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The Sharpe ratio function is a commonly used risk/return measure Received 8 November 2021
in financial econometrics. To estimate this function, most existing Accepted 13 August 2022
methods take a two-step procedure that first estimates the mean and KEYWORDS

volatility functions separately and then applies the plug-in method. Direct method:

In this paper, we propose a direct method via local maximum likeli- heteroscedastic

hood to simultaneously estimate the Sharpe ratio function and the non-parametric regression;
negative log-volatility function as well as their derivatives. We estab- joint limiting distribution;
lish the joint limiting distribution of the proposed estimators, and local polynomial smoothing;

moreover extend the proposed method to estimate the multivariate Sharpe ratio function
Sharpe ratio function. We also evaluate the numerical performance

of the proposed estimators through simulation studies, and com-

pare them with existing methods. Finally, we apply the proposed

method to the three-month US Treasury bill data and that captures a

well-known covariate-dependent effect on the Sharpe ratio.

1. Introduction

In financial analysis, the Sharpe ratio is one of the most popular measures about the risk-
adjusted return, which is defined as the difference between the return of an investment
and the risk-free return, divided by the volatility (or standard deviation) of the investment.
The Sharpe ratio is now commonly used as a gold standard to compare different assets or
trading strategies, where the one with a higher Sharpe ratio provides a better return for the
same risk. Moreover, it has also been extended to many other contexts, including perfor-
mance attribution, tests of market efficiency, and risk management [18,21]. On the other
hand, however, a static Sharpe ratio with a constant standard deviation may oversimplify
the risk due to the serial correlation or the phases of business cycle [18]. This thus motivates
to consider the covariate-dependent Sharpe ratio function, also referred to as the Sharpe
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ratio function, which can provide extra evidence to the fundamental economics underlying
the economy and asset pricing; see [16,17,19,25].

Let (Y, X) be a two-dimensional random vector. The Sharpe ratio function is defined as
f(x) = pn(x)/o (x), where u(x) = E(Y | X = x) and 02(x) = Var(Y | X = x) > 0 are the
conditional mean and variance functions, respectively. More specifically, we consider the
heteroscedastic non-parametric model

Y = u(X) + o (X)e, (1)

where ¢ is the random error satisfying E(¢ | X) = 0 and Var(e | X) = 1. We further assume
that X and ¢ are independent of each other. Model (1) has been extensively studied in the
literature; see, for example, [10,26,29,31] and the references therein. The previous liter-
ature mainly focuses on the estimation of p(x) or o2 (x) separately. Common methods
for estimating wu(x) include, for example, local polynomial regression [10], polynomial
spline regression [7,15], and smoothing splines [26,29]. While for the estimation of o%(x),
there are three main approaches: the direct method [14], the residual-based methods
[8,11,30,32], and the difference-based methods [3,9,22,28].
Model (1) is closely related to the following continuous-time diffusion process model:

dX; = u(Xp) dt + o (Xy) dW5, (2)

where 1(-) and o (-) are the drift and diffusion functions of the process {X;} respectively,
and W; is the standard Brownian motion that is used to model the stochastic behavior of
economic variables, including, for example, interest rates, exchange rates, and stock prices;
see [1,2,23]. By employing a discrete-time approximation to the continuous-time process,
model (2) will reduce to model (1). In Section 7, we analyze the three-month US Treasury
bill data from the secondary market. The three-month US Treasury bill rate is the yield
received for investing in a government-issued treasury security that has a maturity of three
months. The three-month Treasury yield is included on the shorter end of the yield curve
and is important when looking at the overall US economy. The secondary market rates are
annualized using a 360-day year of bank interest and quoted on a discount basis. Specifi-
cally, the rates are calculated as unweighted averages of closing bid rates quoted by at least
five dealers in the secondary market. The rates are posted on a bank discount basis, but
are converted into continuously compounded yields prior to analysis. Andersen and Lund
[2] applied model (2) to analyze this dataset from 5 January 1962 to 31 March 1995, where
p and o are, respectively, the instantaneous expected rate of return and the volatility. We
focus on estimating the covariate-dependent Sharpe ratio f = /o in Section 7.

Suppose that {(Y;,X;) : i = 1,...,n} are independent and identically distributed (i.i.d.)
data from model (1). To estimate the Sharpe ratio function f(x), most existing methods
take a two-step procedure that first estimates the mean function p(x) and volatility func-
tion o2(x) separately and then applies the plug-in method. Nevertheless, such a two-step
procedure is often less efficient since two smoothing parameters have to be involved for
estimating ( (x) and o%(x) individually. In addition, when one is also interested to estimate
the first- or higher-order derivative of f(x), the indirect methods will often be difficult to
implement. Recently, [16] proposed a direct maximum likelihood estimation with a rough-
ness penalty for the Sharpe ratio function based on a parameterization of the likelihood in
terms of f(x) = u(x)/o (x) and the inverse volatility function 1/0 (x) when the random
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error ¢ is normally distributed. Moreover, by reparameterizing the volatility function as
g(x) = —log{o (%)}, [17] proposed to estimate f(x) and g(x) iteratively based on the local
linear method.

In this paper, we propose a general framework using the local maximum likelihood
to jointly estimate f(x) and g(x) as well as their derivatives. Compared to [17], our new
framework has several advantages. First, our joint estimation only needs one bandwidth
for simultaneously estimating f and g. Second, our proposed method can also be used to
estimate the derivatives of the Sharpe ratio function and apply to the non-Gaussian distri-
bution of ¢ as well. Third, by establishing the joint limiting distribution for the proposed
estimators, our new framework can also optimally estimate the conditional mean function
u(x) and the conditional variance function o (x). In particular, the leading terms on the
asymptotic bias and variance of our new estimator for o%(x) will be the same as those in
[30].

The rest of the paper is organized as follows. Section 2 describes the estimation proce-
dure of f (x) and g(x) or their derivatives by combining the maximum likelihood estimation
and the local polynomial smoothing. Section 3 establishes the joint limiting distribution
for the local maximum likelihood estimators induced by the normally distributed random
errors. Section 4 proposes new estimators for yt(x) and o2 (x) and derives their joint lim-
iting distribution. Section 5 extends the proposed method to estimate the multivariate
Sharpe ratio function. Section 6 conducts extensive simulations to assess the finite sam-
ple performance of the proposed estimators. We will also mention the rule of thumb and
the leave-one-out cross-validation for the bandwidth selection. Section 7 analyzes a three-
month US Treasury bill data using our new method. Section 8 concludes the paper, and the
technical results, including the proofs of theorems, are given in the online supplemental
material.

