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Summary

The binomial proportion is a classic parameter with many applications and has also been exten-
sively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse
proportion, is often overlooked, even though it also plays an important role in various fields. To es-
timate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when
there is no successful event in the Bernoulli trials. To overcome this zero-event problem, several
methods have been introduced in the previous literature. Yet to the best of our knowledge, there
is little work on a theoretical comparison of the existing estimators. In this paper, we first review
some commonly used estimators for the inverse proportion, study their asymptotic properties,
and then develop a new estimator that aims to eliminate the estimation bias. We further conduct
Monte Carlo simulations to compare the finite sample performance of the existing and new estima-
tors, and also apply them to handle the zero-event problem in a meta-analysis of COVID-19 data
for assessing the relative risks of physical distancing on the infection of coronavirus.

Key words: binomial proportion; inverse proportion; relative risk; shrinkage estimator; zero-event
problem.

1 Introduction

The binomial distribution is one of the most important distributions in statistics, which has
been extensively studied in the literature with a wide range of applications. This classical distri-
bution has two parameters n and p, where n is the number of independent Bernoulli trials and p is
the probability of success in each trial (Hogg et al., 2005). The probability of success, p, is also
referred to as the binomial proportion. For excellent reviews on its estimation and inference, one
may refer to, for example, Agresti & Coull (1998) and Brown et al. (2001).
Apart from the parameter p, it is known that some of its functions, say pð1 � pÞ and lnðpÞ,

also play important roles in statistics and have received much attention. In this article, we are
interested in the reciprocal function

θ ¼ 1

p
; (1)
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which is another important function of p yet is often overlooked in the literature. For conve-
nience, we also refer to θ in formula (1) as the inverse proportion of the binomial distribution.
To demonstrate its usefulness, we will introduce some motivating examples in Section 2 that
connect the inverse proportion with the relative risk (RR) and with the Horvitz–Thompson es-
timator (Horvitz & Thompson., 1952; Fattorini, 2006). Moreover, we will also introduce in
Section 6 a relationship of the inverse proportion to the number needed to treat (NNT) and
the reduction in number to treat (RNT) in clinical studies, and present some future directions
(Laupacis et al., 1988; Altman, 1998; Hutton, 2000; Zhang & Yin, 2021).

To start with, let X ¼ ∑ n
i¼1X i, where X i are independent and identically distributed random

variables from a Bernoulli distribution with success probability p ∈ ð0; 1Þ. Then equivalently,
X follows a binomial distribution with parameters n ≥ 1 and p. Now if we want to estimate
the inverse proportion θ, a simple method will be to apply the maximum likelihood estimation
(MLE) and it yields

θ̂MLE ¼ n

X
: (2)

This estimator is, however, not a valid estimator because it is not defined whenX ¼ 0, that is,
when there is no successful event in n trials. We refer to this problem as the zero-event problem
in the point estimation of θ. In fact, the same problem also exists in the interval estimation of p.
Specifically by Hogg et al. (2005), the 100ð1 � αÞ% Wald interval is given as

p̂ ± zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ

n

r
;

where p̂ ¼ X=n, and zα=2 is the upper α=2 percentile of the standard normal distribution. When
X ¼ 0, the lower and upper limits of the Wald interval are both zero; and consequently, they will
not be able to provide a 100ð1 � αÞ% coverage probability for the true proportion.

To overcome the zero-event problem, Hanley & Lippman-Hand (1983) proposed the ‘Rule of
Three’ to approximate the upper limit of the 95% confidence interval (CI) for p. Specifically, as
the upper limit of the one-sided CI for p is 1 � 0:051=n when X ¼ 0, the authors approximated
this upper limit by 3=n, which then yields the simplified CI as ð0; 3=nÞ. For more discussion on
the ‘Rule of Three’, one may refer to Tuyl et al. (2009) and the references therein. In particular,
we note that the Wilson interval (Wilson, 1927) and the Agresti–Coull interval (Agresti &
Coull, 1998) for p have also been referred to as the variations of the ‘Rule of Three’.

