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This article considers spline smoothing of variance functions. We focus on selection
of the smoothing parameters and develop three direct data-driven methods: unbiased risk
(UBR), generalized approximate cross-validation (GACV), and generalized maximum
likelihood (GML). In addition to guaranteed convergence, simulations show that these
direct methods perform better than existing indirect UBR, generalized cross-validation
(GCV), and GML methods. The direct UBR and GML methods perform better than the
GACV method. An application to array-based comparative genomic hybridization data
illustrates the usefulness of the proposed methods.
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1. INTRODUCTION

Modeling local variability in terms of variance functions is an important problem with
a wide range of applications. For example, variance function estimation is necessary in
finance, quality control, and immunoassay for measuring volatility or risk (Andersen and
Lund 1997; Gallant and Tauchen 1997), experimental design (Box 1988), prediction (Carroll
1987; Yao and Tong 1994) and calibration (Raab 1981; Watters, Carroll, and Spiegelman
1987). Variance estimation is especially important for detecting genes with differential
expression across experimental conditions based on microarray data (Huang and Pan 2002;
Wang and Guo 2004). With a small number of replicated array experiments, the standard
estimates of variances are unreliable. Various methods have been proposed to improve
estimation of the variances which usually lead to more powerful tests (Huang and Pan
2002; Wang and Guo 2004; Cui et al. 2005). We apply our variance function estimation
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methods to array-based comparative genomic hybridization (aCGH) data in Section 5. More
applications of variance function estimation can be found in Carroll and Ruppert (1988).

Research on nonparametric estimation of variance functions has attracted a great deal
of attention (Carroll 1982; Silverman 1985; Hall and Carroll 1989; Ruppert, Wand, Holst,
and Hössjer 1997; Fan and Yao 1998; Yuan and Wahba 2004; Dai and Guo 2005). Most
research concentrates on heteroscedastic regression. Both local polynomial smoothers and
smoothing splines were used to model the variance function nonparametrically. Within the
smoothing spline framework, Yuan and Wahba (2004) used the GACV method to select
the smoothing parameter for estimating the variance function, while Dai and Guo (2005)
treated squared pseudo-residuals (lag-one differences) as Gaussian data. The main goal of
this article is to develop and compare several data-driven smoothing parameter selection
methods for the smoothing spline estimation of variance functions.

To simplify exposition, we focus on the situation when direct observations on a vari-
ance function are available. Specifically, we have independent observations {(xi, yi), i =
1, . . . , n}, where

yi = exp(f (xi))χ
2
i,k/k, (1.1)

χ2
i,k are iid Chi-square random variables with k degrees of freedom. Our goal is to estimate

the variance function f nonparametrically.
One typical situation leading to model (1.1) is the following heteroscedastic regression

model with replicates

zij = µi + exp(f (xi)/2)εij , i = 1, . . . , n; j = 1, . . . , k + 1, (1.2)

where εij
iid∼ N(0, 1). Then the sample variances yi = ∑k+1

j=1(zij − ∑k+1
j=1 zij /(k + 1))2/k

follow model (1.1). See Section 5 and Raab (1981) for real examples of model (1.2).
Most nonparametric methods for heteroscedastic regression use either of the following as

observations on the variance function: squared residuals after fitting a nonparametric model
to the mean function (Silverman 1985; Hall and Carroll 1989; Ruppert, Wand, Holst, and
Hössjer 1997; Fan and Yao 1998; Yuan and Wahba 2004), or squared pseudo-residuals after
removing the mean by differences (Müller and Stadtmüller 1987; Fan and Yao 1998; Dai
and Guo 2005). Under suitable conditions, these squared residuals and pseudo-residuals
follow model (1.1) asymptotically (Fan and Yao 1998; Dai and Guo 2005) with k = 1.
Therefore, results in this article also shed light on the selection of smoothing parameters
for these methods where k is small.

We introduce smoothing spline models and an estimation procedure in Section 2. In
Section 3, we review some existing indirect methods and propose three direct methods for
estimating the smoothing parameters. We report results of extensive simulations in Section
4 and apply our methods to a real aCGH dataset in Section 5.

2. SMOOTHING SPLINE MODELS FOR VARIANCE FUNCTIONS

We assume model (1.1) in the remainder of this article. Considering the chi-square
distribution as a special case of the Gamma distribution, we have yi ∼ Gamma(k/2,
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2 exp(f (xi))/k) with log-likelihood

li (fi) = −kyi exp(−fi)/2 − kfi/2 + c(yi), (2.1)

where fi = f (xi) and c(yi) = log(yk/2−1
i (k/2)k/2/�(k/2)), which is independent of

fi . Spline smoothing methods for the exponential family in Wahba et al. (1995) can be
employed to estimate the function f . Note, however, that instead of the canonical link
(reciprocal) used in the previous publications, we use the logarithmic link in this article in
order to free the positive constraint on the variance function. We also propose new direct
methods for selecting the smoothing parameters.

