submatrix XI ∈ RmI×n

of X, and a submatrixPI ∈ RmI×p of P are extracted and stored,
where rows of both XI and PI are mI .

Letpj , j = 1, . . . , p, denote the jth column vector of PI , which
represents the jth pathway in PI . Define the pathway sizensize as
the number of expressed genes in the jth pathway, which equals
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to the sum of the jth column of PI :

nsize =

mI∑
a=1

PIaj . (2)

A user-defined cutoff ncutoff (default ncutoff = 5, for the
rationale of the choice of 5, please refer to Supplementary
Methods M1) is provided to filter out small pathways. For
the pathway pj satisfying nsize ≥ ncutoff , the corresponding
observation set used by the RF classifier is obtained through
an element-wise multiplication between the column vector of
XI and pj . Unexpressed genes are trimmed. And an nsize × n
matrix is generated for building a RF classifier for pj .

The goodness G of each investigated pathway in differenti-
ating cell populations is estimated by averaging classification
accuracy of k-fold (default k = 5) cross validation (CV) of
a pathway-based classifier. Indexes of sampling of k-fold CV
are kept consistent across all investigated pathways to prevent
the potential sampling bias. Suppose ŷf = {ŷf1 , . . . , ŷfn}, f ∈
{1, . . . , k} is the set of predicted cell populations for n cells in
the f th fold classification. Then the goodness G can be calculated
as

Gf =

∑n
x=1 1 (ŷfx = yx)

n
, (3)

G =
1

k

∑
f∈{1,··· ,k}

Gf , (4)

where 1 is an indicator function, and Gf represents the classifi-
cation accuracy in the f th fold CV. All investigated pathways are
prioritized based on their respective G values. By default, path-
ways with the top 10 highest G are selected as top discriminative
functional pathways in differentiating cell populations.

B. Pathway-Based Random Forests Clustering

RF has been applied previously in an unsupervised manner
to learn the similarity of clustering samples by using both
the original data and a newly generated synthetic data from
the original data [14], [26], and [27], and temporary classes
defined by discriminative features [15]. Here we propose an
approach using RF for clustering scRNA-Seq data based on gene
expression levels and pathways. A set of intermediate cluster
labels is generated by performing partitioning around medoids
(PAM) based on a similarity matrix Sgene. Sgene is calculated
by averaging RF learned similarity matrices from dimensionally
reduced matrices of three gene expression matrices X, XI (see
Section III-A), and Xu (a matrix of genes unannotated to any
pathway). Relevant pathways are identified via classification
using the intermediate cluster labels. Two popular dimension
reduction methods PCA [28] and t-SNE [29] are applied. R
package Rtsne [30] is used to perform t-SNE. When the number
of clusters is unknown, the function pamk in R package fpc [31]
will estimate the number of clusters by the average silhouette
width to perform PAM. Otherwise, PAM will be based on users’
input on the number of clusters. The set of intermediate cluster
labels is used as class labels to build pathway-based RF. The
elbow point [32] from sorted OOB errors of pathway-based RF,
or a user-defined number, is used as the cutoff to select relevant

pathways for clustering. We define a similarity matrix based on
pathways, Spathway , by averaging similarity matrices learned
from RF built on relevant pathways. A final similarity matrix
S for cells is calculated by averaging Sgene and Spathway . The
final cluster labels are determined by performing PAM based on
the final similarity matrix S. Supplementary Fig. 1(b) visualizes
the workflows of the proposed clustering method.

C. GGIs Networks Using Random Forests

After discriminative pathways are selected, important genes
involved in these pathways are then chosen to construct the GGIs
networks. There are two types of measures of variable impor-
tance offered by RF: (a) mean decrease in accuracy (MDA), and
(b) Gini impurity index [26]. We use MDA as the measure to
select important genes since the Gini measure is not as reliable
as MDA [26]. The calculation of MDA is based on the sample
margins. The margin of a sample is defined as the proportion of
vote for true class minus the maximum proportion of vote for
other classes in trees [19].