2. Estimation method

In this section, we propose to estimate the Sharpe ratio function f(x) and the negative
log-volatility function g(x) simultaneously, where

fx) =pnx)/o(x) and g(x) = —log{o(x)}. (3)

Note that the logarithm transformation in g(x) removes the positivity constraint on the
volatility function, as also adopted by [17,30,32]. Moreover, unlike most existing literature,
we do not impose the normality assumption on the random errors so as to be more realistic.

For simplicity, let the density function of € be v (-). Then accordingly, the density func-
tion of e + og€ is 0;11#(0;1(- — Wg)) for any u, € R and o, > 0, and by which the
conditional density function of Y given X = x is

1 {Y—M(x)

o(x) o(x)

} = exp{g(x)}¥ (Y exp{g(®)} — f(x))

where the right-hand side is reparameterized with f and g defined in (3). Moreover, the
log-likelihood function of the sample {(Y;, X;) : i = 1,...,n} is given by

(f.g) = D _llog ¥ (Yiexplg(Xi)} — (X)) + g(X))]. (4)

i=1
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For each given point x, we use the local polynomial smoothing [10] to estimate the vth
derivatives f ™ (x) and g(")(x). Suppose that the (p + 1)th derivatives of f and g exist at
point x, where p > v. Then for any X; in a neighborhood of x, we can approximate f(X;)
and g(X;) locally by

P b0
f(Xi)%Zf (x)(Xi—x)l and g(Xi)%Zg (x)(xi—x)l.
=0

P I I

By the above approximations, together with Equation (4), leads to a local maximum
likelihood problem that minimizes

n

(B, y) = ) _[—log ¥ {Yiexp(Z] ) — Z] B} — Z] y IKn(Xi — ) (5)
i=1

with respect to B,y € RPFL, where B = (f(x),hf' (x),...., W fPx)/p) T, y = (g(x),
hg' (x),...,WPg® (x)/pH T, K(-) is a kernel function, Kj,(-) = K(-/h)/h with h> 0 as the

bandwidth, and
7. =11 Xi — X Xi — X p T
1 > h PIRICIRY h .

Let also (B ,¥) = argmin By cre+1€n(B, y). It then yields the local polynomial estimators
of f ™) (x) and g(”) (x) as

FP0) =hvlel (B and §V(x) =hVvle], P,

where e, is the standard unit vector with 1 in the (v 4+ 1)th component and 0 elsewhere.
For illustration, we also provide two examples with the error distribution given, as well
as derive their negative local log-likelihood functions.

Example 2.1: When ¢ follows the standard normal distribution, by ignoring additive
constants, we have
n
1
LBy =) [E{Yi exp(Zy) —Z B - Z,Ty} Ki(Xi = x). (6)

i=1

Example 2.2: When ¢ follows the Laplace distribution, i.e. ¥ (¢) = 2-1/2 exp(—ﬁ le]),
by ignoring additive constants we have

(B y) =) _(V2IYiexp(Z] y) — Z] B — Z[ y}Ki(X; — %). (7)
i=1

In the remainder of the paper, for simplicity, we will only consider the estimates
of f)(x) and g (x) obtained by minimizing the negative local log-likelihood (6), i.e.
where ¢ is normally distributed. Future research is needed for the joint estimation that
minimizes (5) for a general error distribution or (7) for the Laplace error distribution.

For the special case of v = p = 0, one can apply the local constant smoothing to estimate
the Sharpe ratio function and the resulting estimator is f‘NW (x) = Bo, where

2

s - . 1 2
(Bo> o) = argming E {Yiexp(vo) — Bo}” — vo | Kn(Xi — x).
i=1
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By simple calculations, the above optimization problem will yield an explicit solution as

J}Nw( ) = pnw () ’
V G (%)
where
" KX —x)Y; R L KX —xYE
i = TIN5 g = Bt KON

?:1 Kp(Xi — x) ?:1 Kp(Xi — x)

Note that finw(x) is the Nadaraya—Watson estimator of 1 (x), and 8131w (x) is an improved
version of the direct estimator of 02(x) = E(Y? | X = x) — u?(x) proposed by [14]. This
shows that the direct estimator f’NW (x) is a special two-step estimator in which the
estimates of ¢ (x) and o%(x) used a common bandwidth and a common kernel function.

3. Asymptotic properties

In this section, we derive the joint limiting distribution of f ™) (x) and g (x) obtained by
minimizing the negative local log-likelihood (6). For each presentation, we first introduce
some notations. Let ¢ () be the marginal density function of the covariate X. Let

/Lj:./btiK(u)du and vj:/bthz(u)du, j=0,1,....

and ¢y = (Up+15---» MZp-‘,—l)T- LetalsoSbea (p + 1) x (p + 1) matrix with (j, k)-element

. . . D
Wjtk—2> S* be a (p+1) x (p+ 1) matrix with (j, k)-element v; x5, and — denotes
convergence in distribution. In addition, to derive the joint limiting distribution, some
regularity conditions are also needed as follows.

(C1) Both f and g have a continuous (p + 1)th derivative in a neighborhood of x.

(C2) The kernel function K(-) is a symmetric density function with a compact support.
(C3) The density function ¢(x) is differentiable and positive in a neighborhood of x.
(C4) The error ¢ satisfies E(¢) = 0, Var(e) = 1, and E(J¢|*t%) < oo for some § > 0.