The Wilson interval was originated from Laplace who proposed the ‘Law of Succession’ in
the 18th century. As mentioned in Good (1980), Laplace’s estimator for the binomial proportion
was given as ðX þ 1Þ=ðnþ 2Þ, which is indeed a shrinkage estimator for p. Wilson (1927) gen-
eralised the shrinkage idea and proposed an updated ‘Law of Succession’ as ~pðcÞ ¼
ðX þ cÞ=ðnþ 2cÞ, where c > 0 is a regularisation parameter. By applying the Wilson estima-
tor, Agresti & Coull (1998) substituted ~pðcÞ for p̂ in the Wald interval, which yields the
Agresti–Coull interval

~pðcÞ±zα=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pðcÞ½1 � ~pðcÞ�

n

r
:

It is also noteworthy that the Agresti–Coull interval always performs better than the Wald inter-
val, no matter whether n is large or small (Brown et al., 2001).

By applying the Wilson estimator ~pðcÞ, one may estimate the inverse proportion as
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~θðcÞ ¼ nþ 2c

X þ c
; c > 0: (3)

Note that the estimator with form (3) does not suffer from the zero-event problem, and so it
provides a valid estimate of θ for any given c > 0. In particular, two special cases of estima-
tor (3) with c ¼ 0:5 and 1 have been widely applied in the previous literature (Walter, 1975;
Carter et al., 2010). Moreover, there are other estimators that follow the structure of (3) includ-
ing, for example, a piecewise estimator (PE) with corrections only on X ¼ 0 or n
(Schwarzer, 2007). In addition to (3), another family of shrinkage estimators for the inverse pro-
portion takes the form of

θ̂ðcÞ ¼ nþ c

X þ c
; c > 0: (4)

For the special case θ̂ð0:5Þ, it has been investigated by Pettigrew et al. (1986) and Hartung &
Knapp (2001). More recently, Fattorini (2006) applied θ̂ð1Þ to estimate θ in sampling designs
and demonstrated that it provides an asymptotically unbiased estimator of θ as n tends to infinity.
For more results on θ̂ðcÞ, see also Chao & Strawderman (1972), Gamrot (2013), Seber (2013),
and the references therein.
The remainder of this paper is organised as follows. In Section 2, we briefly review the liter-

ature and introduce two motivating examples where an estimate of the inverse proportion is de-
sired. In Section 3, we first compare the theoretical properties of the existing estimators, and
then derive the optimal estimator in family (4) that minimises the estimation bias. In Section
4, we conduct Monte Carlo simulations to compare the existing and new estimators in terms
of the relative bias, Stein loss and mean squared error. In Section 5, we further apply our new
method to handle the zero-event problem in a meta-analysis of COVID-19 data for assessing
the relative risks of physical distancing on the infection of coronavirus. Lastly, we conclude
the paper in Section 6 with some discussion and future work, and present the Appendices in
the supporting information.

2 MOTIVATING EXAMPLES

In this section, we provide two motivating examples in which an accurate estimate of the in-
verse proportion θ is highly desired.

2.1 Relative Risk

In clinical studies, the relative risk (RR), also known as the risk ratio, is a commonly used
effect size for measuring the effectiveness of a treatment or intervention (Agresti, 2003; Wei
et al., 2021). Specifically, RR is defined as

RR ¼ p1
p2
; (5)

where p1 is the event probability in the exposed group, and p2 is the event probability in the
unexposed group.
To estimate RR, we assume that there are n1 samples in the exposed group with X 1 being the

number of events, and n2 samples in the unexposed group with X 2 being the number of events.
Let also X 1 follow a binomial distribution with parameters n1 and p1, X 2 follow a binomial dis-
tribution with parameters n2 and p2, and that they are independent of each other. Then by (5) and
applying the MLEs of p1 and p2 respectively, RR can be estimated by
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cRR ¼ X 1=n1
X 2=n2

¼ X 1n2
X 2n1

: (6)

A problem of this estimator is, however, that it suffers from the zero-event problem when
X 2 ¼ 0. To overcome this problem, there are a few popular suggestions in the literature to fur-
ther improve the RR estimator in (6).

