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Microarray technology allows a scientist to study genomewide patterns of gene expression. Thousands of individual genes are measured
with a relatively small number of replications, which poses challenges to traditional statistical methods. In particular, the gene-specific
estimators of variances are not reliable and gene-by-gene tests have low powers. In this article we propose a family of shrinkage estimators
for variances raised to a fixed power. We derive optimal shrinkage parameters under both Stein and squared loss functions. Our results
show that the standard sample variance is inadmissible under either loss function. We propose several estimators for the optimal shrinkage
parameters and investigate their asymptotic properties under two scenarios: large number of replications and large number of genes. We
conduct simulations to evaluate the finite sample performance of the data-driven optimal shrinkage estimators and compare them with some
existing methods. We construct F-like statistics using these shrinkage variance estimators and apply them to detect differentially expressed
genes in a microarray experiment. We also conduct simulations to evaluate performance of these F-like statistics and compare them with
some existing methods.
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1. INTRODUCTION

The development of microarray technology has revolution-
ized the study of molecular biology and become a standard tool
in genomics research. Instead of working on a gene-by-gene
basis, microarray technology allows the scientists to view the
expression of thousands of genes from an experimental sam-
ple simultaneously (Nguyen, Arpat, Wang, and Carroll 2002;
Leung and Cavalieri 2003). Due to the cost, it is common
that thousands of genes are measured with a small number of
replications (Lönnstedt and Speed 2002; Kendziorski, Newton,
Lan, and Could 2003). As a consequence, we are faced with a
“large G, small n” paradigm, where G is the total number of
genes and n is the number of replications. The standard gene-
specific estimators of variances are unreliable due to the rel-
atively small number of replications. Consequently, the com-
monly used statistical methods, such as t test or F test, for
detecting differentially expressed genes on a gene-by-gene ba-
sis have low powers (Callow, Dudoit, Gong, Speed, and Ru-
bin 2000). On the other hand, the assumption that variances are
equal for all genes is unlikely to be true. Thus, tests based on a
pooled common variance estimator for all genes are at the risk
of generating misleading results (Cui, Hwang, Qiu, Blades, and
Churchill 2005).

A number of approaches to improving variance estimation
and hypothesis testing have emerged. Kamb and Ramaswami
(2001) suggested a simple regression estimation of local vari-
ances. Storey and Tibshirani (2003) added a small constant to
the gene-specific variance estimators in their SAM t test to sta-
bilize the small variances. Lin, Nadler, Lan, Attie, and Yandell
(2003) proposed a data-adapted robust estimator of array er-
ror based on a smoothing spline and standardized local median
absolute deviation. Jain et al. (2003) proposed a local-pooled-
error estimation procedure, which borrows strength from genes
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in local intensity regions to estimate array error variability.
Baldi and Long (2001) proposed a regularized t test by re-
placing the usual variance estimator with a Bayesian estima-
tor. Lönnstedt and Speed (2002) proposed an empirical Bayes
approach that combines information across genes. Kendziorski
et al. (2003) extended the empirical Bayes method using hier-
archical gamma–gamma and lognormal–normal models.

Cui and Churchill (2003) compared three variance estima-
tors: the gene-specific estimator, the pooled estimator across
genes, and the hybrid estimator as the average of the gene-
specific and the pooled estimators. Applying the standard
James–Stein shrinkage method to log transformed estimates
of variances, Cui et al. (2005) proposed a James–Stein type
shrinkage estimator for variances (referred to as the CHQBC
estimator in the remainder of this article). Compared to some
existing tests, they showed that the F test using the James–Stein
type variance estimator has the best or nearly the best power to
detect differentially expressed genes over a wide range of situ-
ations.

The research so far has concentrated on the methodology.
Little is known about the theoretical properties of various
shrinkage variance estimators. Shrinkage variance estimation
has a long history that began with the amazing inadmissibility
result discovered by Stein (1964), where the standard sample
variance is improved by a shrinkage estimator using informa-
tion contained in the sample mean. Much research has been
done since then (Maatta and Casella 1990; Kubokawa 1999),
most of which concerned single variances (Kubokawa 1999),
which are not applicable to microarray data analysis because
the homogeneity of the variances is unlikely to be true. Some
research has been devoted to the shrinkage estimator of a co-
variance matrix (Kubokawa and Srivastava 2003). However,
all these methods require n > G to ensure nonsingularity of
the sample covariance matrix. Therefore, these methods break
down for microarray data analysis.

We propose new optimal shrinkage estimators in this arti-
cle. Instead of using information in the sample mean (Stein
1964), we borrow information across variances. We will show
that the standard sample variance is inadmissible. Therefore,
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our results extend Stein’s theory for multiple means (James and
Stein 1961) to multiple variances. An important insight of this
article is that a better variance estimator does not necessarily
lead to a more powerful test. Specifically, because the variance
appears in the denominator, an F test using an estimator of the
reciprocal of the variance is more powerful than that using the
reciprocal of an estimator of the variance (Sec. 5). We consider
optimal shrinkage estimators for the parameter (σ 2

g )t, where σ 2
g

is the true variance associated with gene g, g = 1, . . . ,G, and t
is a fixed nonzero power.

Our methods and theory are general. Nevertheless, we
present our methods in the framework of microarray data analy-
sis. In Section 2 we introduce the CHQBC estimator and pro-
pose a modified version. In Section 3 we derive optimal shrink-
age estimators for (σ 2

g )t under two common loss functions and
show that the optimal shrinkage estimators dominate the stan-
dard gene-specific variance estimator. We also propose various
estimators for the optimal shrinkage parameters and investi-
gate their asymptotic properties under two scenarios: n → ∞
with fixed G and G → ∞ with fixed n. In Section 4 we con-
duct simulations to evaluate the performance of the optimal
shrinkage estimators and compare them with the CHQBC es-
timator and the modified CHQBC estimator. In Section 5 we
construct F-like statistics using our optimal shrinkage estima-
tors to detect differentially expressed genes for microarray data,
and conduct simulations to evaluate and compare performances
of these F-like statistics. We conclude this article in Section 6
with a brief discussion.