Theorem 3.1: Assume that p — v is an odd number. Under Conditions (C1)-(C4), if
nh3** — 0 and nh — oo, then for any interior point x from the support of (-), we have

. ]AC(V)(x) O (x) 3 vl FP+D () .,
v nh2v+l1 {(g(”)(x) - g(v)(x) —euT+1S lcp—(p+1)! g(p+1)(x) hP+1

— N 0,e S 1S S le _‘)! Z(x)
>Pp+1 v+1 ( ) >
W]’le?e

1 /2 2y 3 2y 3
¥ (x) = . (f (x) Var(e”) —4f(0)E(e’) +4  f(x) Var(e”) — 2E(¢ )>. ®)

f(x) Var(e?) — 2E(e%) Var(g?)
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The proof of Theorem 3.1 is given in the Supplemental Material. When p — v is an even
number, Theorem 3.1 still holds. But in this case, we have eLlS_lcp = 0 owing to the
symmetry of the kernel K so that a term of order O(h?*2~") will appear in the asymptotic
bias. For details, see Theorem 3.1 in [10]. While for choosing the order p of the polynomial,
[10] further demonstrated that the polynomial matching an odd number of p — v is better
than the polynomial matching an even number of p — v. In view of this, we will focus
only on an odd p — v in the remainder of the paper, in particular for p = v 4 1. Moreover,
Condition (C4) guarantees that the proposed estimation and Theorem 3.1 hold no matter
whether or not the random error is normally distributed. In this special case when & ~

N(0,1), X(x) can be simplified as

P2 f()
“x)—z( (0 1)'

In practice, it is often of particular interest to estimate the Sharpe ratio function f(x).
Specifically, for v = 0, we can apply the local linear fitting with p = 1. Let the local lin-
ear estimators of f(x) and g(x) be f (x) and g(x), respectively. Then by Theorem 3.1, we
have the following corollary.

Corollary 3.2: Under Conditions (C1)-(C4) with p = 1, if nh’ — 0 and nh — oo, then
for any interior point x from the support of ¢(-), we have

7 (F@ —fe) 05 ”(x)mh2> D N<0, W )
W<g(X)—g(X)—O-Sg”(x)Mzhz - @(x) )

Corollary 3.2 provides the joint limiting distribution of {]A‘ (x),8(x)}, which exhibits
the correlation between the estimated Sharpe ratio and volatility functions. In contrast,
Theorem 1 in [17] only provides the marginal limiting distributions for the two estima-
tors. Moreover, the asymptotic variances of ]A’ (x) and g(x) are also different from those in
[17], mainly because f (x) and g(x) share the same bandwidth rather than two different
bandwidths in [17].

Note also that the asymptotic bias and variance of f ™) (x) do not depend on g(x) and its
derivatives. This implies that g(x) can be regarded as a nuisance function when estimating
f(x) and its derivatives. Define the equivalent kernel by

Kiw =e) S7'Lu...,u") K.

Note that (—1)"K isakernel of orders (v, p + 1) as defined by [12]. It can be readily shown
that eLlS_lcp = [ w1 K#(u) du and e;'—HS_lS*S_levH = [ K:*(u) du.

Also, by Theorem 3.1, the asymptotic mean squared error (AMSE) of f M (x) is

2
uf(p+1)(x) } J2pF2-2v

7(v) 2 p+1p-x
AMSE{f" (x)} = v! {/u Ki(uwd TR

1)!2 le(x)
- K*Z d ,
+ nh2v+1 / v (u) u (p(x)




40 W. XU ET AL.

where Xq1(x) = 0.25f2(x) Var(g2) — f (x)E() + 1. The optimal variable bandwidth
minimizing the AMSE of f W) (x) is

1/(2p+3
) ]/(p )n—l/(2p+3)

hopt(x) = Cy,p(K) [W

where

(b + D12 +1) [ K32 du 7/
2(p + 1 — v){ [ uPHK; (1) du)?
Moreover, one may also consider a constant bandwidth by minimizing the asymptotic

mean integrated squared error AMISEG(”)) = f AMSE{f W) (x)}w(x) dx with a weight
function w > 0. Then according, it yields the optimal constant bandwidth as

Cv,p(K) = |:

)

[ x)wx)/e(x) dx} ey n—1/2p+3).

opt = Cup(K) [ TP (0 Pw(x) dx

Finally, as claimed in [24], the proposed local polynomial estimator f ™) (x) with bandwidth
h = hopt(x) or hopt enjoys the optimal rate of convergence n~(PF1=v)/Cp+3)

Remark 3.1 (Point-wise Confidence Band): To construct a point-wise confidence band
for f(x), we assume & ~ N(0,1). Then by Corollary 3.2, an approximate (1 — «)100%
confidence interval for f(x) is

Vo 1~

7 1’\//
f(x) — Ef (x)vh* + Z1—a/2\/m {Efz(x) + 1}, (10)

where z;_4 /> denotes the (1 — «)th quantile of the standard normal distribution,?” (x) is
a local linear estimator of f”(x), and @ (x) is a kernel density estimator of ¢ (x). Note that
the biased estimator in (10) involves an estimate of f”(x). By (9), however, the optimal
rate of convergence of f W) (x) is =@/ P+3) wwhich becomes slower as v gets large.
In other words, our proposed estimator for the higher-order derivative may be unreliable
or unstable due to the slow convergence rate, especially when 7 is small. In view of this,
we will apply the regression bootstrap [13] to construct the point-wise confidence band
for f(x) in Section 7. Also as mentioned in Section 8, an interesting future direction is to
construct a simultaneous confidence band for f(x).

4. Simultaneous estimation of u(-) and 62(-)

As a by-product, the proposed estimation in Section 2 can also be used to estimate the
conditional mean function p(x) and the conditional variance function o2 (x), although
they are not the main focus of this paper. Specifically, noting that 1 (x) = f(x) exp{—g(x)}
and o (x) = exp{—g(x)}, we can estimate them by

) = f(x) exp{—g(®)} and G%(x) = exp{—28(x)}.

The following theorem establishes the joint limiting distribution of i(x) and &2(x).
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Theorem 4.1: Assume that the second derivatives of ju(x) and o2 (x) exist and are continu-
ous in a neighborhood of an interior point x from the support of ¢ (-). Then under Conditions
(C2)-(C4), if nh” — 0 and nh — oo, we have

:[L(x) - IL(X) — 0.5{f//(x)o'(x) _ ,U«(x)g//(x)}uzhz D i
v ( 52() — 02(x) + 02 (g () ph? ) -N (0’ e wx)) ’

where

_ o (x) o’ (0)E(e?)
Y = <a3(x)E(83) o (%) Var(ez)) ‘

The proof of Theorem 4.1 is given in the Supplemental Material. In the special case when
E(¢3) = 0, e.g. when the error density is symmetric about zero, Theorem 4.1 shows that
fi(x) and 6%(x) are asymptotically independent. Theorem 4.1 also provides the asymp-
totic biases and variances of [1(x) and 62 (x). Specifically, for fi(x), the leading term in the
asymptotic variance is

i o%(x)vy
nh ¢(x)

which is the same as that of the local linear estimator for p(x) in [10].