(i) Walter (1975) introduced a modified estimator of RR as ~RRð0:5Þ ¼
ðX 1 þ 0:5Þðn2 þ 1Þ=½ðX 2 þ 0:5Þðn1 þ 1Þ�. Following this idea, the inverse proportion of
the unexposed group is, in fact, estimated by the Walter estimator

~θð0:5Þ ¼ n2 þ 1

X 2 þ 0:5
; (7)

which is a special case of estimator (3) with c ¼ 0:5.
(ii) Pettigrew et al. (1986) proposed to estimate pi by ðX i þ 0:5Þ=ðni þ 0:5Þ for i ¼ 1 or 2, and

further concluded that ln½ðX i þ 0:5Þ=ðni þ 0:5Þ� is an unbiased estimator of lnðpiÞ by ignor-
ing the termOðn�2Þ. Accordingly, the Pettigrew estimator for the inverse proportion can be
given as

θ̂ð0:5Þ ¼ n2 þ 0:5

X 2 þ 0:5
; (8)

which is a special case of estimator (4) with c ¼ 0:5.
(iii) Originated from (3), a family of piecewise estimators is defined as

~θPEðcÞ ¼ nþ 2cIðX ¼ 0ornÞ
X þ cIðX ¼ 0ornÞ ; c > 0; (9)

where Ið · Þ is the indicator function. Particularly, one special case with c ¼ 0:5 that has been
extensively applied in clinical studies (Carter et al., 2010; Higgins et al., 2009; Chu
et al., 2020) is given as

~θPEð0:5Þ ¼ n2 þ IðX ¼ 0ornÞ
X 2 þ 0:5IðX ¼ 0ornÞ: (10)

For ease of notation, we correspondingly denote this estimator as the piecewise Walter estima-
tor in this paper.
(iv) To estimate RR, Carter et al. (2010) proposed another estimator as ~RRð1Þ ¼

ðX 1 þ 1Þðn2 þ 2Þ=½ðX 2 þ 1Þðn1 þ 2Þ� . Or equivalently, this yields the Carter estimator
for the inverse proportion as

~θð1Þ ¼ n2 þ 2

X 2 þ 1
; (11)

which is a special case of estimator (3) with c ¼ 1.

2.2 The Horvitz–Thompson Estimator

On random sampling without replacement from a finite population, it is known that the
Horvitz–Thompson estimator has played an important role in the literature for estimating the
population total (Horvitz & Thompson., 1952; Cochran, 2007).
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Let U be a population composed of t units fu1; …; utg, and pi be the first-order selection
probability associated with unit ui . Let also Ω be a random variable associated with the
population U , and Ωi be the value of Ω determined by unit ui . Following these notations,
the population total of Ω can be defined as T ¼ ∑ t

i¼1Ωi. Then as an unbiased estimator of T ,
the Horvitz–Thompson estimator is given as

T̂ ¼
X
j ∈ V

ωjθj ¼
X
j ∈ V

ωj

pj
; (12)

where ωj is the observed value of Ωj, and V ⊆ f1; …; tg is a subset of samples selected for es-
timating the population total. In practice, it is not uncommon that the inverse proportions θj ¼
1=pj are unknown and so need to be estimated.
To estimate θj in (12), Fattorini (2006) proposed a numerical method via Monte Carlo sim-

ulations. Specifically in each simulation, a total of n samples were selected independently with
replacement from the population U , with X j being the number of samples that contain the j th
unit, where j ∈ V. Further, to avoid the zero-event problem onX j, Fattorini applied estimator (4)
with c ¼ 1 to estimate the inverse proportions by

θ̂ jð1Þ ¼ nþ 1

X j þ 1
; j ∈ V : (13)

This leads to the empirical Horvitz–Thompson estimator of the population total as T̂ m ¼
∑ j ∈ Vωjθ̂ jð1Þ. Unless otherwise specified, we will ignore the subscript j in (13) and refer to

θ̂ð1Þ as the Fattorini estimator.
For the Fattorini estimator in family (4) with c ¼ 1, Seber (2013) showed that

E½θ̂ð1Þ� ¼ E
nþ 1

X þ 1

� �
¼ 1 � ð1 � pÞn þ 1

p
¼ θ � θ 1 � 1

θ

� �n þ 1

: (14)

Then by the fact that limn→∞Bias½θ̂ð1Þ� ¼ limn→∞½�θð1 � 1=θÞn þ 1� ¼ 0 for any fixed
θ ∈ ð1; ∞Þ, the Fattorini estimator is an asymptotically unbiased estimator of θ when n is large.
In addition, when p is large enough, or equivalently when θ is close to 1, the estimation bias of
the Fattorini estimator is often negligible no matter whether n is large or small.