2. CHQBC ESTIMATOR AND ITS MODIFICATION

Let G (G ≥ 3) be the number of genes, Xg = σ 2
g χ2

g,ν , g =
1, . . . ,G, where χ2

g,ν are iid random variables that follow the
chi-squared distribution with ν degrees of freedom. Consider
the transformation

X′
g = lnσ 2

g + ε′
g,

where X′
g = ln(Xg/ν) − m, ε′

g = ln(χ2
g,ν/ν) − m, and m =

E(ln(χ2
g,ν/ν)). Applying the James–Stein shrinkage method to

X′
g and then transforming back to the original scale, Cui et al.

(2005) proposed the CHQBC estimator

σ̃ 2
g =

(
G∏

g=1

(
Xg

ν

)1/G
)

B

× exp

[(
1 − (G − 3)V∑

(ln Xg − ln Xg)2

)
+

× (ln Xg − ln Xg)

]
, (1)

where V = var(ε′
g), ln Xg = ∑G

g=1 ln(Xg)/G, and B = exp(−m).

Let Zg = Xg/ν, Zpool = ∏G
g=1 Z1/G

g , and α̂0 = 1 − (1 −
(G − 3)V/

∑
(ln Xg − ln Xg)

2)+. It is easy to check that the
CHQBC estimator (1) can be rewritten as

σ̃ 2
g = B(Zpool)

α(Zg)
1−α (2)

with α = α̂0. Note that when σ 2
g = σ 2 for all g, E(Zpool) →

σ 2/B as G → ∞. That is, BZpool is an unbiased estimator of

σ 2 when σ 2
g = σ 2 for all g. On the other hand, Zg is an unbi-

ased estimator of σ 2
g . Therefore, it is reasonable to consider the

combination of two unbiased estimators:

σ̂ 2
g = (BZpool)

α(Zg)
1−α, 0 ≤ α ≤ 1. (3)

When necessary, the dependence of σ̂ 2
g on α will be expressed

explicitly as σ̂ 2
g (α). We refer to σ̂ 2

g (α̂0) as the modified CHQBC

estimator. When variances σ 2
g are similar, it is likely that α̂0 ≈ 1

and thus σ̂ 2
g (α̂0) ≈ σ̃ 2

g (α̂0). When α̂0 ≈ 0, σ̃ 2
g (α̂0) ≈ BZg, which

is biased when B �= 1. Simulations in Section 4.1 indicate that
the modified CHQBC estimator σ̂ 2

g (α̂0) always performs better

than the original CHQBC estimator σ̃ 2
g (α̂0) for estimating σ 2

g .

The estimator σ̂ 2
g has a very simple structure: it borrows in-

formation across genes by shrinking each gene-specific vari-
ance toward the bias corrected geometric mean of variances for
all genes. The shrinkage parameter α̂0 was obtained by applying
the James–Stein method to the logarithm of sample variances
that do not follow the normal distribution (Cui et al. 2005).
Therefore, α̂0 may not be optimal and theoretical properties of
σ̃ 2

g and σ̂ 2
g are unknown.

3. OPTIMAL SHRINKAGE

We now consider the family of shrinkage estimators σ̂ 2
g in (3)

with the shrinkage parameter α unfixed. There is no shrinkage
when α = 0, and all variance estimates are shrunken to the bias
corrected geometric mean when α = 1. Our goal is to find the
optimal shrinkage parameter α under the Stein loss function
(James and Stein 1961)

L1(σ
2, σ̂ 2) = σ̂ 2/σ 2 − ln(σ̂ 2/σ 2) − 1 (4)

and the squared loss function

L2(σ
2, σ̂ 2) = (σ̂ 2/σ 2 − 1)2. (5)

Equation (4) is also called the entropy loss or Kullback–Leibler
loss function (Kubokawa 1999). The Stein loss function penal-
izes gross underestimation as heavily as gross overestimation,
whereas the squared loss function penalizes the gross underes-
timation less than the gross overestimation.

Throughout the remainder of this article, we assume that
Zg = σ 2

g χ2
g,ν/ν,g = 1, . . . ,G, are independent random vari-

ables and G ≥ 2. As discussed in Section 1, we will derive an
optimal shrinkage estimator for (σ 2

g )t for any power t �= 0. The

estimators for σ 2
g and 1/σ 2

g are special cases with t = 1 and
t = −1. We will first generalize the estimator (3) for estimating
(σ 2

g )t. Define

hn(t) =
(

ν

2

)t(
�(ν/2)

�(ν/2 + t/n)

)n

, (6)

where �(·) is the gamma function.

Lemma 1. For any nonzero t > −ν/2, we make the following
statements:

(a) The term h1(t)Zt
g is an unbiased estimator of (σ 2

g )t.

(b) When σ 2
g = σ 2 for all g, hG(t)Zt

pool is an unbiased esti-

mator of (σ 2)t.
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The proof is straightforward. Note that h1(t)Zt
g is the gene-

specific estimator of (σ 2
g )t. Combining (3) and Lemma 1, we

now propose a family of shrinkage estimators for (σ 2
g )t:

σ̂ 2t
g = (hG(t)Zt

pool)
α(h1(t)Z

t
g)

1−α, 0 ≤ α ≤ 1. (7)

Note that h1(1) = 1 and hG(1) → B as G → ∞. Therefore,
when t = 1 and G is large, (7) reduces to (3). Let σ 2

pool =
(
∏G

g=1 σ 2
g )1/G, σ 2t = (σ 2t

1 , . . . , σ 2t
G ) and σ̂ 2t = (σ̂ 2t

1 , . . . , σ̂ 2t
G ).