The MDA of a feature is defined as the average lowering
of the margin across samples when this feature is permuted
[26]. The detailed calculation of the margin and MDA of RF
are shown in Supplementary Methods M2. Genes involved in
each discriminative pathway are ranked by their MDAs, and by
default, the top 10% of them with positive MDAs are considered
as important genes (see Supplementary Methods M1 for the
rationale of the default 10% threshold).

Suppose a total of nimp important genes are selected. We use
RF to find the potential interaction between two important genes
in correctly predicting cell populations. Consider the set T =
{T1, . . . ,Tb} of all trees in the RF classifier built on important
genes as features. For each tree Tb, we trace back the decision
paths that correctly predict the labels of the OOB samples in this
tree. An interaction of two genes is defined as the occurrence
that both genes are used in the same decision path in the tree Tb.

A matrix ITb ∈ Rnimp×nimp indicating GGIs based on the tree
Tb can be defined as

ITb
uv =

{
1 if the uth gene interacts with the vth gene,
0 otherwise.

(5)

Based on the definition, an interaction only considers two
different genes simultaneously used in the decision for the
correct prediction, thus ITb

uv = 0 when u = v. And let I ∈
Rnimp×nimp denote a matrix representing the prevalence of
GGIs among trees in the forest, which can be calculated as

I =
1

|T|
∑
Tb∈T

ITb , (6)

where |T| is the length of set T, i.e., the total number of trees in
the forest.

A GGIs network for important genes is then constructed. Each
important gene is a node in the network, and in total there are
nimp number of nodes. The undirected edge between two nodes
indicates the prevalence of the interaction between two genes.
To make the graph of network visual friendly, we allow users to
calibrate the number of undirected edges using graph density D
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of the network, which is defined as

D =
2E

nimp × (nimp − 1)
, (7)

where E is the number of edges in the graph. The default graph
density is 0.05, which can be adjusted based on the desired visual
effect. Let w(u, v) denote the weight of the edge between the
uth node and the vth node. We define the weight to equal the
prevalence of the RF-based interaction between the uth gene and
the vth gene, i.e.,

w (u, v) = Iuv = Ivu. (8)

Edges denoting the top prevalent interactions are drawn ac-
cording to the desired graph density. We further use a co-
occurrence matrix C ∈ Rnimp×nimp to measure the number of
common discriminative pathways that genes sharing as the lay-
out of the network. Genes sharing a higher number of common
pathways are located more closely in the graph of the network.
We extract a submatrix Pimp ∈ Rnimp×10 from the pathway
database matrix PI , where rows in Pimp are important genes
and columns in Pimp are discriminative functional pathways.
The co-occurrence matrix C is defined as

C = PimpP
T
imp , (9)

where PT
imp is the transpose of Pimp. The diagonal value of Crr

is exactly equal to the total number of discriminative pathways
the rth gene involved in. In our network, the node size and the
node color are scaled to be proportional to the value of Crr

corresponding to the rth gene. ‘Cross-talk’ genes linking multiple
number of discriminative pathways are then highlighted. We also
provide an assessment of the influence of ‘cross-talk’ genes on
the cellular heterogeneity using RF (see Supplementary Methods
M3 for details).

R package randomForest version 4.6-14 [33] is used to con-
struct a RF classifier. R package iRF version 2.0.0 [34] is used
to decipher decision paths of trees in a RF classifier. A function
to plot the graph of our proposed network is implemented in our
package by employing R package igraph version 1.2.2 [35].

D. Comparison With Other Classification and Clustering
Algorithms for Cell Populations

We compare the performance in classifying cell populations
of RF with other typical classifiers as well as a deep learning
algorithm. The chosen algorithms include: (a) support vector
machines with linear kernel (svmLinear), (b) support vector
machines with radial basis kernel (svmRadial), (c) k-nearest
neighbors (KNN), (d) neural network (NNET), and (e) deep
neural network (DNN).

The same sampling of 5-fold CV as RF is used for all other
compared algorithms. And the same measure of the pathway-
based classification performance, G (described in Section III-A),
is used to compare all algorithms. The five typical classifiers
are implemented through R package caret version 6.0-81 [36].
Parameters of classifiers are tuned through 5 different unique
parameter combinations in the train function of caret. DNN
is implemented through R package h2o version 3.20.0.8 [37],
where the default parameters are used.