For simplicity, we assume that the domain of the function f is [0, 1] and that f belongs
to the reproducing kernel Hilbert space (RKHS)

Wm([0, 1]) =
{
f : f, f ′, ..., f (m−1)absolutely continuous,

∫ 1

0

(
f (m)

)2
dx < ∞

}
.

(2.2)

Our methods apply to general smoothing spline and smoothing spline ANOVA models
(Wahba et al. 1995). The smoothing spline estimate of f , fλ, is the minimizer of the
penalized likelihood

−
n∑

i=1

li (fi) + nλ

2

∫ 1

0

(
f (m)

)2
dx, (2.3)

where λ is a smoothing parameter controlling the trade-off between the goodness-of-fit and
the smoothness of the function. LetBr be Bernoulli polynomials,φr(x) = Br−1(x)/(r−1)!,
r = 1, . . . , m, andR1(s, t) = φm+1(s)φm+1(t)+ (−1)m−1φ2m+1(s− t). Then the solution
to (2.3) is (Wahba et al. 1995; Gu 2002)

fλ(x) =
m∑
i=1

diφi(x) +
n∑

i=1

ciR1(xi, x). (2.4)

For any fixed λ, coefficients c = (c1, . . . , cn)
T and d = (d1, . . . , dm)

T can be solved by the
Newton procedure (Wahba et al. 1995). Let ui = −dli(fi)/dfi = −kyi exp(−fi)/2 + k/2
and wi = −d2li (fi)/df

2
i = kyi exp(−fi)/2. The Newton procedure updates c and d by

iteratively reformulating the minimization problem (2.3) as

n∑
i=1

wi−(ỹi − fi)
2 + nλ

∫ 1

0

(
f (m)

)2
dx, (2.5)

where ỹi = fi−−ui−/wi− is the pseudo-data; the subscript minus denotes its corresponding
quantities evaluated at f from the previous Newton iteration (Gu 1992; Wahba et al. 1995).

3. METHODS FOR SELECTING SMOOTHING PARAMETERS

A good choice of the smoothing parameter λ is crucial to the performance of the smooth-
ing spline estimate fλ. One measure of the discrepancy between the spline estimate fλ and
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the true function f is the Kullback-Leibler distance (Wahba et al. 1995)

KL(f, fλ) = 1

n

n∑
i=1

Efi (li(fi) − li (fλi))

= k

2n

n∑
i=1

(exp(fi − fλi) + fλi) − k

2n

n∑
i=1

(1 + fi). (3.1)

Ignoring the last term in (3.1), which is independent of λ, and also the multiplying constant
k/2, we consider the comparative Kullback-Leibler criterion

CKL(f, fλ) = 1

n

n∑
i=1

(exp (fi − fλi) + fλi) . (3.2)

One approach is to find λ such that CKL(f, fλ) is minimized. However, similar to other
loss functions, CKL(f, fλ) cannot be minimized directly since f is unknown. Therefore,
we need to find estimates or proxies of the CKL criterion. We review some existing indirect
methods in Section 3.1 and propose three direct data-driven methods in Sections 3.2-3.4.

3.1 Indirect Methods

Note that (2.5) is the penalized weighted least squares criterion for the working vari-
ables ỹi and working weights wi−. An indirect (or iterative) method chooses a smoothing
parameter at each iteration for the reformulated problem (2.5) and hopes it will converge
(Gu 1992). To estimate λ at each iteration, we may use the UBR, GCV, or GML methods
which respectively minimize the following UBR, GCV, and GML scores

U (λ) = 1

n
‖(I − A(λ))W1/2ỹ‖2 + 2

σ̂ 2

n
trA(λ), (3.3)

V (λ) = 1/n‖(I − A(λ))W1/2ỹ‖2

[(1/n)tr(I − A(λ))]2
, (3.4)

M (λ) = ỹT W1/2(I − A(λ))W1/2ỹ

[det+(W1/2(I − A(λ))W1/2)]
1

n−m

, (3.5)

where ỹ = (ỹ1, . . . , ỹn)
T , W = diag(w1−, . . . , wn−), fλi = fλ(xi), A(λ) satisfies