3.1 Optimal Estimator Under the Stein Loss Function

Under the Stein loss function (4), it is easy to check that the
average risk is

R1(σ
2t, σ̂ 2t

)

� 1

G

G∑
g=1

E(L1(σ
2t
g , σ̂ 2t

g ))

= hα
G(t)h1−α

1 (t)

hG−1
1 (αt/G)h1((1 − α + α/G)t)

(σ 2
pool)

αt 1

G

G∑
g=1

(σ 2
g )−αt

− ln(hα
G(t)h1−α

1 (t)) − t�

(
ν

2

)
+ t ln

(
ν

2

)
− 1, (8)

where t > −ν/2, �(t) = �′(t)/�(t) is the digamma func-
tion (Abramowitz and Stegun 1972), and the second equality
is derived after some tedious but straightforward algebra us-
ing Lemma 1 and the fact that E ln(χ2

g,ν) = �(ν/2) + ln(2).
Then the optimal α under the Stein loss function is α∗

1 =
arg minα∈[0,1] R1(σ

2t, σ̂ 2t
). Denote the optimal estimator under

the Stein loss function as σ̂ 2t
g (α∗

1). In the following discussion,

the derivatives R′
k(σ

2t, σ̂ 2t
) and R′′

k (σ
2t, σ̂ 2t

) are with respect to
α, k = 1,2.

Theorem 1. For any fixed G, ν, and nonzero t > −ν/2,
R1(σ

2t, σ̂ 2t
) is a strictly convex function of α on [0,1] that sat-

isfies

(a) R′
1(σ

2t, σ̂ 2t
)|α=0 < 0

(b) R′
1(σ

2t, σ̂ 2t
)|α=1 ≥ 0, where the equality holds if and

only if σ 2
g = σ 2 for all g

(c) R′′
1(σ

2t, σ̂ 2t
) > 0 for all α ∈ [0,1].

Corollary 1. For any fixed G, ν, and nonzero t > −ν/2, un-
der the Stein loss function,

(a) There exists a unique α∗
1 in (0,1] that is the solution to

R′
1(σ

2t, σ̂ 2t
) = 0.

(b) The estimator h1(t)Zt
g is inadmissible for (σ 2

g )t because
α∗

1 > 0.
(c) The parameter α∗

1 = 1 iff σ 2
g = σ 2 for all g. Thus,

hG(t)Zt
pool is also inadmissible for (σ 2

g )t when σ 2
g are not all the

same. When σ 2
g = σ 2 for all g, hG(t)Zt

pool dominates all other
estimators in the family (7).

Theorem 2. For any fixed G and nonzero t > −ν/2, as ν →
∞, we have

(a) α∗
1 → 0 when σ 2

g are not all the same

(b) R1(σ
2t, σ̂ 2t

) approaches a constant function of α when
σ 2

g = σ 2 for all g.

Proofs of Theorems 1 and 2 can be found in Tong and Wang
(2005). Theorem 2 indicates that it is unnecessary to borrow
information from other genes when the number of replications
for each gene is large.

3.2 Optimal Estimator Under the Squared Loss Function

Under the squared loss function (5), it is easy to check that
the average risk is

R2(σ
2t, σ̂ 2t

) � 1

G

G∑
g=1

E(L2(σ
2t
g , σ̂ 2t

g ))

= h2α
G (t)h2(1−α)

1 (t)

hG−1
1 (2αt/G)h1(2(1 − α + α/G)t)

× (σ 2
pool)

2αt 1

G

G∑
g=1

(σ 2
g )−2αt

− 2hα
G(t)h1−α

1 (t)

hG−1
1 (αt/G)h1((1 − α + α/G)t)

× (σ 2
pool)

αt 1

G

G∑
g=1

(σ 2
g )−αt + 1, (9)

where t > −ν/4.

Theorem 3. For any fixed G, ν, and nonzero power t >

−ν/4, we have

(a) R′
2(σ

2t, σ̂ 2t
)|α=0 < 0

(b) R′
2(σ

2t, σ̂ 2t
)|α=1 > 0.

Theorem 3 implies that the gene-specific estimator, h1(t)Zt
g,

is inadmissible. Contrary to the result under the Stein loss
function, the pooled estimator, hG(t)Zt

pool, is also inadmissi-

ble even when σ 2
g = σ 2 for all g. By Theorem 3 and the

fact that R2(σ
2t, σ̂ 2t

) ≥ 0, there exists an α∗
2 that minimizes

R2(σ
2t, σ̂ 2t

). However, R2(σ
2t, σ̂ 2t

) is not guaranteed to be
a convex function of α on [0,1]. Therefore, α∗

2 may not be
unique. A counterexample with very large ν was provided by
Tong and Wang (2005). Nevertheless, for small ν, R2(σ

2t, σ̂ 2t
)

is always strictly convex in millions of simulations under vari-
ous situations. Denote the optimal estimator under the squared
loss function as σ̂ 2t

g (α∗
2).

Theorem 4. For any fixed G and nonzero t > −ν/4, as
ν → ∞,

(a) α∗
2 → 0 when σ 2

g are not all the same

(b) R2(σ
2t, σ̂ 2t

) approaches a constant function of α when
σ 2

g = σ 2 for all g.

Proofs of Theorems 3 and 4 can be found in Tong and Wang
(2005).
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3.3 Estimation of the Optimal Shrinkage Parameters

Both α∗
1 and α∗

2 depend on the unknown quantity

b(σ 2, η) = (σ 2
pool)

η 1

G

G∑
g=1

(σ 2
g )−η, (10)

where η = αt or η = 2αt. A simple estimator of b(σ 2, η) is
b(Z, η), where Z = (Z1, . . . ,ZG). Denote α̂∗

1 and α̂∗
2 as the es-

timates of α∗
1 and α∗

2 with b(σ 2, η) in (8) and (9) replaced by
b(Z, η). The following theorem shows that σ 2t

g (α̂∗
1) and σ 2t

g (α̂∗
2)

are asymptotically optimal, and α̂∗
1 and α̂∗

2 are consistent under
certain conditions as ν → ∞.

