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a b s t r a c t

High-throughput expression profiling techniques bring novel tools and also statistical
challenges to genetic research. In addition to detecting differentially expressed genes,
testing the significance of gene sets or pathway analysis has been recognized as an equally
important problem. Owing to the ‘‘large p small n’’ paradigm, the traditional Hotelling’s
T 2 test suffers from the singularity problem and therefore is not valid in this setting. In
this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample
and two-sample cases. We also suggest several different ways to derive the approximate
null distribution under different scenarios of p and n for our proposed shrinkage-based
test. Simulation studies show that the proposed method performs comparably to existing
competitors when n is moderate or large, but it is better when n is small. In addition,
we analyze four gene expression data sets and they demonstrate the advantage of our
proposed shrinkage-based diagonal Hotelling’s test.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

DNA microarrays allow us to acquire thousands or tens of thousands of gene expression values simultaneously, which
introduces novel approaches to genetic research. One important goal of analyzing gene expression microarray data is
to detect differentially expressed genes. Recently, biologists and medical scientists have also recognized that testing the
significance of gene sets or pathway analysis is an equally important problem [10,20,5,17]. Specifically, if we want to know
whether a certain gene set, Z , is significantly differentially expressed in two different treatments, A and B, the testing
hypothesis is H0 : µZA = µZB, where µZA and µZB are the mean vectors of Z in A and B, respectively. In statistics,
this is essentially a two-sample multivariate testing problem. One classical method used to solve such testing problems
is Hotelling’s T 2 test [13], which is a generalization of Student’s t test. This method works when the sample size, n, is larger
than the data dimension, p. More generally, in a k-sample experiment, we are interested in whether or not there exist some
differences among the k mean vectors of populations.

In this paper, we focus on one-sample and two-samplemultivariate testing problems for high-dimensional small sample
size data, or equivalently, for ‘‘large p small n’’ data. In such settings, Hotelling’s T 2 test suffers from a singularity problem
in the covariance matrix estimation and therefore is not valid in this setting. To overcome the singularity problem, some
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remedies have been proposed in the literature; see, for example, the non-exact significance test and the randomization
test in [6]. These approaches, however, are known to perform poorly in practice due to their complicated estimation of the
degrees of freedom and some related issues [1]. In recent years, a number of approaches to improve Hotelling’s T 2 test have
emerged for testing high-dimensional data. In essence, these approaches can be classified into the following three categories,
with the main difference among them how the covariance matrix is handled:

(1) In the first category, the covariance matrix is removed from Hotelling’s T 2 statistic to avoid the covariance matrix
estimation. This ideawas first consideredbyBai and Saranadasa [1]. Specifically, theyproposed to use (X̄1−X̄2)

T (X̄1−X̄2)
to replace (X̄1 − X̄2)

TS−1(X̄1 − X̄2) in Hotelling’s T 2 statistic, where X̄1 and X̄2 are the sample mean vectors and S is the
pooled sample covariance matrix. They demonstrated that the proposed test has better power than Hotelling’s T 2 test
under the requirement of p and n being of the same order. Recently, Zhang and Xu [37] and Chen and Qin [5] extended
this method to ‘‘large p small n’’ data. We refer to the methods in this category as the unscaled Hotelling’s tests.

(2) In the second category, a regularization method is applied to the covariance matrix estimation to resolve the singularity
problem. In this direction, Chen et al. [4] have made a major contribution. They proposed a regularized Hotelling’s T 2

test that estimates the covariance matrix by S+ λIp, where Ip is the identity matrix and λ > 0 is a shrinkage parameter.
This test works for both p < n and p ≥ n cases. Note that a similar method was also proposed in [25], where the form of
λS + (1 − λ)Ip is used to estimate the covariance matrix with 0 ≤ λ < 1. In the special case of λ = 0, the test reduces
to an unscaled Hotelling’s test. We refer to the methods in this category as the regularized Hotelling’s tests.

(3) In the third category, the covariance matrix is assumed to be diagonal. Under this assumption, the singularity problem
is circumvented since a diagonal matrix is always invertible for non-zero entries, whether or not p is larger than n. This
idea was first considered by Wu, Genton and Stefanski [35] and then revisited by several other researchers; see, for ex-
ample, [28,27,22,29]. For more details, see Section 2.1. These methods are essentially all the same and we refer to them
as the diagonal Hotelling’s tests.

In our simulation studies, we note that the unscaled Hotelling’s tests are often sensitive to the deviation of equal
eigenvalues of the covariancematrix. If one eigenvalue is extremely large, then the performance of the testwill be dominated
by that individual component and thus a lower power will result. For more details, see the simulation studies in Section 4.
In addition, even for the case of equal eigenvalues, Chen and Qin [5] suggested n = [20 log(p)] to have a reasonably large
power. For instance, n needs to be at least 46, 92 and 138 for p = 10, 100 and 1000, respectively. For high-dimensional data
such as gene expression microarray data, however, it is not uncommon that n is very small, say for example less than 10
samples per group [23,8]. This has motivated researchers to consider more realistic testing methods for high-dimensional
small sample size data, e.g., the regularized Hotelling’s tests and the diagonal Hotelling’s tests. Our additional simulation
studies indicate that the existing regularized Hotelling’s tests do not perform comparably to the diagonal Hotelling’s tests
when n is relatively small.