(w
1/2
1− fλ1, . . . , w

1/2
n− fλn)

T = A(λ)(w1/2
1− ỹ1, . . . , w

1/2
n− ỹn)

T , σ̂ 2 = ∑n
i=1 u

2
i−/nwi−, and

det+ is the product of the nonzero eigenvalues (Wahba et al. 1995; Gu 2002).
The target criteria of these indirect methods change throughout the iterations. There-

fore, one conceptual problem of the indirect methods is that their overall target criteria
are not explicitly known. Asymptotically, U (λ) provides a proxy of KL(f, fλ) (Wang,
Wahba, Chappell, and Gu 1995). No justifications have been provided for the indirect GCV
and GML methods. One practical problem with the indirect methods is that they do not
guarantee convergence. For binomial and Poisson data, extensive simulations indicate that
convergence is achieved for almost all situations (Wang et al. 1995). The performance of
these indirect methods for Gamma data has not been studied. For binomial and Poisson
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data, some direct methods have been developed and have been found to work better than
the indirect methods (Xiang and Wahba 1996; Gu and Xiang 2001; Yuan 2005). However,
direct methods for Gamma data have not been developed.

3.2 Unbiased Risk Method

In this subsection we derive an unbiased estimate of E(CKL(f, fλ)). Let hλ(i, z, ·) be
the minimizer of (2.3) when the ith observation, yi , is replaced by z. Letgλi(z) = hλ(i, z, xi)

and v(t) = ∫ t

0 exp(−gλi(z))z
k/2−1dz. Then for any fixed y−i = (y1, . . . , yi−1, yi+1, . . . ,

yn)
T , when k ≥ 3, we have

E(exp (fi − fλi))

= exp(fi)

�(k/2)

(
2 exp(fi)

k

)− k
2
∫ ∞

0
exp(−gλi(t))t

k
2 −1 exp

( −kt

2 exp(fi)

)
dt

= exp(fi)

�(k/2)

(
2 exp(fi)

k

)− k
2
{
v(t) exp

( −kt

2 exp(fi)

)∣∣∣∣
∞

0

−
∫ ∞

0
v(t)d

(
exp

( −kt

2 exp(fi)

))}

= k

2�(k/2)

(
2 exp(fi)

k

)− k
2
∫ ∞

0
v(t) exp

( −kt

2 exp(fi)

)
dt

= k

2
E

(
v(yi)y

−(k/2−1)
i

)
,

where we used the facts that E(exp(−fλi)) exists and v(t) exp(−kt/2 exp(fi))|∞0 = 0
(Appendix A, p. 325). The derivation is similar to those in Berger (1980) and Wong (2006),
where the above facts were assumed as conditions. Then, when k ≥ 3, an unbiased estimator
of E(CKL(f, fλ)) is

UBR(λ) = 1

n

n∑
i=1

(
k

2
v(yi)y

−(k/2−1)
i + fλi

)
. (3.6)

The direct UBR estimate of λ is the minimizer of UBR(λ). Gaussian quadrature may be
used to approximate v(yi) = ∫ yi

0 exp(−gλi(z))z
k/2−1dz. However, it requires calculating

hλ(i, z, ·) for several different values of z, which can be computationally intensive when
the sample size is large. Simulations indicate that exp(gλi(z)) is approximately linear in
z: exp(gλi(z)) ≈ β0 + β1z. We have tried several methods to compute the coefficients β0

and β1, and found that the following two work well: (1) compute gλi(yi) and gλi(yi/2),
and then compute β0 and β1 as the intercept and slope of the line joining two points
(yi/2, exp(gλi(yi/2))) and (yi, exp(gλi(yi))); (2) from Taylor expansion exp(gλi(z)) ≈
exp(gλi(yi))+exp(gλi(yi))(∂gλi/∂z)|z=yi (z−yi) ≈ exp(fλi)+exp(fλi)dii(z−yi), where
(∂gλi/∂z)|z=yi ≈ dii ; this is based on a similar argument as that in Appendix B (p. 326), and
dii is defined later in Section 3.3. Thus, β0 ≈ exp(fλi)(1 − diiyi) and β1 ≈ exp(fλi)dii .
Based on the linear approximation, v(yi) can be calculated through recursive formulas
obtained by lengthy algebra (not shown). Extensive simulations indicate that the above
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linear approximations lead to similar UBR estimates of the smoothing parameters as those
based on Gaussian quadrature; the two methods for computing the coefficients β0 and β1

also lead to similar UBR estimates. We use the linear approximation based on the Taylor
expansion in our simulations since it requires the least amount of computation.