Theorem 5. For any fixed G and nonzero t, when ν → ∞,
we have

(a) b(Z, αt)
a.s.→ b(σ 2, αt) uniformly for α ∈ [0,1]

(b) Rk(σ
2t, σ̂ 2t

(α̂∗
k (ν)))−Rk(σ

2t, σ̂ 2t
(α∗

k (ν)))
a.s.→ 0, k = 1,2

(c) α̂∗
1(ν)

a.s.→ 0 and α̂∗
2(ν)

a.s.→ 0 when σ 2
g are not all the same.

Proof of Theorem 5 can be found in Tong and Wang (2005).
For microarray data, ν is small and G is large. In the following
text, we investigate asymptotic properties as G → ∞. We now

consider σ 2
g as random variables and assume that σ 2

g
iid∼ F, g =

1, . . . ,G.

Lemma 2. For any fixed nonzero t with ν > 2t, E(σ 2
1 )−t <

∞, and E(ln(σ 2
1 )) < ∞, we have w(αt)b(Z, αt) − b(σ 2, αt)

a.s.→
0 uniformly for α ∈ [0,1] as G → ∞, where w(αt) =
(ν/2)αth1(−αt) exp[−αt�(ν/2)].

For a fixed t, let Hk(σ
2, α,G) = Rk(σ

2t, σ̂ 2t
(α)) and let

Hk(Z, α,G) be the functions with b(σ 2, kαt) in Hk(σ
2, α,G)

replaced by w(kαt)b(Z, kαt), k = 1,2. Denote α∗
k (G) =

arg minα∈[0,1] Hk(σ
2, α,G) and ᾰ∗

k (G) = arg minα∈[0,1] Hk(Z,

α,G).

Theorem 6. For any fixed nonzero t, we make the following
statements:

(a) When ν > 2|t|, E(σ 2
1 )−t < ∞, and E(ln(σ 2

1 )) < ∞,

we have R1(σ
2t, σ̂ 2t

(ᾰ∗
1(G))) − R1(σ

2t, σ̂ 2t
(α∗

1(G)))
a.s.→ 0 and

ᾰ∗
1(G) − α∗

1(G)
a.s.→ 0 as G → ∞.

(b) When ν > 4|t|, E(σ 2
1 )−2t < ∞ and E(ln(σ 2

1 )) < ∞,

we have R2(σ
2t, σ̂ 2t

(ᾰ∗
2(G))) − R2(σ

2t, σ̂ 2t
(α∗

2(G)))
a.s.→ 0 as

G → ∞.

Proofs of Lemma 2 and Theorem 6 are in Appendix. Note
that there is no corresponding consistent result for α∗

2 because
it may not be unique. For the special case that F is a gamma
distribution with shape parameter γ and scale parameter β , it is
easy to check that E(ln(σ 2

1 )) = �(γ ) + lnβ < ∞, E(σ 2
1 )−t =

β−t�(γ − t)/�(γ ) < ∞ for γ > t, and E(σ 2
1 )−2t = β−2t�(γ −

2t)/�(γ ) < ∞ for γ > 2t.
Note that Theorem 6 does not apply for small ν. We propose

an alternative two-step procedure: (1) substitute b(σ 2, η) in (8)
and (9) by b(Z, η), and compute temporary optimal shrink-
age parameters and the corresponding shrinkage estimators,
say σ̂ 2

−; (2) substitute b(σ 2, η) in (8) and (9) by b(σ̂ 2
−, η) to get

the final optimal shrinkage parameters α̌∗
1 and α̌∗

2 . When t > 0,

because σ 2
g appears in the denominator in (8) and (9), extreme

small values of Zg make estimates of α∗
1 and α∗

2 unstable. We
truncate the smallest 1% of Zg’s in our procedures. We find that
the truncation is unnecessary when t < 0. Simulations indicate
that α̌∗

1 and α̌∗
2 perform better than α̂∗

1 , α̂∗
2 , ᾰ∗

1 , and ᾰ∗
2 when ν

is small. Therefore, α̌∗
1 and α̌∗

2 will be used in our simulations.
Computation of optimal shrinkage parameters amounts to

finding minimizers of some loss functions in the interval [0,1].
Optimization methods such as quasi-Newton or conjugate-
gradient algorithms may be used. Because the computations in-
volved are cheap and fast, for simplicity, we use grid search
in the following data analysis and simulations. The R code is
available from the authors.

4. SIMULATIONS AND COMPARISONS

In this section we conduct simulations to compare the per-
formance of our estimators with the CHQBC estimator and the
modified CHQBC estimator for the purpose of estimation. All
estimators considered in this section perform substantially bet-
ter than the standard gene-specific estimator. For simplicity, we
will not present the results for the gene-specific estimator. We
evaluate the performance for estimating σ 2

g in Section 4.1 and

the performance for estimating (σ 2
g )−1 in Section 4.2. We set

G = 5,000 in this section.

4.1 Estimation of σ g
2

We consider four different estimators in this subsection:
σ̂ 2

g (α̌∗
1), σ̂ 2

g (α̌∗
2), σ̂ 2

g (α̂0), and σ̃ 2
g (α̂0). We simulate σ 2

g ,g =
1, . . . ,G, from a gamma distribution with shape parameter γ

and scale parameter β . We set β = 1 because it has little impact
on the comparative performance. To evaluate performance un-
der different levels of variance heterogeneity, we consider three
different shape parameters, γ = .25, 1, and 4, which correspond
to three different coefficients of variation [CV = √

γβ2/(γβ) =√
γ /γ ] at levels 2, 1, and 0.5, respectively. For each σ 2

g , we
simulate ν +1 observations from N(µg, σ

2
g ), where µg is a ran-

dom sample from N(0,1). We calculate Zg as the sample vari-
ance for each g. We use a factorial design that consists of three
levels for γ and seven levels for ν, ν = 1, . . . ,7. Therefore, we
have 21 combinations of parameter settings. For each setting,
we repeat simulation 100 times. We compute the average risk

ARk = 1

100G

100∑
r=1

G∑
g=1

Lk(σ
2
gr, σ̂

2
gr), k = 1,2,

where r represents simulation replications, and k = 1 and k = 2
correspond to the Stein and the squared loss functions, respec-
tively. We plot ln(ARk) in Figure 1 as a function of ν for all
four methods.