TABLE I
REAL DATASETS EMPLOYED IN THE PAPER

We compare our pathway-based RF clustering to other state-
of-the-art clustering methods including RAFSIL1/2 [14], [15],
which also use RF for similarity learning through newly con-
structed feature space from PCA and k-means clustering of
genes; SIMLR [11], which assesses cellular similarity based on
weights from multiple kernels, and SC3 [12], which is a consen-
sus method integrating correlation distance, PCA, k-means and
cluster-based similarity partitioning. The widely used measure
calculated from biological clusters and predicted clusters, ad-
justed rand index (ARI) [38], is used to compare the clustering
performance. Default parameters of those methods are used.

E. Simulation Study

To better understand the pathway-based classification perfor-
mance of RF in differentiating cell populations for scRNA-Seq
data, we have done a simulation study based on data from real
scRNA-Seq data. Two cases of hypotheses are simulated: the
null hypothesis where a pathway has no informative gene in
differentiating cell populations, and the alternative hypothesis
where a pathway has certain informative genes in relation to
different cell populations.

For the null case, we randomly select genes with non-positive
MDA (i.e., non-informative genes for the classification) from
pathways with the lowest ranked G to create simulated pathways
of different sizes (number of genes involved in): 10, 20, 40, and
80. For each simulated pathway size, different number of cells
in three cell populations: 50 vs 50 vs 50, 100 vs 100 vs 100,
and 150 vs 150 vs 150 are randomly selected and permutated.
With each combination of pathway size and number of cells, we
simulate 100 times, i.e., 100 different simulated pathways with
each combination. G in (4) is recorded in each iteration of the
simulation.

For the alternative case, besides pathway size and number of
cells, we add a variation of % informative genes in a pathway
(20%, 40%, and 60%) to evaluate their impact on the perfor-
mance measured by G. Informative genes are randomly selected
from genes with positive MDAs in top 10 ranked pathways from
both BioCarta and KEGG databases.

IV. RESULTS

A. Real Datasets

To compare the performance of pathway-based RF classifica-
tion to other classifiers for scRNA-Seq data, four real publicly
available datasets are utilized. Table I summarizes the basic
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information of the four datasets. Grun et al. [39] highlighted
the variation of transcriptomes of mouse embryonic stem cells
(mESCs) cultured in two different conditions in their study.
Kolodziejczyk et al. [40] demonstrated distinct levels of gene
expression of mESCs grown under three different conditions.
Patel et al. [7] demonstrated intratumoral heterogeneity in five
different glioblastoma tumors. Sharma et al. [41] investigated
the phenotypic heterogeneity and homogeneity of thirteen lines
of tumor cells with different drug-resistant/holiday models. Ad-
ditional information of the four datasets including normalization
methods, sparsity of the matrices, and download sites is listed
in Supplementary Table I.

B. Application of Proposed Approach

In this section, we present the results of applications of our
proposed approach. The first subsection presents the application
of pathway-based RF classification to find discriminative path-
ways and to construct GGIs network for Kolod dataset using Bio-
Carta pathways. The application results for Patel dataset using
KEGG pathways are shown in Supplementary Results R1. The
second subsection presents the application of pathway-based RF
clustering for cell populations.

Two parameters can be tuned in RF, which are the number of
features to be randomly selected in the node splitting (mtry), and
the total number of trees in the forest (ntree). In our approach,
we apply the default setting of mtry = square root of input
number of features, which is suggested to give optimal results
[19]. And we set ntree = 500 as the default value since further
incrementing ntree has little improvement on the classification
accuracy. On the other hand, the computational time increases
proportionally with the increment of ntree. Fig. 1(a) shows the
effect of ntree to the classification accuracy among all available
pathways. Fig. 1(b) shows the relationship between ntree and
computational time in minutes.

1) Identification of Discriminative Pathways and the
Construction of GGIs Networks: We apply our proposed
approach to identify BioCarta pathways that are good at
explaining the heterogeneity of mESCs grown in three different
conditions: serum (lif), two inhibitors (2i), and the alternative
ground state (a2i) in the Kolod dataset. 217 BioCarta pathways
that have pathway size no less than 5 are investigated. Pathways
are prioritized based on the goodness score G in (4), which is
the average pathway-based classification accuracy of 5-fold CV.