3.3 Generalized Approximate Cross-Validation Method

Let f (−i)
λ be the minimizer of (2.3) without the ith observation and f

(−i)
λi = f

(−i)
λ (xi).

Replacing exp(fi − fλi) by yi exp(−f
(−i)
λi ) and ignoring the multiplying constant 1/n, we

obtain a cross-validation estimate of CKL(f, fλ)

CV(λ) =
n∑

i=1

(
yi exp

(
−f

(−i)
λi

)
+ fλi

)
. (3.7)

It is usually expensive to compute CV(λ) for largen. We now introduce an approximation
of CV(λ). Let f = (f1, . . . , fn)

T , Tn×m = {φv(xi)}ni=1
m
v=1 and,,, = {R1(xi, xj )}ni,j=1. Let

T = (Q1 Q2)(RT 0T )T be the QR decomposition of T and --- = Q2(QT
2 ,,,Q2)

†QT
2 where

† is the Moore-Penrose generalized inverse. Then f = Td + ,,,c,
∫ 1

0 (f
(m))2dx = fT ---f ,

and the penalized likelihood (2.3) can be rewritten as (Xiang and Wahba 1996)

J = −
n∑

i=1

li (fi) + nλ

2
fT ---f . (3.8)

Let Wλ = diag(ky1 exp(−fλ1)/2, . . . , kyn exp(−fλn)/2), V = diag(k exp(−fλ1)/2, . . . ,
k exp(−fλn)/2), and D = (Wλ + nλ---)−1V. An approximation of CV(λ) is (Appendix B,
p. 326)

ACV(λ) = L(λ) +
n∑

i=1

dii exp(−fλi)yi(yi − exp(fλi))

1 − dii exp(fλi)
,

whereL(λ) = ∑n
i=1 (yi exp(−fλi) + fλi) and dii is the ith diagnal element of D. Replacing

exp(fλi)dii by tr(W1/2
0 DW1/2

0 )/n where W0 = diag(exp(fλ1), . . . , exp(fλn)), we obtain
a generalized ACV

GACV1(λ) = L(λ) +
tr

(
W1/2

0 DW1/2
0

)
n − tr

(
W1/2

0 DW1/2
0

) n∑
i=1

yi(yi − exp(fλi)) exp(−2fλi).

Replacing exp(fλi)dii in the denominator by tr(W1/2
0 DW1/2

0 )/n and dii in the numerator
by tr(D)/n, we obtain another generalized ACV

GACV2(λ) = L(λ) + tr(D)

n − tr
(

W1/2
0 DW1/2

0

) n∑
i=1

yi(yi − exp(fλi)) exp(−fλi).

GACV2(λ) is the same as the GACV in Yuan and Wahba (2004) (note that there is a
typographical error in their formula). The direct GACV1 and GACV2 estimates of λ are
minimizers of GACV1(λ) and GACV2(λ), respectively.
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3.4 Generalized Maximum Likelihood Method

Let F(x) = ∑M
i=1 θiφi(x) + b

1
2 Z(x) be the prior for the function f , where θi

iid∼
N(0, a), b = 2/knλ, Z(x) is a Gaussian process independent of θi’s with E(Z(x)) = 0 and
E(Z(s)Z(t)) = R1(s, t). We assume that observations y = (y1, . . . , yn)

T are generated
according to model (1.1) conditional on f = F . As a → ∞, Gu (1992) showed that the
posterior mean E(F (x)|y) approximately equals the spline estimate fλ(x).

Let uic and wic be ui and wi , respectively, evaluated at the convergence point of
the Newton procedure. Let uc = (u1c, . . . , unc)

T , Wc = diag(w1c, . . . , wnc), fλ =
(fλ1, . . . , fλn)

T , yc = fλ − W−1
c uc, ,,,c = W1/2

c ,,,W1/2
c , and Tc = W1/2

c T. Let (Q1c Q2c)

(RT
c 0T )T be the QR decomposition of Tc, and U555UT be the spectral decomposition

of QT
2c,,,cQ2c where 555 = diag(λνn, ν = 1, . . . , n − m). Let z = (z1, . . . , zn−m)

T =
UT QT

2cW
1/2
c yc. Then, using Equation (16) in Liu, Meiring, and Wang (2005) and ignoring

a constant, we have an approximation of the negative log-marginal likelihood of y,

GML(λ) = −
n∑

i=1

li (fλi) − k

4
ucT W−1

c uc

+1

2

n−m∑
ν=1

(
ln(λνn/nλ + 1) + kz2

ν/2

λνn/nλ + 1

)
+ ln |Rc|. (3.9)

The direct GML estimate of λ is the minimizer of GML(λ). Liu, Meiring, and Wang (2005)
used the approximated marginal likelihood to construct GML tests for generalized linear
models. This approximation has not been explored as a tool for selecting the smoothing
parameter for non-Gaussian data, therefore, its performance is unknown.