3 METHODOLOGY

3.1 Comparison of the Existing Estimators

In view of the demand for accurate estimation of the inverse proportion, we revisit the three
families of shrinkage estimators in (3), (4) and (9) and compare them in both theory and prac-
tice. We first show that the three estimators are all consistent and asymptotically equivalent,
with the proof of the theorem in Appendix A in the supporting information.

Theorem 1. Let X be a binomial random variable with parameters n and p. For the shrinkage
estimators in (3), (4) and (9) with any finite c > 0, we have the following properties:

(i) ~θðcÞ, θ̂ðcÞ and ~θPEðcÞ are all consistent estimators of θ;
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(ii) ~θðcÞ, θ̂ðcÞ and ~θPEðcÞ are all asymptotically equivalent such that
ffiffiffi
n

p ðθ̌ � θÞ→D Nð0; θ2ðθ �
1ÞÞ , where θ̌ is a generic notation for the three estimators and →

D
denotes convergence in

distribution.

Despite the asymptotic equivalence, we note however that their finite sample performance can
be quite different. To demonstrate it, we conduct a numerical study to compare the three estima-
tors under the Stein loss (SL), which, as a scale-invariant loss function, provides a better criterion
for assessing the accuracy of θ compared with the location-invariant squared loss (Tong &
Wang, 2007). It is noteworthy that, for comparison purpose, we have also presented the results
for the squared loss in Figure S1. For the setting of parameters, we consider θ ¼ 1.02, 2 or 50,
which is equivalent top ¼0.98, 0.5 or 0.02.We also considern ¼10 or 200 to represent the small
and large sample sizes respectively, and let c range from 0 to 2 so as to cover most common
choices of c in the literature. Then for each setting, we generate N ¼ 1,000,000 data sets from
the binomial distribution and estimate θ by each estimator from the three families. Finally, with
the simulated data sets, we compute the Stein loss of each estimator by

SLðθ̌kÞ ¼ 1

N
∑
N

k¼1

θ̌k
θ

� ln
θ̌k
θ

� �
� 1

� �
; (15)

and then report the simulation results in Figure 1.
From Figure 1, it is evident that the estimators from family (4) perform better than those from

the other two families in most settings. In particular, no estimator from family (3) is able to pro-
vide an accurate estimate when θ ¼ 1:02, no matter whether the sample size is large or small. On
the other side, the estimators from family (9) fail to provide a stable performance when θ is mod-
erate to large. To summarise, except for the extreme case where θ is relatively large and n is rel-
atively small, the estimators from family (4) are always among the best and so can be safely rec-
ommended. Moreover, we also provide another evidence from the perspective of bias in Theorem
2 that the estimators from family (3) can be suboptimal for practical use, with the proof in
Appendix B in the supporting information. Taken together, we will focus on the estimators
θ̂ðcÞ in family (4) and propose to find the optimal c value that minimises the estimation bias.

Theorem 2. Let X be a binomial random variable with parameters n and p . Then for the

estimators from family (3), there does not exist a shrinkage parameter c such that E½~θðcÞ� ¼ θ when
p ¼ 0:5, or equivalently, when θ ¼ 2.

3.2 Optimal Estimation of θ

For the estimators from family (4), we have introduced the Fattorini estimator with c ¼ 1 as a
special case with the asymptotic property in Section 2.2. However, as is shown in the numerical
study, the Fattorini estimator may not provide an accurate estimate for the inverse proportion
when n is small and θ is large. To further illustrate it, we take n ¼ 10 and θ ¼ 50; then according
to (14), the relative bias of the Fattorini estimator is as large as

E½θ̂ð1Þ� � θ
θ

� 100% ¼ �ð1 � 0:02Þ11 � 100% ≈ � 80:07%:

In addition, it is noteworthy that the expected value of the Fattorini estimator is always lower
than θ and so is consistently negatively biased. These evidences indicate that the Fattorini esti-
mator may not be the optimal estimator in family (4).
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To eliminate the bias in the Fattorini estimator, we now define the optimal shrinkage param-
eter c as the value such thatE½θ̂ðcÞ� ¼ θ. For ease of notation, we also express the expected value
of θ̂ðcÞ as

gðcÞ ¼ E½θ̂ðcÞ� ¼ ∑
n

x¼0

nþ c

xþ c

� �
n

x

� �
pxð1 � pÞn � x; (16)

and then regard gðcÞ as a function of c. In the following theorem, we provide some properties of
gðcÞ, including the continuity, monotonicity and convexity, with the proof in Appendix C in the
supporting information.

Theorem 3. For the expected value function gðcÞ in (16) with any finite integer n, we have the
following properties:

(i) gðcÞ is a continuous function of c on ð0; ∞Þ with limc→0gðcÞ ¼ ∞ and limc→∞gðcÞ ¼ 1;
(ii) gðcÞ is a strictly decreasing function of c on ð0; ∞Þ;
(iii) gðcÞ is a strictly convex function of c on ð0; ∞Þ.

Note also thatθ takes value on ð1; ∞Þ, andgð1Þ < θ for any fixednaccording to formula (14).
Then by Theorem 3 and the Intermediate Value Theorem, there exists a unique solution
c ∈ ð0; 1Þ such that gðcÞ ¼ θ, or equivalently,

FIGURE 1. The Stein losses for the shrinkage estimators from the three families with θ ¼ 1.02, 2 or 50, n ¼ 10 (top three
panels) or 200 (bottom three panels), and c ∈ ð0; 2Þ, where ‘3’ represents the estimators from family (3), ‘4’ represents the
estimators from family (4), and ‘9’ represents the estimators from family (9).

7Estimating the Reciprocal of a Binomial Proportion

International Statistical Review (2023)
© 2023 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12539 by H

ong K
ong B

aptist U
niversity, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



gðcÞ ¼ ∑
n

x¼0

nþ c

xþ c

� �
n

x

� �
pxð1 � pÞn � x ¼ 1

p
: (17)

When n is small, in particular for n ¼ 1 or n ¼ 2, we can derive the explicit solution of c from
equation (17). When n is large, however, the degree of equation will be as high as nþ 1, and
consequently, an explicit solution for the unknown c may not exist. To summarise, we have
the following theorem with the proof in Appendix D in the supporting information.

Theorem 4. When n is less than 3, the solution of c in equation (17) is given by

cn ¼
p n ¼ 1;

p � 0:5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � ðp � 0:5Þ2

q
n ¼ 2:

(

When n ≥ 3, we have the approximate solution of c as

cn ≈ 1 � p�1ð1 � pÞn þ 1

ðnþ 1Þð1þ D1ÞD2 � D1
; (18)

where

D1 ¼ 1

pðnþ 1Þ ½1 � ð1 � pÞn þ 1�; D2 ¼ 1

p2ðnþ 1Þðnþ 2Þ½1 � ð1 � pÞn þ 2

� ðnþ 2Þpð1 � pÞn þ 1�:

To check the accuracy of the approximate solution in Theorem 4, we also plot the numerical
results of the true and approximate solutions of c as a function of p in Figure 2. Under various
settings, we note that the true solution of c is given as a monotonically increasing function of p
with the upper bound 1. And in addition, our approximate solution always works well as long as
n or p is not extremely small.

3.3 Plug-In Estimator

To apply Theorem 4 for the optimal shrinkage parameter, we need a plug-in estimator for the
unknown p. Intuitively, the MLE of p, p̂MLE ¼ X=n, can serve as a natural choice. By doing so,
however, for n ¼ 1 we have ĉ1 ¼ p̂MLE ¼ X , and further, it yields that θ̂ðĉ1Þ ¼
ð1þ ĉ1Þ=ðX þ ĉ1Þ ¼ ð1þ X Þ=2X , which then suffers from the zero-event problem. For n ¼
2, it is noted that the same problem also remains. For n ≥ 3, the approximate solution will no
longer suffer from the zero-event problem; but on the other side, the denominator term,
ðnþ 1Þð1þ D1ÞD2 � D1, in (18) will be zero when X ¼ n, and consequently the approximate
solution is still notapplicable. To conclude, the MLE of p cannot be directly applied as the
plug-in estimator when applying Theorem 4 to estimate the inverse proportion.