Standard errors of these log average risks range from .00007
to .01871 under the Stein loss function and from .00040 to
.07398 under the squared loss function. Therefore, most of
the differences in log average risks are statistically significant.
The modified CHQBC estimator σ̂ 2

g (α̂0) has smaller average

risk than the original CHQBC estimator σ̃ 2
g (α̂0) in all settings.

When the variance heterogeneity is not small (γ = .25 and
γ = 1), two optimal estimators σ̂ 2

g (α̌∗
1) and σ̂ 2

g (α̌∗
2) have simi-

lar risks, which are smaller than those of σ̂ 2
g (α̂0). When ν and
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Figure 1. Plots of Log Average Risks for Estimating σ 2
g Under the Stein Loss Function (left) and the Squared Loss Function (right). The three

rows correspond to the three shape parameters. The lines in each plot marked 1, 2, 3, and 4 correspond to the optimal estimator under the Stein loss
function σ̂ 2

g (α̌∗
1), the optimal estimator under the squared loss function σ̂ 2

g (α̌∗
2), the modified CHQBC estimator σ̂ 2

g (α̂0), and the CHQBC estimator
σ̃ 2

g (α̂0), respectively.

the variance heterogeneity is small (γ = 4), σ̂ 2
g (α̂0) has smaller

risks under the Stein loss function than the optimal estimators.
Overall, the optimal estimator under the Stein loss function per-
forms well. Note that the estimates of optimal shrinkage para-
meters α̌∗

1 and α̌∗
2 do not guarantee the optimal performance,

especially when ν is small. Simulations (not shown) indicate
that α∗

1 and α∗
2 do guarantee the optimal performance for the

Stein and the squared loss functions, respectively.

4.2 Estimation of σ g
−2

As discussed in Section 1, it is better to use an estimator of
σ−2

g directly than to use the reciprocal of an estimator of σ 2
g in

the F test (Sec. 5). In this subsection we evaluate performance
for estimating σ−2

g .

Simulations (not shown) indicate that σ̂−2
g (α̌∗

1) always per-

forms better than σ̂−2
g (α̌∗

2). For simplicity, we present results for

σ̂−2
g (α̌∗

1) only. We consider four estimators, σ̂−2
g (α̌∗

1), σ̂ 2
g (α̌∗

1),

σ̂ 2
g (α̂0), and σ̃ 2

g (α̂0), where σ̂−2
g (α̌∗

1) is the estimator of (σ 2
g )t

with t = −1. We take the reciprocal of the last three as esti-
mators of σ−2

g . Theorem 1 requires that ν ≥ 3 when t = −1.
Therefore, we take ν from 3 to 9. All other settings are the same
as those in Section 4.1.

Standard errors of the log average risks range from .00017
to .00678 under the Stein loss function and from .00038 to
.04529 under the squared loss function. Again, most of the dif-
ferences in log average risk are statistically significant. Figure 2
shows that under both the Stein and the squared loss func-
tions, risk of σ̂−2

g (α̌∗
1) < risk of σ̃ 2

g (α̂0) < risk of σ̂ 2
g (α̂0) <

risk of σ̂ 2
g (α̌∗

1). It is interesting to note that σ̃ 2
g (α̂0) outperforms

σ̂ 2
g (α̂0), which, again, confirms that a better estimator for σ 2

g

may not lead to a better estimator for σ−2
g . We have performed

many more simulations with different parameters for both Sec-
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Figure 2. Plots of Log Average Risks for Estimating (σ 2
g )−1 Under the Stein Loss Function (left) and the Squared Loss Function (right). The three

rows correspond to the three shape parameters. The lines in each plot marked 1, 2, 3, and 4 correspond to σ̂−2
g (α̌∗

1), σ̂ 2
g (α̌∗

1), σ̂ 2
g (α̂0), and σ̃ 2

g (α̂0),
respectively.

tions 4.1 and 4.2. Comparative results remain the same. More
insights on these estimators can be found in Tong and Wang
(2005).

5. APPLICATIONS

Cui et al. (2005) demonstrated that the F test using the
CHQBC estimator has the best or nearly the best power among
several “information-sharing” statistics for detecting differ-
entially expressed genes over a wide range of settings. For
simplicity, we compare the performance of our shrinkage es-
timators with the CHQBC estimator, the modified CHQBC
estimator, and the gene-specific estimator only. We introduce
F-like statistics using shrinkage estimators in Section 5.1. In
Section 5.2 we apply our method to microarray data, and con-
duct simulations to evaluate and compare the performances of
several F-like statistics.

5.1 F-Like Statistics

For a fixed gene g, g = 1, . . . ,G, test statistics are usually
based on the general linear mixed effects model (Kerr et al.
2002; Cui et al. 2005)

yg = Xgβg + Zgbg + εg, (11)

where yg is the vector of all observations for gene g, Xg and
Zg are design matrices for the fixed effects βg and the random
effects bg, respectively, and εg is the vector of random errors.
We assume that(

bg

εg

)
∼ N

((
0
0

)
, σ 2

g

(
Gg

Rg

))
,

where σ 2
g is the error variance for gene g. Note that the general

linear model is a special case with empty Zg and bg. Denote
β̂g and b̂g as the best linear unbiased predictor and denote its
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variance–covariance matrix

Cg = σ 2
g

(
XT

g R−1
g Xg XT

g R−1
g Zg

ZT
g R−1

g Xg ZT
g R−1

g Zg + G−1
g

)−
� σ 2

g Dg,

where the negative sign represents the generalized inverse
of the matrix. The F statistic for testing the hypothesis H0:
LT

g (βT
g ,bT

g )T = 0 is (Littell, Milliken, Stroup, and Wolfinger
1996)

F = (β̂
T
g , b̂T

g )Lg(LT
g D̂gLg)

−1LT
g (β̂

T
g , b̂T

g )T/ rank(Lg)

σ̂ 2
g

� �gσ̂
−2
g , (12)

where D̂g is an estimator of Dg that can be calculated using
the restricted maximum likelihood method (Searle, Casella, and
McCulloch 1992) and σ̂−2

g is an estimator of σ−2
g .