4. SIMULATIONS

One simple and commonly used approach is to transform yi in model (1.1) using the log-
arithm scale and then fitting the transformed data using a penalized least square smoothing
spline. We refer to this simple approach as the transformation method. In the following sim-
ulation, we use the GCV method to select the smoothing parameter for the transformation
approach.

We generate data from model (1.1) with xi = i/n. We use a factorial design with seven
functions

fj (x) = 2 sin(2πjx) + 3, j = 1, 2, 3,

f4(x) = 3 − (5x − 2.5)2,

f5(x) = logit((−1.6x + .9)I{x≤.5} + (1.6x − .7)I{x>.5}),
f6(x) = logit((3.5x/3)I{x≤.6} + .7I{x>.6}),
f7(x) = 0.218 − 4.312x,

four different sample sizes n = 100, 200, 300, 400, and four different degrees of freedom
k = 1, 2, 3, 4. Functions f1-f7 are similar to those in Gu and Xiang (2001). We fit model
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Table 1. Number of replications out of 100 that failed to converge for the indirect UBR method.

k = 1 k = 2 k = 3 k = 4

f1 f2,3 f4 f5 f6 f7 f1 f2 f3 f4 f5 f6 f7 f1,2,4,7 f3 f5 f6 f1−7

n = 100 98 100 97 95 93 95 19 37 34 11 8 10 13 0 1 0 0 0
n = 200 97 100 94 97 90 91 8 15 12 7 6 5 6 0 0 1 0 0
n = 300 92 100 87 93 85 85 4 6 4 2 3 2 2 0 0 1 1 0
n = 400 88 100 88 97 86 84 2 2 1 0 3 2 2 0 0 0 0 0

(1.1) using eight methods: direct UBR, direct GML, GACV1, GACV2, indirect UBR,
indirect GCV, indirect GML and transformation. For each simulation setting, we repeat the
simulation 100 times.

Because UBR, GACV1, GACV2, and GML are all continuous functions of the smooth-
ing parameter, we used the quasi-Newton method to optimize them. Specifically, the R func-
tion optim with the option L-BFGS-B is used. This option performs the quasi-Newton
optimization and allows the user to specify lower and upper bounds for the smoothing pa-
rameter. We used −10 and 3 as the bounds for log10(nλ). The R code is available from the
authors.

Contrary to our experience with the binomial and Poisson data, the indirect methods
sometimes fail to converge. Table 1 lists the number of replications in which the indirect
UBR method failed to converge. The nonconvergence problem of this method is quite se-
vere for small k. When k = 1, the nonconvergence problem remains even when the sample
size is as large as n = 400. The indirect GML and GCV failed to converge occasionally with

Figure 1. Plots of CKL (solid lines), UBR (long-dashed lines), GACV1 (short-dashed lines), GACV2 (dotted
lines), and GML (mixed dotted-dashed lines) criteria as functions of log10(λ) for a typical simulated dataset with
f (x) = f5(x), n = 100, and k = 1 and k = 2. Minima of these curves are marked by crosses.
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Figure 2. Boxplots of log CKL for f1-f3 with n = 200. Boxplots for indirect methods are based on converged
replications.

frequency ranging from 1% to 4%. Convergence is achieved by all other methods.
Figure 1 contains typical curves of CKL, UBR, GACV2, and GML for f (x) = f5(x),

n = 100, and k = 1 and k = 2. Minimum points are marked by crosses. The same plots
for other simulation settings are similar. This figure shows that the UBR function is a good
estimate of the CKL criterion, and that the GACV1, GACV2, and GML functions are good
proxies. Minima of these functions are usually quite close.

Figures 2 and 3 show boxplots of the CKL values for n = 200. The CKL values of the
GACV1 and the transformation methods are not shown as they are both generally larger,
and much larger for the transformation method, than those obtained from other methods.
The boxplots when k = 4 are not shown since they are similar to those when k = 3. The
same plots for other sample sizes are similar. In general, the direct GML and UBR methods
perform the best. The indirect UBR method suffers from the nonconvergence problem,
and when it does converge, it performs as well as the GML and UBR methods. Although
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Figure 3. Boxplots of log CKL for f4-f7 with n = 200. Boxplots for indirect methods are based on converged
replications.

the indirect GML and GCV converge most of the time, they tend to over-smooth which
leads to larger CKL values. The GACV1 and GACV2 methods also tend to over-smooth
occasionally. Even though the unbiasedness property is established for k ≥ 3 only, we
nevertheless applied the direct UBR method to the cases with k = 1 and k = 2. Performance
of the direct UBR method for these cases is similar to that for larger k.