To overcome the boundary problems on both sides, we consider the plug-in estimator of p
with the following structure:

~pplugðαÞ ¼ minðmaxðp̂MLE; αÞ; 1 � αÞ;

where 0 < α ≤ 0:5 is the threshold parameter. Then with ~pplugðαÞ as the plug-in estimator of p,
we let ~cnðαÞ be the estimator of cn in Theorem 4. To determine the best threshold value, we let θ
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range from 1.02 up to 50 and take several different combinations of n and α. Then with N ¼
1,000,000 data sets generated from the binomial distribution, we compute the relative bias of
the estimator by

Biasðθ̌kÞ ¼ 1

N
∑
N

k¼1

θ̌k
θ

� 1

� �
; (19)

where θ̌k is a generic form of θ̂kð~cnðαÞÞ. Specifically in Figure 3, by taking n ¼ 1, 2, 10 and 50,
we plot the relative biases as functions of θ for our new estimator with α ¼ 0:1, 0.2, 0.3, 0.4, 0.5
and also for the Fattorini estimator.
From Figure 3, it is evident that α ¼ 0:1 may not provide an adequate remedy for the bound-

ary problems. On the other side, when α tends to 0.5, our new estimator will perform more
closely to the Fattorini estimator so that it may end up with an over-correction. Besides the rel-
ative bias, we have also presented the Stein loss of the estimators in Figure S2, which shows that
the Stein loss is always an increasing function of α. Taken together, we conclude that α ¼ 0:2 is
the minimum possible threshold that can provide an adequate correction. Finally, with the
plug-in estimator ~pplugð0:2Þ ¼ minðmaxð p̂MLE; 0:2Þ; 0:8Þ, our optimal estimator for the inverse
proportion is given as

FIGURE 2. The true and approximate solutions of cwithn ¼10, 25, 50 or 100. The solid dots represent the values of the true
solution, and the solid lines represent the values of the approximate solution.
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θ̂ð~cnÞ ¼ nþ ~cn
X þ ~cn

; (20)

where ~cn ¼ cnð~pplugð0:2ÞÞ is the estimator of cn given in Theorem 4.
In the next theorem, we derive the asymptotic properties of estimator (20) with the proof in

Appendix E in the supporting information. Note that the asymptotic variance of our new estima-
tor is also θ2ðθ � 1Þ=n . In case an estimate of the asymptotic variance is needed, one can
plug-in our new estimator in (20), which yields the variance estimate as θ̂ð~cnÞ2½θ̂ð~cnÞ � 1�=n.

Theorem 5. Let X be a binomial random variable with parameters n and p. For the estimator

θ̂ð~cnÞ in (20), we have the following properties:

(i) ~cn ¼ 1þ opð1Þ and θ̂ð~cnÞ is a consistent estimator of θ;
(ii) θ̂ð~cnÞ is asymptotically equivalent to the estimators in (3), (4) and (9) such thatffiffiffi

n
p ðθ̂ð~cnÞ � θÞ→D Nð0; θ2ðθ � 1ÞÞ.

FIGURE 3. The relative biases of θ̂ð~cnÞwith α ¼ 0.1, 0.2, 0.3, 0.4 or 0.5, where ‘1’ represents the relative biases associated
with α ¼ 0.1, ‘2’ represents the relative biases associated with α ¼ 0.2, ‘3’ represents the relative biases associated with α ¼
0.3, ‘4’ represents the relative biases associated with α ¼ 0.4, and ‘5’ represents the relative biases associated with α ¼ 0.5.
And for comparison, ‘0’ represents the relative biases of the Fattorini estimator.
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4 Simulation Studies