Different estimators of σ−2
g lead to different F-like statis-

tics. We will consider four F-like statistics, F1, F2, F3, and F4,
with σ̂−2

g in (12) replaced by σ̂−2
g (α̌∗

1), σ̂−2
g (α̌∗

2), 1/σ̃ 2
g (α̂0), and

the gene-specific estimator, respectively. The statistic F3 is the
same as Fs in Cui et al. (2005). Simulations (not shown) indi-
cate that F-like statistics with σ̂ 2

g in (12) replaced by σ̂ 2
g (α̂0),

σ̂ 2
g (α̌∗

1), or σ̂ 2
g (α̌∗

2) have similar performance as F3. To save
space, these results are not presented. Because F-like statistics
do not follow F distributions, we calculate p values by permu-
tation as in Cui et al. (2005).

We note that the method described here applies to general
designs, and usually Xg, Zg, Gg, Rg, and Lg are independent
of g. The most commonly used design in practice is perhaps the
simple k sample comparison with

ygij = µgi + εgij, i = 1, . . . , k; j = 1, . . . ,n,

where µgi is the mean of sample i and gene g, and εgij
iid∼

N(0, σ 2
g ). The standard F statistic for testing the hypothesis

H0: µg1 = · · · = µgk is F = �gσ̂
−2
g , where �g = n

∑k
i=1(ȳgi· −

ȳg··)2/(k − 1), σ̂ 2
g = ∑k

i=1
∑n

j=1(ygij − ȳgi·)2/k(n − 1), ȳgi· =∑n
j=1 ygij/n, and ȳg·· = ∑k

i=1
∑n

j=1 ygij/kn. Shrinkage esti-

mates of σ−2
g are obtained with Zg = σ̂ 2

g .

5.2 Case Study

Cui et al. (2005) described an experiment that compared
two human colon cancer cell lines, CACO2 and HCT116, and
three human ovarian cancer cell lines, ES2, MDAH2774, and
OV1063. Five samples were arranged in a loop and no reference
sample was used. Fluorescent dye labeled cDNA targets were
hybridized to cDNA microarrays that contained 9,600 human
cDNA clones. To simplify the analysis, as in Cui et al. (2005),
the duplicated spots for the same gene on each array were aver-
aged at the original signal level. Observations were transformed
and normalized.

To each gene we fitted the model (Cui et al. 2005)

yij = µ + Ai + Dj + Sk(i,j) + εij,

i = 1, . . . ,10; j = 1,2; k = 1, . . . ,5, (13)

where µ is the gene mean, Ai is the array effect, Dj is the dye
effect, Sk(i,j) is the sample effect, and εij is the random error.

In general, the terms µ, Dj, and Sk(i,j) are fixed effects and Ai

are random effects. Cui et al. (2005) demonstrated that the ar-
ray variance has little impact on the F tests. Therefore, as in
Cui et al. (2005), we treat Ai as fixed effects. All analyses were
conducted using the newest version of R/MAANOVA (Wu and
Churchill 2005). At a nominal significance level of .01, F1, F2,
F3, and F4 detected 1,859, 1,849, 1,823, and 1,439 significant
genes, respectively. To overcome the problem of multiple com-
parisons, we applied the Benjamini and Hochberg (1995) pro-
cedure to control false discovery rate (FDR). At a FDR level of
.05, F1, F2, F3, and F4 detected 1,823, 1,806, 1,769, and 1,002
significant genes, respectively.

To study the false positive and successful detection rates for
these four F-like tests, we simulated 100 datasets using the
same design as the real data. Each simulated data set con-
tains 1,000 constant genes and 1,000 differentially expressed
genes. Because the successful detection rate of a test de-
pends on the magnitude of the overall treatment effect, � =∑5

k=1(Sk − S̄.)
2/4, where Sk is defined in (13), we consid-

ered
√

4� as a parameter. Specifically, we generated Sk =√
4�(Qk − Q̄)/

√∑5
k=1(Qk − Q̄)2, where Qk

iid∼ N(0,1), with√
4� = .1, .2, . . . ,1 representing 10 different levels of treat-

ment effects. The fixed effects µ and Dj were drawn randomly
from the normal distributions N(0, .652) and N(0, .352), re-
spectively, and were held constant across all simulations. For
each simulation, independent Ai and εij were drawn randomly
from N(0, .62) and N(0, σ 2

g ), respectively, where σ 2
g are sam-

pled randomly without replacement from the 9,600 estimates of
residual variances of the real data. As in Cui et al. (2005), the
variability of the residual variances was controlled by a parame-
ter τ through the formula σ 2

g,τ = (σ 2τ
g /σ 2τ

pool)σ
2
pool. We consid-

ered three choices of τ , τ = .5, 1, and 2, which correspond to
CV = .63, 1.84, and 10.60, respectively. Random errors were
generated such that they are mutually independent.

Average false positive rates at the significance level .05 and
their standard errors are listed in Table 1. False positive rates
for all four F-like statistics are under the nominal value, and
are smaller for tests based on shrinkage variance estimators.
Average false positive rates at other significance levels behave
similarly.