To take a closer look at the performance of various methods, we plot CKL’s of the
indirect UBR, indirect GML and UBR vs CKL’s of the GML for f (x) = f6(x), n = 100,
and k = 1 and k = 3 in Figure 4. The same plots for other simulation settings are similar. In
general, the GML tends to have smaller CKL’s than the indirect GML; the UBR has similar
CKL’s as the GML except for a few bad cases; and the indirect UBR has similar CKL’s as
the GML when it converges.

Figure 5 shows the 5th, 50th, and 95th best estimates ordered by CKL for the first four
functions, with n = 100 and λ selected by the GML method. The same plots for other
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Figure 4. Plots of CKL’s of the indirect UBR (+), indirect GML (�) and UBR (×) versus CKL’s of GML for
f (x) = f6(x), n = 100, and k = 1 and k = 3.

simulation settings and with the UBR method are similar. We conclude that the smoothing
spline estimates of the variance functions with smoothing parameters selected by the GML
and UBR methods perform well. The GML method is new for non-Gaussian data. We
postulate that it can be extended to binomial and Poisson data, and can perform better than
some existing methods.

5. APPLICATION

Comparative genomic hybridization (CGH) is a technique designed for detecting seg-
mental genomic alterations. Recent advances in array-based CGH (aCGH) technology have
enabled examination of chromosomal regions in unprecedented detail, revolutionizing our
understanding of chromosome alterations associated with tumorigenesis and many devel-
opmental abnormalities (Albertson and Pinkel 2003; Mantripragada, Buckley, de Stahl, and
Dumanski 2004). The aCGH technology uses two differentially labeled test and reference
DNAs which are co-hybridized to cloned genomic fragments immobilized on glass slides.
The hybridized DNAs are then detected in two different fluorochromes, and the significant
deviation from unity in the ratios of the digitized intensity values is indicative of copy-
number differences between the test and reference genomes (Wang and Guo 2004). Accu-
rate identification of amplified or deleted regions requires estimates of variances (Moore,
Pallavicini, Cher, and Gray 1997; Wang and Guo 2004). The number of replicated arrays
is typically small, owing to the cost. Therefore, the standard sample variance estimates are
unreliable and some simple improvements have been proposed (Moore et al. 1997; Tusher,
Tibshirani, and Chu 2001; Huang and Pan 2002; Wang and Guo 2004). Wang and Guo
(2004) considered the variance as a function of the physical locations in the genome. They
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Figure 5. Plots of the true functions (solid lines), the 5th (short-dashed lines), 50th (mixed dotted-dashed lines),
and 95th (long-dashed lines) best estimates ordered by CKL. n = 100 and λ’s are selected by the GML method.
To make the y-axis common for all panels, the curves in the last row are shifted up by 3.

applied the lowess smoother to the logarithm of the sample variances with a fixed smooth-
ing parameter. They have shown that using the smoothed variances in the t test can lead to
large gains in power. As we have shown in Section 4, the simple approach to smoothing
the logarithm of the sample variances is less efficient when the number of replications is
small. Also, the selection of the smoothing parameter in Wang and Guo (2004) is somewhat
arbitrary.

To illustrate our new methods, we downloaded a well-known BAC array dataset from the
Web site http:// www.nature.com/ ng/ journal/ v29/ n3/ suppinfo/ ng754 S1.html. The data re-
sult from an experiment aimed at measuring copy number changes for the cell strains (test
samples) against normal male reference DNAs (references), which were co-hybridized on
CGH arrays containing 2,460 BAC and P1 clones in triplicate (7,380 spots) (Snijders et al.
2001).

http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754S1.html
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Figure 6. Plots of observations and fits for chromosome 10 of the cell strain GM13330010220 (left), and chromo-
somes 11 (middle) and 12 (right) of the cell strain GM03134001218. Points are sample variances on the logarithm
scale. Solid and mixed dotted-dashed lines are smoothing spline fits and lowess fits, respectively. Two dashed lines
in each plot are 95% Bayesian confidence intervals of the smoothing spline fit.