While for 62(x), we compare it with the residual-based estimator of o?(x) proposed
by [11]. From Theorem 4.1, the leading terms in the asymptotic bias and variance are,
respectively,

i o*(x) Var(e?) vy

bias(8(x)) : 0 ()" (uak® and Varl6®(0) : L ——"

which are the same as those in [30]. Let also fi11(x) be the local linear estimator of p(x)
with a bandwidth #; > 0 and ?; = {Y; — aL(X)}?. Then by [11], the estimator of o' (x)
is given as 6 (x) = do, where

n
(@0, @) = argmin,, , ¥ (% — a0 — a1 (Xi — )} Kp(X; — x). (11)
i=1

Moreover, it also follows from [11] that

R W d?
Vnh {ang(x) — oz(x) — 7,u2

D 04(x) Var(sz)vo
. (o)

o?(x) + o(hi + hz)} =N
P(x)

which shows that the two estimators 62(x) and 6FZY (x) have exactly the same asymptotic
variance.

5. Multiple covariate case

This section extends the proposed method in Section 2 to the case of multiple covariates.
Let X; = (Xj1,...,Xiq) | be the d-dimensional covariate vector with the marginal density
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function ¢. We consider the multivariate non-parametric regression model
Yi=pnX)+oXpei, i=1,...,n, (12)

where ¢; are i.i.d. random variables with zero mean and unit variance and are independent
of X;. For model (12), the existing literature has mainly focused on the estimation of 1¢(-)
and/or o%(-). To name a few, [7] proposed a tensor-product polynomial spline estimator
for 1(-) and showed that it achieves the optimal rate of convergence as defined in [24]; [20]
proposed alocal linear kernel-weighted least squares estimator for 14 (-); and [6] established
a minimax rate of convergence for estimating o-%(-) and showed that it can be achieved by
a difference-based estimator.

In what follows, we estimate the multivariate Sharpe ratio function f(x) = u(x)/o (x)
based on the sample data {(Y;,X;) : i = 1,. .., n}. Let K be a d-variate non-negative kernel
function, and define

Kg(u) = éK(B_lu), ueR?
where B is a non-singular d x d bandwidth matrix and |B| represents its determinant. For
simplicity, one can take, for example, a diagonal bandwidth matrix B = diag{h;, ..., hy)}
with h; > 0,i=1,...,d. We further use the local linear smoothing to estimate f(x) and
the nuisance function g(x) = log{1/0 (x)} simultaneously. When ¢; follows the standard
normal distribution, by (6) we can define the local linear estimators of f(x) and g(x) as
f (x) = apand g(x) = bo, respectively, where

(aOa &1) bO’ bl)
n

1
= argming , pop D (§[Yi exp{bo + b] (X; — %)} — {ao + a] (X; — x)}]?
i=1

—{bo + b] (X; — x)}) Kp(X; — x).

As a potential application, [25] considered the estimation of the conditional Sharpe ratio
for the market returns. In their analysis, both the mean and volatility functions of stock
market returns were modeled as functions of four predetermined financial variables,
including the Baa-Aaa spread, the commercial paper-Treasury spread, the one-year Trea-
sury yield, and the dividend yield. The collected data were monthly and covered the period
from April 1953 to November 2010. For more details, see also Section 3.1 of [25]. Lastly,
to establish the joint limiting distribution of the estimators j‘ (x) and g(x), we need the
following regularity conditions.

(B1) All second-order partial derivatives of f and g are continuous in the neighborhood
of x, and the density function ¢ is differentiable and positive in the neighborhood
of x.

(B2) The kernel function K is a compactly supported multivariate density function
such that [K(uw)du =1, [uK(u)du =0, and [wuu'K(u) du = py(K)I;, where
n2(K) > 0and I is a d x d identity matrix.
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(B3) The sequence of bandwidth matrix B is such that each entry of BB tends to zero,
n|B| — o0, and n|B|{tr(BBT)}*> — 0 as n — oo with B remaining non-singular,
where tr(B) stands for the trace of the matrix B.

Theorem 5.1: Let x be an interior point from the support of ¢(-). Under Conditions
(B1)-(B3) and (C4), we have

A

f(x)—f(x)—0-5M2(K)tr{Hf(x)BBT}> D < vo(K) )
vn|B = N{o, T ),
" |<§(x)—g(x)—O.S;LQ(K)tr{Hg(x)BBT} 0w =@

where Hy(x) and Hg(x) are the Hessian matrices of f and g evaluated at x respectively,
v (K) = [ K*(u) du, and

1 <f2 (x) Var(e]) — 4f (0)E(e]) + 4 f(x) Var(e?) — 2E(sf)>

2@ =30 1) Var(ed) — 2E(e)) Var(e?)

The proof of Theorem 5.1 is given in the Supplemental Material. When the covariate is
univariate with d = 1, Theorem 5.1 reduces to Corollary 3.2. We note, however, that due to
the curse of dimensionality, estimating the multivariate Sharpe ratio function may require
a large sample size, especially when d is very large.