All tests based on shrinkage variance estimators, F1–F3, have
much larger powers than those of the gene-specific test F4. Im-
provements of the new F-like tests come with moderate to large
treatment effect. For simplicity, in Figure 3, we plot the success-
ful detection rates for F1, F2, and F3 only with .4 ≤ √

4� ≤ 1.
Standard errors of these detection rates (not shown) range from
.00001 to .00249. Most of the differences in detection rates are

Table 1. Average False Positive Rates and Standard Errors (inside
parentheses) of Four F -Like Statistics at the Significance Level .05

Parameter F1 F2 F3 F4

CV = .63 .028(.0008) .029(.0008) .029(.0007) .048(.0009)
CV = 1.84 .041(.0009) .041(.0009) .043(.0009) .048(.0009)
CV = 10.6 .046(.0009) .045(.0008) .047(.0009) .048(.0009)

ρ = 0 .036(.0009) .036(.0009) .039(.0009) .048(.0009)
ρ = 1/3 .034(.0014) .034(.0014) .037(.0015) .046(.0015)
ρ = 2/3 .035(.0026) .034(.0026) .037(.0028) .046(.0027)
ρ = 1 .037(.0047) .036(.0047) .039(.0051) .047(.0052)
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Figure 3. Plots of the Average Successful Detection Rates for Simulations Where Observations Are Independent. The lines in each plot marked
1, 2, and 3 correspond to F1, F2 , and F3 , respectively.

statistically significant. The statistic F1 outperforms F3 in all
situations and also performs better than F2 when the hetero-
geneity of variance is not large (CV = .63 and CV = 1.84).
When the heterogeneity of variance is large (CV = 10.6), F2
performs better than F1. For microarray data in their typical
range of CV, we recommend F1.

The preceding simulations assume that the genes are mutu-
ally independent, which is unlikely to hold in practice. To eval-
uate and compare the performance of various tests under more
realistic situations, we simulated another 100 datasets using the
same design as the real data, model (13), and estimated co-
variance matrix. Again, each simulated dataset contains 1,000
constant genes and 1,000 differentially expressed genes. We as-
sumed model (13), where µ, Ai, Dj, and Sk are generated in the
same manner as the previous simulation. Random errors from
different genes are now correlated. To generate correlated ran-
dom errors, we first computed the sample covariance matrix �,
based on residuals from analysis of the real data with 9,600
genes. Then we treated these 9,600 genes as the population and
treated the 2,000 genes in each simulation replication as a ran-
dom sample from the population. After 2,000 genes are chosen,
the covariance matrix of these 2,000 genes is a submatrix of
�, say �1, with rows and columns that correspond to the se-
lected genes. To investigate the effect of different levels of cor-
relation, we considered the covariance matrix �1(ρ) with off-
diagonal elements of �1 multiplied by a number ρ. We consid-
ered four different values, ρ = 0,1/3,2/3, and 1, where ρ = 0
corresponds to the independent situation in the previous simu-
lation. Finally, for each fixed i and j, we generated the vector
of random errors for all 2,000 genes according to a multivari-
ate normal distribution with mean zero and covariance matrix
�1(ρ).

Average false positive rates at the significance level .05 and
their standard errors are also listed in Table 1. Again, all four

F-like statistics have false positive rates that are under the nom-
inal value. The F-like statistics based on shrinkage variance es-
timators have smaller false positive rates than those based on
the gene-specific test. Detection rates are shown in Figure 4.
Standard errors of these detection rates (not shown) range from
.0006 to .011, and most of the differences in detection rates are
statistically significant. We conclude that the correlation has lit-
tle effect on power when the treatment effect is large. When the
treatment effect is moderate, the power decreases slightly as the
correlation increases for all shrinkage variance estimator based
tests. Nevertheless, the comparative results remain the same:
all shrinkage variance estimator based tests have much larger
powers than those of the gene-specific test, and F1 and F2 out-
perform F3 in all situations.

For simulations under both independent and correlated situ-
ations, we apply the Benjamini and Hochberg procedure with
various FDR levels. All four F-like statistics have actual FDRs
that are under the nominal value, and F-like statistics based on
shrinkage variance estimators have smaller actual FDRs than
those based on the gene-specific test. The performance differ-
ences among four F-like statistics remain the same.

6. DISCUSSION

One major challenge in microarray data analysis is the rela-
tively small number of replications for each gene compared to
the large number of genes. In this article we propose a family
of shrinkage variance estimators that borrow information across
genes by shrinking each gene-specific variance estimator to-
ward the bias corrected geometric mean of variance estimators
for all genes. The amount of optimal shrinkage depends on the
variability of the individual variances. We have shown that the
standard sample variance is inadmissible under either the Stein
or the squared loss function. Our optimal shrinkage estimators
compare favorably with the CHQBC estimator in terms of both
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Figure 4. Plots of the Average Successful Detection Rates for Simulations Where Observations Are Correlated. The lines in each plot marked
1, 2, 3, and 4 correspond to F1, F2 , F3 , and F4, respectively.

estimation and hypothesis test. One key is to use an estimator
of σ−2

g directly in the F statistic instead of using the reciprocal

of an estimator of σ 2
g . We note that the optimal shrinkage vari-

ance estimators may also be used for other purposes such as
constructing confidence intervals. We recommend the estima-
tor under the Stein loss function for microarray data analysis.

On the logarithm scale, our shrinkage estimator (7) is a
weighted average of the gene-specific variance and the bias
corrected geometric mean. One of our future research topic is
to consider a weighted average of the gene-specific variance
and the arithmetic mean (Baldi and Long 2001). Our method
shrinks all gene-specific variances to a unique common vari-
ance. One may also borrow information contained in the sam-
ple mean (Stein 1964). Better shrinkage estimators may be con-
structed when additional information becomes available. For
example, instead of shrinking to the overall geometric mean,
one may borrow information from neighboring genes (Baldi
and Long 2001; Jain et al. 2003).