For each chromosome of a cell strain, we assume model (1.2) where zij is the j th
replicate of log2 fluorescent ratio of clone i, µi is the mean fluorescent ratio, xi is the
physical position along the chromosome, and k = 2. A nonzero µi corresponds to an
alteration. Wang and Guo (2004) introduced a smoothed t statistic with variances smoothed
along the genome. They have shown that the smoothed t-statistic always improves the
performance over the standard t-statistic. We focus on estimation of the variance function.
For simplicity we transform the genome position xi into the interval [0, 1].

We fitted variance functions to all chromosomes of all cell strains. Figure 6 shows obser-
vations, fits, and confidence intervals for chromosome 10 of the cell strain GM13330010220,
and chromosomes 11 and 12 of the cell strain GM03134001218. For the lowess fits, as in
Wang and Guo (2004), we used 30% of the data for smoothing at each position. For the
smoothing spline fit, we used the direct GML method to select the smoothing parameter.
The approximate Bayesian confidence intervals were computed using the methods in Wahba
et al. (1995). Note that the lowess fits are based on the logarithm of the sample variances.
Therefore, visually, they are in the center of the data in Figure 6 since variances are plotted
on the logarithm scale. However, it is known that naive estimates based on the logarithm
of the sample variances are biased downward (Cui et al. 2005; Tong and Wang 2007). A
bias correction factor which is greater than one should have been applied before fitting. The
lowess estimates are more rough since the smoothing span has been set at 30%, which is
the somewhat arbitrary choice used by Wang and Guo (2004).

Some variances are relatively large and some variances are very small (Figure 6). Re-
placing variances by their smoothed estimates also reduces the effect of outliers and prevents
clones with very small variances from dominating the results. Other approaches have been
proposed to deal with very small variances (Tusher, Tibshirani, and Chu 2001).
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6. CONCLUSIONS

Nonparametric estimation of variance functions has been well-studied in the literature,
while the related problem of selection of the smoothing parameters has received less atten-
tion. Within the smoothing spline framework, the existing indirect UBR, GCV, and GML
methods for selecting the smoothing parameter do not guarantee convergence. In this article
we have proposed the direct UBR, GACV, and GML methods and found that the direct UBR
and GML methods have the best performance in general.

APPENDIX A

We show that when k ≥ 3, (a) v(t) exp(−kt/2 exp(fi))|∞0 = 0, and (b) E(exp(−fλi)) <

∞.
For (a), we show that lim

t→0
v(t) = 0 and lim

t→∞ (v(t) exp(−kt/2 exp(fi))) = 0. We use

the following fact that for any a > 0 and x,

a exp(−x) + x ≥ 1 + ln a. (A.1)

The above inequality can be verified by finding the minimum of the left-hand side as a
function of x.

Note that y−i is fixed and the ith observation is replaced by z. The penalized likelihood
(2.3) is equivalent to

I (f ) = z exp(−fi) + fi +
n∑

j /=i

(
yj exp(−fj ) + fj

) + nλ

k

∫ 1

0

(
f (m)

)2
dx. (A.2)

Note that hλ(i, z, ·) is the minimizer of (A.2) and gλi(z) = hλ(i, z, xi).
We assume that the constant function, f0(x) = 0, belongs to the model space. This is

true when the model space is Wm([0, 1]). I (f0) = z + ∑
j /=i yj . Since hλ(i, t, ·) is the

minimizer of I (f ), we have

z exp(−gλi(z)) + gλi(z) ≤ I (hλ(i, z, ·)) −
∑
j /=i

(
yj exp(−hλ(i, z, xj )) + hλ(i, z, xj )

)

≤ I (f0) −
∑
j /=i

(
yj exp(−hλ(i, z, xj )) + hλ(i, z, xj )

)

≤ z +
∑
j /=i

yj −
∑
j /=i

(1 + ln yj ), (A.3)

where the last inequality is based on (A.1). Therefore, as z → 0, z exp(−gλi(z)) + gλi(z)

is bounded above.
We claim that for any power p > 1,

lim
z→0

zp exp(−gλi(z)) = 0. (A.4)

Otherwise, there exists some p1 > 1 such that lim sup
z→0

zp1 exp(−gλi(z)) > 0. Let p2 =
(p1 + 1)/2. Then lim sup

z→0
zp2 exp(−gλi(z)) = ∞. There exists a sequence zm → 0 such
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that −gλi(zm) + p2 ln zm → ∞. Also, −gλi(zm) + ln zm ≥ −gλi(zm) + p2 ln zm → ∞.
Therefore, for large enough m, we have (−gλi(zm) + ln zm)/2 ≥ 1/(p2 − 1) > 0. Thus,
for large enough m,

zm exp(−gλi(zm)) + gλi(zm) = exp (−gλi(zm) + ln zm) + gλi(zm)

≥ 1 − gλi(zm) + ln zm + (−gλi(zm)

+ ln zm)
2 /2 + gλi(zm)

≥ ln zm + (−gλi(zm) + ln zm) /(p2 − 1)

= (−gλi(zm) + p2 ln zm) /(p2 − 1).