6. Simulation studies
6.1. Bandwidth selection

Bandwidth selection is an important issue in local polynomial modeling to balance the
trade-off between the estimation bias and variance. For the bandwidth /4 in f ™) (x), we fol-
low the same rule of thumb (ROT) as recommended by [10,30]. The idea is to substitute the
unknown quantities in the expression of the asymptotically optimal constant bandwidth
(9). Specifically, we first fit two polynomials of order p 4 3 globally for f (x) and g(x) using
the log-likelihood function (4) and they yield the fitted curves as

]v((x) =fo+Prx+-+ Bp+3xp+3 and gX) =y +nx+---+ 77p+3xp+3-
Taking € ~ N(0,1) and w(x) = ¢(x)wo(x) for some specific function wp, the two
terms [ X131 (x)w(x)/¢(x) dx and [{f®*V (x)}?w(x) dx can be estimated by [{0.5f%(x) +
Lwo(x) dxand n=1 370 {FPFD (X;)}2wo (X;), respectively. Finally, by (9) we have the ROT
bandwidth as
J10.572(x) + 1wy (x) dx
S PO (X)2wo(X))

When estimating the Sharpe ratio function f(x), an alternative method for selecting the
bandwidth is to apply the leave-one-out cross-validation (LOOCYV) as in [17]. Specifically,
the LOOCYV bandwidth is given as

1/(2p+3)
hrot = Cy p(K) |: }

. " 1 a(—i ~(—i ~(—i
hey = argminy, Y <5[Yi exp{gy " (X0} —fi (X0 - &) ’(X») ,
i=1

whereﬁf_i) (X;) and g;,_i) (X;) are the estimators of f and g based on the bandwidth h with
the ith observation excluded. However, the LOOCYV cannot be used to select the bandwidth
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for the derivatives of f (x). In what follows, we compare the impact of the two bandwidths
on the estimation of the Sharpe ratio function.

6.2. Simulations for the Sharpe ratio function

In this section, we conduct simulation studies to investigate the finite sample performance
of the proposed estimator for the Sharpe ratio function and compare it with existing meth-
ods. For a fair comparison, we consider the same two models as studied by [11,16,28]. To
evaluate the estimation accuracy of different estimators, we also define the root integrated
squared error (RISE) of f (x) as

) R 1/2
RISE(f) = [ / {f(x) — f(x))? dx] :

Example 6.1: Following [11,16], we simulate 100 random samples of size # from the model

Yi = a(X; + 2exp(—16X%)) + (0.4 exp(—2X?) +0.2)e;, i=1,...,n,

where X; Hig- Unif[—2,2] and ¢; i N(0, 1). Accordingly, the Sharpe ratio function is
fx) =alx+2 exp(—16x2))/(0.4 exp(—2x2) +0.2).

We also consider four different sample sizes, n = 100, 200, 350, or 500, and four differ-
ent values of the coefficient, a = 0.5, 1, 2, or 4. For each setting, we estimate f(x) by
the local linear fitting as described in Section 2 with the Epanechnikov kernel and the
ROT or LOOCV bandwidth proposed in Section 6.1. We then compare the new estima-
tor with the residual-based estimator [11], the difference-based estimator [3, r = 1], and
the joint estimator [16]. For the latter three, we use the R and MATLAB codes available at
https://github.com/won-j/joint_estim provided by [16]. The mean and standard deviation
of RISEs for the five estimators are summarized in Table 1. It is worth noting that there are
some discarded values (NaNs) in computing the RISEs for the residual- and difference-
based methods, since the non-negativity constraint of the estimated variance functions
is not imposed by these two methods. From Table 1, for each combination of a4 and an
estimator of f(x), the mean and standard deviation of RISE decrease as n increases. For
each combination of n and an estimator of f(x), the mean and standard deviation of RISE
increase as a increases. When a = 0.5 or a = 1, the two new estimators provide a similar
performance with no matter which bandwidth is used. When a = 2 or a = 4, the esti-
mator with the ROT bandwidth performs better than that with the LOOCYV bandwidth.
It is also evident that the new and joint estimators perform better than the residual- and
difference-based estimators in all settings. In addition, our new estimator will significantly
outperform the joint estimator when a is large and # is small; whereas, for other settings,
the two estimators are comparable. To conclude, our proposed estimator is competitive
compared to the other three estimators and thus can be recommended for practical use.

Example 6.2: Following [16,28], we simulate 100 random samples of size # from the model
Y = 0.75sin(br X;) + (X; — 0.5)2 +0.5)2¢;, i=1,...,n,
iid. ii.d.
where X; " Unif [0,1] and ¢; N (0, 1). Thus, the Sharpe ratio function is given by

f(x) = 0.75sin(brrx)/y/ (x — 0.5)2 + 0.5.
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Table 1. The mean and standard deviation (in parentheses) of RISEs for the five estimators of f(x) in
Example 6.1.

a Method n = 100 n = 200 n = 350 n = 500
0.5 new(ROT) 1.590(0.964) 0.985(0.378) 0.770(0.249) 0.605(0.151)
new(LOOCV) 1.555(0.850) 1.051(0.361) 0.817(0.236) 0.649(0.194)
residual 2.135(1.311) 1.321(0.646) 1.024(0.579) 0.774(0.247)
difference 2.006(1.045) 1.525(1.215) 1.072(0.479) 0.931(0.542)
joint 1.577(1.978) 0.970(0.574) 0.733(0.255) 0.630(0.224)
1 new(ROT) 2.766(1.675) 1.966(0.868) 1.390(0.379) 1.216(0.332)
new(LOOCV) 2.990(1.598) 2.067(0.647) 1.612(0.467) 1.381(0.481)
residual 4.443(3.380) 2.519(1.428) 1.843(0.913) 1.535(0.690)
difference 3.883(3.557) 2.590(1.361) 1.935(0.709) 1.776(1.175)
joint 3.495(1.728) 2.105(1.302) 1.501(0.736) 1.185(0.646)
2 new(ROT) 2.387(0.340) 2.236(0.302) 2.077(0.318) 1.985(0.297)
new(LOOCV) 4.584(1.017) 3.684(0.906) 3.105(0.556) 2.815(0.398)
residual 9.547(6.884) 5.659(2.839) 3.773(1.885) 3.059(1.276)
difference 6.894(4.485) 5.793(4.328) 3.965(1.989) 3.185(1.164)
joint 5.425(2.641) 4.377(7.997) 2.639(1.073) 2.035(0.761)
4 new(ROT) 5.532(0.641) 5.126(0.733) 4.681(0.756) 4.430(0.643)
new(LOOCV) 11.508(5.327) 8.647(4.749) 7.156(2.250) 6.694(1.828)
residual 15.285(7.657) 10.855(5.689) 8.390(3.431) 6.724(2.440)
difference 12.845(2.934) 9.672(5.635) 7.831(4.569) 6.941(3.653)
joint 9.153(4.238) 6.803(2.771) 4.816(1.603) 4.303(1.640)