Table II shows the top 10 discriminative BioCarta pathways
in the Kolod dataset. The original study of the Kolod dataset
found that most heterogeneous genes of cells in different con-
ditions were related to cell cycle, MAPK signaling, and basic
metabolism [40]. Consistently, the top 10 discriminative Bio-
Carta pathways identified by our approach include the pathway
related to MAPK signaling, pathways related to cell cycle such
as TCR Pathway, G1 Pathway, RACCYCD Pathway, and P53
Pathway, as well as pathways related to basic metabolism such
as PPARA Pathway and Free Pathway. In the original study of
Kolod, cells within a2i population were inhibited with glycogen
synthase kinase 3 (GSK3) [40]. And our approach has success-
fully identified GSK3 Pathway as a good classifier.

TABLE II
TOP 10 DISCRIMINATIVE BIOCARTA PATHWAYS IN KOLOD

aG is the average pathway-based classification accuracy of 5-fold CV that is calculated
based on (3) and (4).

The RF based GGIs network for important genes in dis-
criminative BioCarta pathways in the Kolod dataset is shown
in Fig. 2. Each node represents an important gene selected
based on MDA. Size and the color of the node are related to
the total number of discriminative pathways a gene is involved
in. ‘Cross-talk’ genes linking multiple discriminative pathways
are highlighted and their influences on classification are shown
in Supplementary Results R2. For the Kolod dataset, Mapk3,
also known as Erk1 links 6 discriminative pathways: TCR,
PPARA, MAPK, EDG1, Integrin, and RACCYCD, which are
pathways mostly related to cell cycle. The layout of the network
depends on the co-occurrence matrix C of (9) indicating the co-
occurrence of genes in discriminative pathways. Co-functional
genes sharing a greater number of pathways are clustered. For
instance, genes Cdk2, Cdkn1a, and Cdk6 belong to pathways
G1 and RACCYCD are clustered in the network. The weight
of the undirected edge between two genes is the prevalence of
GGIs in RF as defined in (6), (7) and (8). In total 29 nodes are
in the network and the default calibration of graph density D
= 0.05, 49 edges between genes with top ranked prevalence of
interaction in RF are created. Fig. 3 shows patterns of expression
level in different cell populations of gene pairs having top 2
prevalent interaction in RF. In general, these interacting genes in
RF together give a relatively good separation of cell populations
and may correlate with each other. For example, genes Gpx1
and Gja1 have a significant Spearman’s correlation (p value
< 0.0001, coefficient = −0.60) and both are heterogeneously
expressed in three cell populations. To assess the feasibility and
stability of the I values, we illustrate the relationship between
the number of trees in RF and the I values in the Supplementary
Fig. 2 for the top 10 and the bottom 10 gene-gene pairs ranked
based on the default RF. The I values converges to a stable value
with growing number of trees.

2) Application of Pathway-Based RF Clustering: We apply
our pathway-based RF clustering for predicting cell populations
for the Kolod and Patel datasets using BioCarta pathways and
KEGG pathways respectively. Fig. 4(a) and Fig. 4(b) are 2-
dimensional (2D) visualization of the predicted cell populations
and biological cell populations for Kolod and Patel datasets by
our method. Here we select the 10 most relevant pathways for
clustering. Fig. 4(c) and Fig. 4(d) present the Venn diagrams of
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Fig. 2. The GGIs network for important genes from discriminative BioCarta pathways in the Kolod dataset. Each node represents a gene. Layout
of nodes depends on co-occurrences of genes in discriminative pathways. Size and color of a node indicate number of discriminative pathways the
gene involved in. An edge is created if the prevalence of interaction between two genes in RF is high given the calibration of graph density D =
0.05.

Fig. 3. Expression values of top 2 prevalent interacting gene pairs
in the Kolod dataset. Genes of cells are grouped by cell populations
and shown in colors, and ‘w’ in the title represents the prevalence of
interaction between two genes.

10 relevant pathways selected from clustering and 10 discrimi-
native pathways selected from classification.