The left-hand side is bounded above, while the right-hand side approaches ∞, a contradic-
tion.

Taking p = 1.1 in (A.4), when k ≥ 3, we have

lim sup
t→0

v(t) = lim sup
t→0

∫ t

0

(
z1.1 exp(−gλi(z))

)
z
k
2 −2.1dz

≤ lim sup
t→0

∫ t

0
z
k
2 −2.1dz = 0. (A.5)

Therefore, lim
t→0

v(t) = 0 since v(t) ≥ 0.

As z → ∞, from (A.3), we have z exp(−gλi(z))+gλi(z) ≤ 2z. On the other hand, from
(A.1) witha = z/2,−gλi(z) ≤ z exp(−gλi(z))/2 when z ≥ 2. Therefore, z exp(−gλi(z)) ≤
2z − gλi(z) ≤ 2z + z exp(−gλi(z))/2. There exists some large T such that

exp(−gλi(z)) ≤ 4, z ≥ T . (A.6)

Now,

v(t) =
∫ T

0
exp(−gλi(z))z

k
2 −1dz +

∫ t

T

exp(−gλi(z))z
k
2 −1dz ≤ v(T ) + 8

k
t
k
2 .

Then

lim sup
t→∞

(
v(t) exp(

−kt

2 exp(fi)
)

)
≤ lim sup

t→∞

(
v(T ) + 8

k
t
k
2

)
exp

( −kt

2 exp(fi)

)
= 0.

Therefore, lim
t→∞(v(t) exp(−kt/2 exp(fi))) = 0.

Now we prove (b) E(exp(−fλi)) < ∞. From (A.4), when k ≥ 3, there exists a small
enough ε1 such that E(exp(−fλi)I{yi<ε1}) ≤ E(y−1.1

i I{yi<ε1}) < ∞. Similarly, from (A.6),
there exists a large enough ε2 such that E(exp(−fλi)I{yi>ε2}) < ∞. Then E(exp(−fλi)) =
E(exp(−fλi)I{yi<ε1}) + E(exp(−fλi)I{yi>ε2}) + E(exp(−fλi)I{ε1≤yi≤ε2}) < ∞.

APPENDIX B

Lemma 1. (Leave-one-out lemma.) hλ(i, exp(f (−i)
λi ), x) = f

(−i)
λ (x).
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The proof is omitted since it is similar to that in Xiang and Wahba (1996). Lemma 1 states
that the estimated function based on y−i = (y1, . . . , yi−1, exp(f (−i)

λi ), yi+1, . . . , yn)
T is

the same as f (−i)
λ . It is easy to check that ∂2J/∂f∂fT = Wλ+nλ--- and ∂2J/∂y∂fT = −V.

Using Taylor expansions as in Xiang and Wahba (1996), we have (fλi − f
(−i)
λi )/(yi −

exp(f (−i)
λi )) ≈ dii . Thus by (3.7),

CV(λ) = L(λ) +
n∑

i=1

yi

(
exp(−f

(−i)
λi ) − exp(−fλi)

)

≈ L(λ) +
n∑

i=1

yi exp(−fλi)
(
fλi − f

(−i)
λi

)

= L(λ) +
n∑

i=1

yi exp(−fλi)
fλi − f

(−i)
λi

yi − exp(f (−i)
λi )

yi − exp(fλi)

1 − exp(fλi )−exp(f (−i)
λi )

yi−exp(f (−i)
λi )

≈ L(λ) +
n∑

i=1

yi exp(−fλi)
fλi − f

(−i)
λi

yi − exp(f (−i)
λi )

yi − exp(fλi)

1 − exp(fλi)
fλi−f

(−i)
λi

yi−exp(f (−i)
λi )

= L(λ) +
n∑

i=1

yi exp(−fλi) (yi − exp(fλi))

yi−exp(f (−i)
λi )

fλi−f
(−i)
λi

− exp(fλi)

≈ L(λ) +
n∑

i=1

diiyi exp(−fλi)(yi − exp(fλi))

1 − dii exp(fλi)
.
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