We also consider four sample sizes n = 50, 100, 200, 500, and four different values of b
from 0, 4, 10 to 20. As b increases, the Sharpe ratio function f(x) gets rougher and thus
estimating it becomes more and more difficult. For each setting, we then compare the pro-
posed estimator with the three existing ones as in Example 6.1. Table 2 presents the mean
and standard deviation of RISEs for the five estimators. For each combination of b and
an estimator of f(x), the mean and standard deviation of RISE decrease as n increases.
For each combination of # and an estimator of f(x), the mean and standard deviation of
RISE increase as b increases, which verifies that estimating f(x) gets worse as b increases.
The two new estimators provide a similar performance with no matter which bandwidth
is used. Note also that the new and joint estimators perform better than the residual- and
difference-based estimators in all settings except for the combinations of n = 50 and a = 4,
10, or 40. Moreover, our new estimator is always the best when b = 0.

6.3. Simulations for the first-order derivative

In this section, we investigate the finite sample performance of the proposed estimator
for the higher-order derivative of f(x). We only focus on the estimation of the first order
derivative f’(x) since estimating the second or higher-order derivative is more complex.
Specifically, we estimate f’(x) by minimizing (6) with p = 2, the Epanechnikov kernel,
and the ROT bandwidth. To the best of our knowledge, there is no literature on esti-
mating the first derivative of the Sharpe ratio function. Note that f’'(x) = {1/ (x)o (x) —
wu(x)o’(x)}/o%(x). To compare with our new estimator f M (x), we consider the indirect
estimator

P = 11 (068 (%) — ALL(0)0py (%)
ID - ~ >

UFZY (%)
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Table 2. The mean and standard deviation (in parentheses) of RISEs for the five estimators of f(x) in
Example 6.2.

b Method n =150 n = 100 n = 200 n = 500
0 new(ROT) 0.267(0.151) 0.177(0.089) 0.108(0.044) 0.071(0.029)
new(LOOCV) 0.245(0.141) 0.151(0.074) 0.116(0.055) 0.068(0.028)
residual 0.390(0.194) 0.241(0.120) 0.163(0.055) 0.093(0.033)
difference 0.366(0.182) 0.240(0.114) 0.160(0.053) 0.093(0.033)
joint 0.350(0.356) 0.320(1.077) 0.127(0.044) 0.091(0.031)
4 new(ROT) 0.602(0.348) 0.333(0.069) 0.250(0.052) 0.188(0.038)
new(LOOCV) 0.713(0.287) 0.349(0.104) 0.301(0.047) 0.169(0.037)
residual 0.581(0.368) 0.384(0.119) 0.316(0.072) 0.230(0.046)
difference 0.490(0.162) 0.380(0.110) 0.312(0.074) 0.225(0.046)
joint 0.603(0.352) 0.354(0.123) 0.307(0.519) 0.184(0.238)
10 new(ROT) 0.741(0.053) 0.611(0.141) 0.373(0.060) 0.229(0.033)
new(LOOCV) 0.748(0.101) 0.698(0.033) 0.416(0.055) 0.228(0.028)
residual 0.846(0.155) 0.786(0.308) 0.724(0.027) 0.697(0.026)
difference 0.844(0.136) 0.779(0.097) 0.736(0.035) 0.707(0.040)
joint 0.921(0.442) 0.514(0.291) 0.323(0.078) 0.212(0.033)
20 new(ROT) 0.842(0.150) 0.729(0.043) 0.589(0.060) 0.335(0.051)
new(LOOCV) 0.770(0.071) 0.727(0.030) 0.705(0.011) 0.314(0.036)
residual 0.824(0.206) 0.740(0.042) 0.712(0.015) 0.700(0.008)
difference 0.826(0.150) 0.745(0.041) 0.721(0.033) 0.703(0.010)
joint 1.050(0.331) 0.700(0.073) 0.556(0.132) 0.360(0.059)

Table 3. The mean and standard deviation (in parentheses) of RISEs for the two estimators of f'(x) in
Example 6.1.

a Method n =100 n = 200 n =350 n = 500

0.5 new 5.243 (1.302) 4.518(0.710) 4,084 (0.476) 3.892(0.314)
indirect 18.111(28.931) 17.157 (27.470) 12.016 (17.128) 6.630 (6.216)

1 new 10.765 (1.517) 8.835(1.216) 8.576 (1.100) 8.250 (0.633)
indirect 39.494 (47.531) 24.996 (42.199) 18.341 (24.271) 12.528 (9.568)

where Gy (x) = ,/6§Y(x), o’ ry(x) = ,/61%’((36), ,12/ 1L(x) is the local linear estimator of

' (x), and 81:23/{ (x) = & is thelocal linear estimator of do 2 (x) /dx defined in (11). To evalu-
ate the estimation accuracy of the estimators, we also consider the root integrated squared
error (RISE) of f M (x) as

. . 1/2
RISE(f ") = [ / P - @y dx} :

We consider to estimate f’(x) in Example 6.1 with a = 0.5 or 1 and in Example 6.2 with
b = 0 or 4 in Section 6.2, respectively. It is worth noting that there are some discarded val-
ues (NaNs) in computing the RISEs for the indirect method. Tables 3 and 4 present the
mean and standard deviation of RISEs for the two estimators in Examples 6.1 and 6.2. From
Table 3, for each combination of a and an estimator of f’(x), the mean and standard devi-
ation of RISE decrease as n increases. The same phenomena are also observed in Table 4.
Moreover, our new estimator performs better than the indirect estimator in all settings in
Tables 3 and 4 except for (b, n) = (4, 500).
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Table 4. The mean and standard deviation (in parentheses) of RISEs for the two estimators of f'(x) in
Example 6.2.

b Method n =150 n =100 n = 200 n = 500
0 new 1.518 (0.799) 1.084 (0.517) 0.815 (0.350) 0.514(0.242)
indirect 7.123 (14.752) 3.847 (6.751) 1.589 (0.914) 0.832(0.475)
4 new 9.976 (2.721) 5.900 (1.607) 4,517 (1.831) 3.043 (0.854)
indirect 10.419 (19.296) 7.665 (13.888) 4,636 (6.041) 3.035(0.763)
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Figure 1. The three-month US Treasury Bill data from 5 January 1962 to 31 March 1995. Left: the raw
data. Right: the residuals after an AR(5) fit is plotted against X;.