In this section, we conduct simulation studies to evaluate the finite sample performance of
our new estimator in (20) for the inverse proportion. For comparison, five existing estimators
in the literature are also considered, including the Walter estimator in (7), the Pettigrew estima-
tor in (8), the piecewise Walter estimator in (10), the Carter estimator in (11), and the Fattorini
estimator in (13). For the simulation settings, we let θ range from 1.02 up to 50, which is equiv-
alent to p ranging from 0.98 down to 0.02, and we consider n ¼ 1, 2, 10, 50 or 200 as five dif-
ferent sample sizes. We further generateN ¼ 1,000,000 data sets from the binomial distribution
with each combination ofθ andn. Finally, for the six estimators, we compute their relative biases
by (19) and the Stein losses by (15) and then report them in Figures 4 and 5. For more compar-
ison, the mean squared errors of the six estimators are also reported in Figure S3 with some
discussion.
When n ¼ 1 or 2, Figure 4 shows that the new estimator outperforms all other estimators in

terms of the relative bias and Stein loss in most settings, as long as θ is not very small. In ad-
dition, it is evident that the Fattorini estimator may not provide an accurate estimate for θwhen n

FIGURE 4. The relative biases and the Stein losses of the six estimators with n ¼ 1 or 2.
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is extremely small. From Figure 5, we observe that the new estimator performs better than the
Carter and Fattorini estimators when the sample size is moderate (n ¼ 10), or performs compa-
rably to them when the sample size is large (n ¼ 50 or 200). In contrast, the other three estima-
tors, including the Walter, Pettigrew and piecewise Walter estimators, belong to another league.
Specifically, they perform well when the sample size is moderate, but fail to provide a stable per-
formance when the sample size is large.

To conclude, our new estimator performs best in most settings when the sample size is small
to moderate, and performs as well as other estimators when the sample size is large. For ease of
implementation, we have also provided the R code for the new estimator in Appendix G in the

FIGURE 5. The relative biases and the Stein losses of the six estimators with n ¼ 10, 50 or 200.
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supporting information. Finally, as a price to pay, we note that our plug-in estimator in (20) has
a more complex form than the existing estimators, even though it does not increase much com-
putational cost (for details, see Appendix G in the supporting information). In view of this, we
also highly recommend to use the Carter and Fattorini estimators by virtue of their simple forms
and the good performance when the sample size is large.

5 An Application to Zero-Event Studies

In this section, we apply our new estimator to a meta-analysis on COVID-19 data with
zero-event studies. Chu et al. (2020) carried out an excellent review to investigate effects of
physical distancing, face masks and eye protection on the infection of severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome (MERS) and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). This systematic review was published in June 2020
and is now attracting more and more attention. For example, in Google Scholar as of 14 March
2023, their paper has received a total of 4,170 citations. Also as commented by MacIntyre &
Wang (2020), this systematic review provides a landmark for people to be aware of the

FIGURE 6. Forest plots on the relative risk between physical distancing and infection for COVID-19 data.
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importance of physical distancing and face protection. In particular for physical distancing, they
applied the relative risks as effect sizes and concluded that the virus transmission is significantly
reduced with a further distance.

In the top panel of Figure 6, seven studies were included in their meta-analysis of physical
distancing for COVID-19 data, where six studies therein suffered from the zero-event problem.
For the four single-zero-event studies, the 0.5 continuity correction was added to all the counts
of events. For the two double-zero-event studies, they were not included in the meta-analysis.
By Xu et al. (2020) and our simulation results, adding the 0.5 continuity correction is subopti-
mal. Moreover, Xu et al. (2020) also showed that the double-zero-event studies may also be in-
formative, and so excluding them can be questionable and/or even alter the results. In view of
the above limitations, we re-conducted the meta-analysis on COVID-19 data that also includes
the two double-zero-event studies. Specifically, by applying our new estimator in (20), the rel-
ative risks are estimated by

R̂Rð~cnÞ ¼ ðX 1 þ ~cn1Þðn2 þ ~cn2Þ
ðX 2 þ ~cn2Þðn1 þ ~cn1Þ

; (21)

where~cn1 and~cn2 are the estimates of the optimal shrinkage parameter for the exposed group and
the unexposed group, respectively. For comparison, we also conduct a meta-analysis for all
seven studies by the 0.5 continuity correction, and then present all the forest plots in Figure 6.

From the middle and bottom panels of Figure 6, it is evident that the new meta-analytical re-
sults with the double-zero-event studies also support the claim that a further distance will reduce
the virus infection. On the other hand, the evidence becomes less significant when the combined
relative risks get larger. Moreover, by comparing the two forest plots that both contain the
double-zero-event studies, we note that their combined relative risks are also close, whereas
our new estimator in (21) yields a narrower confidence interval.