C. Comparison of Classification Methods and
Clustering Methods

1) Comparison of Pathway-Based RF Classification to Other
Methods: We compare the pathway-based classification perfor-
mance in differentiating cellular heterogeneity of different clas-
sifiers. Table III summarizes the average classification accuracy
of 5-fold CV of different classifiers based on both BioCarta path-
ways and KEGG pathways for four real scRNA-Seq datasets.
A non-informative classifier (NIC) that assigns classes of all
observations as the majority class is also included in Table III
for the comparison. The distribution of classification accuracy
of different classifiers for four datasets through density curves

Fig. 4. Visualization of cell populations (biological vs predicted)
through tSNE from relevant pathways and the overlap of selected path-
ways between clustering and classification. (a) 2D Visualization of cell
populations in Kolod. (b) 2D Visualization of cell populations in Patel.
(c) Venn diagram of selected BioCarta pathways between clustering and
classification in Kolod. (d) Venn diagram of selected KEGG pathways
between clustering and classification in Patel.

based on BioCarta and KEGG pathways are shown in Fig. 5(a)
and Fig. 5(b), respectively. Non-informative rate (NIR) in titles
of subfigures represents the classification accuracy of NIC,
which equals to the ratio of the majority population of cells
over all cells.
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TABLE III
COMPARISON OF AVERAGE CLASSIFICATION ACCURACY OF DIFFERENT

CLASSIFIERS BASED ON BIOCARTA AND KEGG PATHWAYS

∗NIC is the represents a non-informative classifier that assigns classes of all observations
as the majority class.

Fig. 5. The distribution of classification accuracy of different classifiers
for 4 datasets. (a) Density curves of classification accuracy based on
BioCarta pathways. (b) Density curves of classification accuracy based
on KEGG pathways. NIR: non-informative rate. The vertical line in each
plot indicates NIR to the dataset.

Results from Table III and Fig. 5 indicate that RF outperforms
other classifiers in pathway-based classification of different
cell populations for scRNA-Seq data. Results also show the
average classification accuracies of our classifiers are higher
than the baseline NIR which represents the accuracy of random
guessing accounting for class sizes. Given the baseline NIR, the
average classification accuracies of datasets with larger number
of classes are generally lower than those with fewer classes.
Table IV shows the average computational time of different
classifiers to investigate all available pathways in databases:
186 BioCarta pathways, and 217 KEGG pathways. Only KNN

TABLE IV
COMPUTATIONAL TIME (MINUTES) OF DIFFERENT CLASSIFIERS

TABLE V
COMPARISON OF PERFORMANCE (ARI) OF CLUSTERING

requires less computational time than RF in datasets containing
more than three classes (5 classes in Patel and 13 classes in
Sharma). In terms of computational time, pathway-based RF for
scRNA-Seq data is especially efficient for classifying multiple
cell populations. Support vector machine with either linear
kernel or radial kernel slows down notably when the number
of cells and populations of cells both increase. The results of a
sensitivity analysis to assess the influence of tuning parameters
on the performance of different classifiers is provided in Sup-
plementary Results R3, which also shows decent performance
of RF with default parameters.

2) Comparison of Pathways-Based RF Clustering to Other
Methods: The performance of our clustering approach is com-
pared to other state-of-the-art clustering methods by ARI metric.
Table V summarizes the performance of different methods for
tested datasets. In general, SC3 outperforms others and SIMLR
appears to be the least competitive. Although our proposed
method has the lowest performance for the Kolod dataset and the
second lowest performance for the Patel dataset, it outperforms
others for the Grun and Sharam datasets. Regarding to the
computational time, our method is comparable with RAFSIL1/2
and costs around 50% more computing time compared to SIMLR
and SC3.

D. Results of Simulation

As described in Section III-D, datasets with different com-
binations of pathway size, number of cells (sample size), and
% informative genes are simulated to understand the pathway-
based classification performance of RF for scRNA-Seq data. The
mean and standard deviation of the pathway-based classification
performance, with 100 simulations for each combination are
summarized in Table VI and Table VII.

Table VI shows classification performance with different
combinations of pathway size and sample size under the null
hypothesis in which the investigated pathway is non-informative
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TABLE VI
SIMULATIONS UNDER THE NULL MEASURED BY G∗ (MEAN ± SD)

∗G is the average pathway-based classification accuracy of 5-fold CV that calculated based
on (3), (4). SD, standard deviation.