7. Application to treasury bill data

We now apply the proposed method to analyze three datasets from the three-month US
Treasury bill (T-bill) in the secondary market. The first dataset consists of 1735 weekly
observations from 5 January 1962 to 31 March 1995, which has been previously analyzed
by [2,11,16] and among others. The time series data, denoted by {z;}, are presented in the
left panel of Figure 1.

Following [11,16], we first fit a fifth-order autoregressive model to {z;}, which yields the
AR(5) model as

zy = 1.3252z;_1 — 0.2800z;—2 — 0.0263z;_3 + 0.0276z;_4 — 0.0472z;_5 + Y.

The residuals Y; are then plotted against X; = z;_; in the right panel of Figure 1. We further
consider a model that is a discrete-time approximation to the continuous-time diffusion
process model (2), e.g. [2,16]:

Y = n(Xy) + o (Xpey, (13)

where E(e; | X;) = 0and Var(e; | X;) = 1. Finally, we apply the proposed method with the
ROT bandwidth to model (13) to estimate the Sharpe ratio function f(x) = u(x)/o (x).
While for comparison, we also estimate the Sharpe ratio function by three existing meth-
ods, and plot the estimated functions in Figure 2 with their associated 95% point-wise
confidence bands using the regression bootstrap [13]. It is evident that our new estimator
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Figure 2. The estimated Sharpe ratio functions (solid lines) from the three-month US Treasury Bill data
by the four methods: the new, residual-based, difference-based, and joint estimators. The dashed lines
represent the associated 95% point-wise bootstrap confidence bands.

and its bootstrap confidence band are more stable than the others. In particular, our new
estimator can capture the well-known empirical evidence that the low-priced assets always
outperform the high-priced ones since the former has a larger Sharpe ratio than the latter
from Figure 2.

The second dataset, presented in the left panel of Figure 3 and denoted by {z;}, consists
of 247 monthly observations from 1 January 2000 to 1 July 2020. Following [17], after fitting
an AR(4) model and regressing the residuals Y; against X; = z;_1, we obtain the model

2 — 1.3948z,_1 + 0.4248z,_» — 0.2125z,_3 + 0.1940z_4 = Y; = u(Xy) + o (Xy) e

where E(g; | X;) = 0 and Var(g; | X;) = 1. The residuals Y; are plotted against X; in the
right panel of Figure 3. To compare the two bandwidths in Section 6.1, we apply the
proposed method with the ROT and LOOCYV bandwidths to estimate the Sharpe ratio
function, which yields i:lROT = 1.218 and iICV = 1.36. Figure 4 displays the two estimated
Sharpe ratio functions and the associated 95% point-wise confidence bands. From the fit-
ted curves, the two bandwidths perform similarly. We can observe that the Sharpe ratio
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Figure 3. The three-month US Treasury Bill data from 1 January 2000 and 1 July 2020. Left: the raw data.
Right: the residuals after an AR(4) fit is plotted against X;.
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Figure 4. The estimated Sharpe ratio functions (solid lines) from the three-month US Treasury Bill data
by the new estimator with the ROT (left) or LOOCV (right) bandwidth. The dashed lines represent the
associated 95% point-wise bootstrap confidence bands.

function for the T-bill has a nonlinear trend, which also shows that the low-priced assets
perform better than the high-priced ones.

In order to evaluate the performance of the proposed method for a much shorter time
period, we select the yields of the three-month US T-bill data from 1 January 2015 to 1 July
2020. This dataset consists of 67 monthly observations and is presented in the left panel
of Figure 5, where z; denotes the time series of the yields. Following [17], after fitting an
AR(2) model and regressing the residuals Y; against X; = z;_;, we obtain the model

zr — 1.2198z;_1 + 0.2301z;_, = Y; = /L(Xt) + o (Xy)ey,

where E(g; | X;) = 0 and Var(g; | X;) = 1. The residuals Y; are plotted against X; in the
right panel of Figure 5. Figure 6 plots the estimated Sharpe ratio function with the LOOCV



50 W. XU ET AL.

o .
o- B .
- SHETETTT— :
c
= —
o 4 —
a - > <
= n 9
0] ©
2
>
o5 | 3 2]
R ? T
2]
[0]
o -
2 :
S o |
E v -
T
o
o | ~ .
o I
T T T T T T T T T T T
2015 2016 2017 2018 2019 2020 0.0 0.5 1.0 1.5 2.0
year X(t)

Figure 5. The three-month US Treasury Bill data from 1 January 2015 to 1 July 2020. Left: the raw data.
Right: the residuals after an AR(2) fit is plotted against X;.
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Figure 6. The estimated Sharpe ratio function (solid line) from the three-month US Treasury Bill data
by the new estimator. The dashed lines represent the associated 95% point-wise bootstrap confidence
band.

bandwidth and its 95% point-wise confidence band. The bandwidth selected by LOOCV is
1.33. Figure 6 also indicates that the low-priced assets perform better than the high-priced
ones.

8. Discussion

In this paper, we propose a direct method via local maximum likelihood for estimating
the Sharpe ratio function or its derivatives in the heteroscedastic non-parametric model.
We further establish the asymptotic normal distribution for the proposed estimator under
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some regularity conditions, and show that it can be competitive compared to existing
methods using simulated data and real market data.

Along with the paper, there exist a few interesting extensions. Firstly, it is of interest
to investigate the asymptotic properties and numerical performance for the estimators
obtained by minimizing the general negative log-likelihood (5) or (7). Secondly, note that
there have been extensive studies on the construction of the simultaneous confidence
band for w(x) and/or o2(x); see, for example, [4,5,27] and among others. Inspired by
this, another interesting but challenging problem can be to construct a simultaneous con-
fidence band for the Sharpe ratio function. Lastly, our new method for estimating the
multivariate Sharpe ratio function in Section 5 may suffer from the curse of dimension-
ality. To overcome this problem, it might be necessary to impose structural assumptions
on the multivariate Sharpe ratio function, e.g. single index modeling. A deeper and detailed
investigation of these issues warrants further studies.