APPENDIX: PROOFS

Proof of Lemma 2

Because s(α) = (σ 2
g )−αt is a convex function of α, then (σ 2

g )−αt =
s(α) ≤ (1 − α)s(0) + αs(1) ≤ 1 + (σ 2

g )−t . By theorem 16(a) in Fergu-

son (1996) and the fact that E(σ 2
g )−t < ∞,

1

G

G∑
g=1

(σ 2
g )−αt a.s.−→ E(σ 2

1 )−αt

uniformly for α ∈ [0,1] as G → ∞. (A.1)

Similarly, by the fact that E(Z1)−αt = E[E(Z−αt
1 |σ 2

1 )] = E(σ 2
1 )−αt/

h1(−αt),

h1(−αt)

G

G∑
g=1

(Zg)−αt a.s.−→ E(σ 2
1 )−αt

uniformly for α ∈ [0,1] as G → ∞. (A.2)

Combining (A.1) and (A.2) yields

h1(−αt)

G

G∑
g=1

(Zg)−αt − 1

G

G∑
g=1

(σ 2
g )−αt a.s.−→ 0

uniformly for α ∈ [0,1] as G → ∞. (A.3)

By the strong law of large numbers, ln(σ 2
pool) = ∑G

g=1 ln(σ 2
g )/G

a.s.→
E ln(σ 2

1 ). Thus [σ 2
pool exp(−E ln(σ 2

1 ))]t a.s.→ 1 for any fixed t. Following
the arguments similar to those in Tong and Wang (2005) and using the
fact that E(ln(Z1)) = E[E(ln(Z1)|σ 2

1 )] = E ln(σ 2
1 )+�(ν/2)− ln(ν/2),

as G → ∞, we have

(σ 2
pool)

αt a.s.−→ exp(αt E ln(σ 2
1 )) uniformly for α ∈ [0,1], (A.4)

and(
ν

2

)αt
exp

(
−αt�

(
ν

2

))
(Zpool)

αt a.s.−→ exp(αt E ln(σ 2
1 ))

uniformly for α ∈ [0,1]. (A.5)

Combining (A.4) and (A.5), as G → ∞, gives(
ν

2

)αt
exp

(
−αt�

(
ν

2

))
(Zpool)

αt − (σ 2
pool)

αt a.s.−→ 0

uniformly for α ∈ [0,1]. (A.6)

Using (A.2), (A.3), (A.4), and (A.6), we have

w(αt)b(Z, αt) − b(σ 2, αt)

=
[(

ν

2

)αt
exp

(
−αt�

(
ν

2

))
(Zpool)

αt − (σ 2
pool)

αt
]

× h1(−αt)

G

G∑
g=1

(Zg)−αt

− (σ 2
pool)

αt

[
h1(−αt)

G

G∑
g=1

(Zg)−αt − 1

G

G∑
g=1

(σ 2
g )−αt

]

a.s.−→ 0 uniformly for α ∈ [0,1] as G → ∞.
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Proof of Theorem 6

(a) By Lemma 2, it is not difficult to check that

H1(Z, α,G) − H1(σ 2, α,G)
a.s.−→ 0

uniformly for α ∈ [0,1] as G → ∞. (A.7)

Following arguments similar to those in Tong and Wang (2005)
and using the fact that maxα∈[0,1] limG→∞ C1(α) < ∞, where

C1(α) = hα
G(t)h1−α

1 (t)/(hG−1
1 (αt/G)h1((1 − α + α/G)t)), we have

R1(σ 2t, σ̂ 2t(ᾰ∗
1 (G))) − R1(σ 2t, σ̂ 2t(α∗

1 (G)))
a.s.→ 0.

Now we show for each pair (σ 2,Z) that satisfies (A.7), that ᾰ∗
1 (G)−

α∗
1 (G) → 0. Because that there exists a pair (σ 2,Z) for which (A.7)

holds and ᾰ∗
1 (G) − α∗

1 (G) � 0. Because α belongs to the compact
interval [0,1], there exists a subsequence {Gn} such that |ᾰ∗

1 (Gn) −
α∗

1 (Gn)| → β > 0. It can be shown that (Tong and Wang 2005)

lim
G→∞

∂2H1(σ 2, α,G)

∂α2

≥ �(ν/2 + (1 − α)t)

�α(ν/2)�1−α(ν/2 + t)
t2� ′

(
ν

2
+ (1 − α)t

)
.

Because the nonzero t > −ν/2, it is not difficult to show that
δ � minα∈[0,1]{limG→∞ C1(α)D′(α)} > 0, where D′(α) = ((G −
1)t2(� ′(ν/2 + αt/G) + (G − 1)� ′(ν/2 + (1 − α + α/G)t))/G2. Then
for an arbitrary 0 < ε < δβ2/16, there exists an N1 > 0 such that for
any Gn > N1, |ᾰ∗

1 (Gn) − α∗
1 (Gn)| > β/2. Consequently,

H1(σ 2, ᾰ∗
1 (Gn),Gn) − H1(σ 2, α∗

1 (Gn),Gn)

= 1

2

∂2H1(σ 2, α,Gn)

∂α2

∣∣∣∣
α=ξ

(ᾰ∗
1 (Gn) − α∗

1 (Gn))2

≥ δβ2

8
.

For the same ε, by (A.7), there exists another N2 > 0 such that for any
Gn > N2, supα∈[0,1]|H1(Z, α,Gn) − H1(σ 2, α,Gn)| < ε. Therefore,
for any Gn > max{N1,N2}, we have

H1(Z, ᾰ∗
1 (Gn),Gn) ≥ H1(σ 2, ᾰ∗

1 (Gn),Gn) − ε

≥ H1(σ 2, α∗
1 (Gn),Gn) + δβ2/8 − ε

≥ H1(Z, α∗
1 (Gn),Gn) + δβ2/8 − 2ε

> H1(Z, α∗
1 (Gn),Gn),

which contradicts the fact that H1(Z, ᾰ∗
1 (Gn),Gn) is the minimum of

H1(Z, α,Gn).
The proof of Theorem 6(b) is skipped because it is similar.

[Received May 2005. Revised September 2006.]
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