TABLE VII
SIMULATIONS UNDER THE ALTERNATIVE MEASURED BY G∗ (MEAN ± SD)

∗G is the average pathway-based classification accuracy of 5-fold CV that calculated based
on (3), (4). SD, standard deviation.

to differentiate cell populations. The classification performance
under the null hypothesis is close to a random guessing (0.33)
for the simulated dataset containing 3 balanced classes.

Table VII shows classification performance under the alter-
native hypothesis with different combination of % informative
genes in the investigated pathway. Under the alternative hypoth-
esis where the investigated pathway is somehow informative in
differentiating cell populations, the classification performance
is better than a random guess. And as the % informative genes
in a pathway, pathway size, or sample size increases, the classi-
fication performance will be improved as well.

V. DISCUSSION AND CONCLUSION

As scRNA-Seq has emerged in recent years, corresponding
computational analytic approaches and user-friendly packages

are needed. Although numerous machine learning based un-
supervised methods have been proposed for scRNA-Seq data,
assigning heterogeneous biological functions of determined cell
populations is still a challenging issue. Appreciating the impor-
tance of this fact, in this study, we present a pathway-based
classification approach to find the heterogeneous functional
pathways that differentiate cell populations using RF. The ro-
bustness of RF can be extended to scRNA-Seq data that are
noisier and sparser compared to bulk RNA-Seq data. Advantages
of RF compared to other classifiers in terms of both classification
performance and computational time are demonstrated. With
its ensemble nature, RF is robust to relatively noisy data and
has great performance for high-dimensional data [42]. In addi-
tion, RF provides decent performance with default parameters
without the need for tuning in classifying cell populations in
the pathway-based setting. Through simulation study, we have
confirmed our pathway-based RF classification approach for
scRNA-Seq data is able to distinguish between the true infor-
mative pathways (the alternative case) and the non-informative
ones (the null case).

We also provide a clustering method for scRNA-Seq that com-
bines both gene-based and pathway-based information using
RF. The performance and computational time of our method
is comparable to RAFSIL1/2 [14], [15], which also uses RF for
similarity learning for scRNA-Seq. Both methods perform better
than SIMLR [11]. Although SC3 [12] generally outperforms
other methods, our method is at the top for two datasets and
identifies relevant pathways for clustering that can help users
to infer biological functions of cell clusters. Additionally, clus-
tering result of other methods can be applied into our pipeline
for prioritizing discriminative pathways and constructing GGIs
network to infer functional heterogeneity between cell clusters.

We further propose a novel approach to construct GGIs net-
works that can identify gene pairs that interact together and
can also serve as strong predictors of cell populations. The
co-occurrence of genes in different discriminative pathways and
‘cross-talk’ genes connecting them are also highlighted in our
networks. These networks can facilitate researchers to pinpoint
important genes contributing to pathway cross-talks and to easily
capture co-functional clusters among multiple discriminative
pathways.

Our work addresses the importance of functional pathways
in understanding heterogeneous biological function in differ-
ent cell populations. Our novel networks not only group co-
functional genes with common discriminative pathways via
co-occurrence matrix but also allow the identification of GGIs
in differentiating cell populations. Despite the advantages men-
tioned above, the proposed pathway-based analytic framework
also has some limitations. Building multiple pathway-based
RF models requires more computational resources compared
to testing individual genes followed by functional enrichment
analysis as well as compared to clustering cells based on purely
gene expression profiles. However, with today’s computing
power of general PCs the computational time of the analysis
may not be an issue; if it is, pathway-based analysis can easily
be distributed across computation cores. Another limitation is
that constructing pathway-based models depends on whether the
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genes are annotated, genes that are not mapped to pathways are
overlooked. However, pathways do provide biological context
and can enhance our understanding of heterogeneous cellular
functions using scRNA-Seq. Moreover, the pathway databases
are also updated frequently. In conclusion, our work can stim-
ulate more future research that incorporates prior biological
knowledge in the analysis of scRNA-Seq data in the era of
precision health and medicine.
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