Acknowledgments

The authors thank the editor, associate editor, and two referees for their constructive suggestions
and comments that have substantially improved an earlier version of this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Wenchao Xu’s research was partially supported by the China Postdoctoral Science Foundation
(2021M693340) and the National Natural Science Foundation of China (12101591). Hongmei Lin’s
research was partially supported by the National Natural Science Foundation of China (12171310)
and the Shanghai Natural Science Foundation (20ZR1421800). Tiejun Tong’s research was partially
supported by the General Research Fund (HKBU12303421, HKBU12303918), the Initiation Grant
for Faculty Niche Research Areas of Hong Kong Baptist University (RC-FNRA-1G/20-21/SCI/03),
and the National Natural Science Foundation of China (1207010822). Riquan Zhang’s research was
partially supported by the National Science Foundation of China (11971171,11831008), and the
Basic Research Project of Shanghai Science and Technology Commission (22JC1400800).

References

[1] Y. Ait-Sahalia, Testing continuous-time models of the spot interest rate, Rev. Financ. Stud. 9
(1996), pp. 385-426.

[2] T.G. Andersen and J. Lund, Estimating continuous-time stochastic volatility models of the short-
term interest rate, ]. Econom. 77 (1997), pp. 343-377.

[3] L.D. Brown and M. Levine, Variance estimation in nonparametric regression via the difference
sequence method, Ann. Stat. 35 (2007), pp. 2219-2232.

[4] L. Cai, R. Liu, S. Wang, and L. Yang, Simultaneous confidence bands for mean and variance
functions based on deterministic design, Stat. Sin. 29 (2019), pp. 505-525.

[5] L. Cai and L. Yang, A smooth simultaneous confidence band for conditional variance function,
Test 24 (2015), pp. 632-655.

[6] T.T. Cai, M. Levine, and L. Wang, Variance function estimation in multivariate nonparametric
regression with fixed design, J. Multivar. Anal. 100 (2009), pp. 126-136.

[7] H. Chen, Polynomial splines and nonparametric regression, J. Nonparametr. Stat. 1 (1991), pp.
143-156.



52 W. XU ET AL.

(8]

(17]

(18]
(19]

[20]

[21]
[22]

(23]
(24]
(25]

(26]
(27]

(28]

[29]
(30]

(31]

[32]

LH. Chen, M.Y. Cheng, and L. Peng, Conditional variance estimation in heteroscedastic
regression models, J. Stat. Plan. Inference 139 (2009), pp. 236-245.

W. Dai, T. Tong, and L. Zhu, On the choice of difference sequence in a unified framework for
variance estimation in nonparametric regression, Stat. Sci. 32 (2017), pp. 455-468.

J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman & Hall, London,
1996.

J. Fan and Q. Yao, Efficient estimation of conditional variance functions in stochastic regression,
Biometrika 85 (1998), pp. 645-660.

T. Gasser, H.G. Miiller, and V. Mammitzsch, Kernels for nonparametric curve estimation, J. R.
Stat. Soc.: Ser. B 47 (1985), pp. 238-252.

W. Hirdle and A.-W. Bowman, Bootstrapping in nonparametric regression: Local adaptive
smoothing and confidence bands, ]. Am. Stat. Assoc. 83 (1988), pp. 102-110.

W. Hirdle and A. Tsybakov, Local polynomial estimators of the volatility function in nonpara-
metric autoregression, ]. Econom. 81 (1997), pp. 223-242.

J. Huang, Local asymptotics for polynomial spline regression, Ann. Stat. 31 (2003), pp. 1600-1635.
S.J. Kim, J. Lim, and J.H. Won, Nonparametric Sharpe Ratio Function Estimation in Het-
eroscedastic Regression Models via Convex Optimization, in Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, JMLR, Cambridge, MA, 2018,
pp. 1495-1504.

H. Lin, T. Tong, Y. Wang, W. Xu, and R. Zhang, Direct local linear estimation for Sharpe ratio
function, Can. J. Stat. 50 (2022), pp. 36-58.

A.W. Lo, The statistics of Sharpe ratios, Financ. Anal. J. 58 (2002), pp. 36-52.

P. Maio and P. Santa-Clara, Multifactor models and their consistency with the ICAPM, ]. Financ.
Econ. 106 (2012), pp. 586-613.

D. Ruppert and M.P. Wand, Multivariate locally weighted least squares regression, Ann. Stat. 22
(1994), pp. 1346-1370.

W.E Sharpe, The Sharpe ratio, ]. Portf. Manag. 21 (1994), pp. 49-58.

Y. Shen, C. Gao, D. Witten, and E Han, Optimal estimation of variance in nonparametric
regression with random design, Ann. Stat. 48 (2020), pp. 3589-3618.

R. Stanton, A nonparametric model of term structure dynamics and the market price of interest
rate risk, J. Finance 52 (1997), pp. 1973-2002.

C.J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Stat. 10 (1982),
pp. 1040-1053.

Y. Tang and R.E. Whitelaw, Time-varying Sharpe ratios and market timing, Q. J. Finance 1 (2011),
pp. 465-493.

G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990.

J. Wang and L. Yang, Polynomial spline confidence bands for regression curves, Stat. Sin. 19
(2009), pp. 325-342.

L. Wang, L.D. Brown, T.T. Cai, and M. Levine, Effect of mean on variance function estimation
in nonparametric regression, Ann. Stat. 36 (2008), pp. 646—664.

Y. Wang, Smoothing Splines: Methods and Applications, Chapman & Hall, London, 2011.

K. Yu and M.C. Jones, Likelihood-based local linear estimation of the conditional variance
function, ]. Am. Stat. Assoc. 99 (2004), pp. 139-144.

M. Yuan and G. Wahba, Doubly penalized likelihood estimator in heteroscedastic regression, Stat.
Probab. Lett. 69 (2004), pp. 11-20.

EA. Ziegelmann, Nonparametric estimation of volatility functions: The local exponential estima-
tor, Econ. Theory 18 (2002), pp. 985-991.