6 Discussion

In this paper, we first reviewed the existing estimators for the inverse proportion, or formally
the reciprocal of a binomial proportion. We then proposed a new estimator of the inverse pro-
portion by deriving the optimal shrinkage parameter c in the family of estimators (4). Simulation
studies showed that our new estimator performs better than, or as well as, the existing compet-
itors in most settings. Finally, we also applied our new estimator to a recent meta-analysis on
COVID-19 data with the zero-event problem, and our findings provided some additional evi-
dence for addressing the scientific question: ‘how does physical distancing effectively prevent
the transmission of the new coronavirus?’

To highlight the main contributions of this paper, we have made a good effort in finding the
optimal estimator for the inverse proportion related to the binomial distribution. According to
Gupta (1967), there does not exist an unbiased estimator for the inverse proportion θ. To verify
this result, by the proof-by-contradiction we assume that θ̂u ¼ ηðX Þ is an unbiased estimator of

θ. Then by definition, Eðθ̂uÞ ¼ ∑ n
x¼0ηðxÞ

n

x

� �
pxð1 � pÞn � x ¼ θ: From the left-hand side, the

expected value of θ̂u is a polynomial of p with degree n. For the right-hand side, by the Taylor
expansion we have θ ¼ 1=p ¼ ∑∞

i¼0ð1 � pÞi, which is a polynomial of p with infinite degree.
This shows that the unbiasedness cannot be held for any finite n. In view of this property, there
is probably no uniformly best estimator for the inverse proportion. Although we have conducted
some nice work in this paper, we believe that more advanced research is still needed to further
improve the estimation accuracy of the inverse proportion. For example, one may develop a
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better and more robust approximation for the optimal shrinkage parameter when the binomial
proportion p is extremely small. In addition, other families of shrinkage estimators can also
be considered to see whether they can yield better estimators for the inverse proportion.
Last but not least, we note that the new estimation of the inverse proportion can have many

other real applications. For instance, the spirit of our new method may also be applied to esti-
mate the number needed to treat (NNT), which is another important medical term and was first
introduced by Laupacis et al. (1988). Specifically, NNT is defined as NNT ¼ 1=ðp1 � p2Þ,
where p1 is the event probability in the exposed group and p2 is the event probability in the un-
exposed group. Noting also that p1 � p2 is the absolute risk reduction (ARR), NNT can be ex-
plained as the average number of patients who are needed to be treated to obtain one more pa-
tient cured compared with a control in a clinical trial (Hutton, 2000). Nevertheless, the
estimation of NNT will be more challenging than the estimation of the inverse proportion,
mainly because the estimate of p1 � p2 can be either positive or negative, in addition to the
zero-event problem in the denominator. More recently, Veroniki et al. (2019) also referred to
this situation as the statistically nonsignificant result, which may lead to an unexpected calcula-
tion complication.
In addition to NNT, Zhang & Yin (2021) proposed the reduction in number to treat (RNT) as

a new measure of the treatment effect in randomised control trials. Specifically, let the two in-
verse proportions θ1 ¼ 1=p1 be the average number of patients who are needed to be treated
to obtain one patient cured in the exposed group and θ2 ¼ 1=p2 be the average number of pa-
tients who are needed to be treated to obtain one patient cured in the unexposed group, then
RNT is defined as RNT ¼ θ2 � θ1 ¼ 1=p2 � 1=p1. Also by (2), the MLE of RNT is given
as ^RNTMLE ¼ n2=X 2 � n1=X 1 , which once again may not be applicable when the value of
X 1 or X 2 is zero. Thus to study the statistical inference of RNT, it also requires a valid estimate
for each of the inverse proportions that does not suffer from the zero-event problem. We expect
that our new work in this paper will shed light on new directions on the NNT and RNT estima-
tion, which can be particularly useful in clinical trials and evidence-based medicine.

SUPPORTING INFORMATION

The readers may refer to the Supporting Information for the technical details, the additional
simulations with figures, and the R code for implementing the new estimator.
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