In view of the good performance of the diagonal Hotelling’s tests, we also assume that the covariance matrix is diagonal
in this paper. Beforemoving forward, we note that this diagonal covariancematrix assumption has been commonly used for
high-dimensional small sample size data, e.g., [9,3,32]. In particular, Bickel and Levina [3] pointed out that if the estimated
correlations are all very noisy, then we are probably better off without estimating them. This, in essence, is the assumption
of a diagonal covariance matrix when n is relatively small. In discriminant analysis, Lee et al. [16] have also observed that
discriminant rules with an inverse generalizedmatrixmay not perform aswell as diagonal discriminant rules formicroarray
data. Although very promising, the performance of the diagonal Hotelling’s tests themselves can be suboptimal due to the
unreliable estimates of the sample variances from the limited number of observations. This suggests that some modifica-
tions to the diagonal Hotelling’s tests are necessary to further improve their performance. We note that one such attempt
has already been made by Dinu et al. [7]. They proposed a modified diagonal Hotelling’s test, called ‘‘SAM-GS’’, by adding
a small constant to each gene-specific variance estimate to stabilize the variance estimation, an idea originated in the SAM
test of Tusher, Tibshirani and Chu [33].

In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. The
test is structured by replacing the sample variances in the diagonal Hotelling’s tests by the optimal shrinkage estimation of
variances in [32]. For the proposed shrinkage-based test, we then consider several different ways to derive the approximate
null distribution under different scenarios of p and n. Simulation results show that the proposed method always performs
comparably to existing competitors, especially when n is less than 10. In addition, to assess the performance of the proposed
method using real data, we consider four gene expression data sets. A case study also demonstrates the advantage of the
proposed shrinkage-based diagonal Hotelling’s test. The remainder of the paper is organized as follows. The shrinkage-based
diagonal Hotelling’s tests are introduced in Section 2. In Section 3, we derive both a scaled chi-squared null distribution and
a normal null distribution. Simulation studies and real data analysis are conducted in Sections 4 and 5, respectively.

2. Improving the diagonal Hotelling’s tests

Let Xi = (Xi1, . . . , Xip)
T , i = 1, . . . , n, be independent and identically distributed (i.i.d.) random vectors from a multi-

variate normal distribution, Np(µ, 6), where µ is the population mean vector and 6 is the population covariance matrix.
Let also X̄ =

n
i=1 Xi/n be the sample mean vector and S =

n
i=1(Xi − X̄)(Xi − X̄)T/(n − 1) be the sample covariance
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matrix. For the one-sample testing problem, the hypothesis is

H0 : µ = µ0 versus H1 : µ ≠ µ0, (1)

where µ0 is a fixed vector. To test hypothesis (1), the one-sample Hotelling’s T 2 statistic is defined as

T 2
1 = n(X̄ − µ0)

TS−1(X̄ − µ0). (2)

When p ≤ n−1 so that S is invertible, under H0, the scaled test statistic, {(n−p)/p(n−1)}T 2
1 , follows an Fp,n−p distribution

with p and n − p degrees of freedom.
For the two-sample testing problem, similarly, we assume that Xki = (Xki1, . . . , Xkip)

T , i = 1, . . . , nk, are i.i.d. from a
multivariate normal distribution, Np(µk, 6), for k = 1 and 2, respectively, where µk are the population mean vectors and
6 is the common covariance matrix. Let X̄1 and X̄2 denote the class-specific sample means, and let Spool = {(n1 − 1)S1 +

(n2 − 1)S2}/(n1 + n2 − 2) be the pooled sample covariance matrix. Then, to test the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 ≠ µ2, (3)

the two-sample Hotelling’s T 2 statistic is given by

T 2
2 =

n1n2

n1 + n2
(X̄1 − X̄2)

TS−1
pool(X̄1 − X̄2). (4)

When p ≤ n1 + n2 − 2 so that Spool is invertible, under H0, the scaled test statistic, {(n1 + n2 − p − 1)/(p(n1 + n2 − 2))}T 2
2 ,

follows an Fp,n1+n2−p−1 distribution with p and n1 + n2 − p − 1 degrees of freedom.

2.1. The diagonal Hotelling’s tests

We note that Hotelling’s T 2 statistics require n− 1 ≥ p for the one-sample case and n1 + n2 − 2 ≥ p for the two-sample
case to ensure that the sample covariance matrix is nonsingular. Hence, these methods do not work under the ‘‘large p
small n’’ paradigm. To avoid the singularity problem, Wu, Genton and Stefanski [35] proposed a pooled component test for
the two-sample case, which essentially is a diagonal version of Hotelling’s T 2 statistic (4). Specifically, their proposed test
statistic is

T 2
D2 =

n1n2

n1 + n2
(X̄1 − X̄2)

T
{diag(Spool)}−1(X̄1 − X̄2)

=
n1n2

n1 + n2

p
j=1

(X̄1j − X̄2j)
2/s2j,pool, (5)

where diag(Spool) = diag(s21,pool, . . . , s
2
p,pool) with s2j,pool = {(n1 − 1)s21j + (n2 − 1)s22j}/(n1 + n2 − 2) for j = 1, . . . , p. Note

that, for simplicity, the missing data problem is not considered in (5) unlike in [35]. Although only the two-sample case was
considered in their paper, the diagonal idea can be readily extended to the one-sample case with T 2

D1 taking the form

T 2
D1 = n(X̄ − µ0)

T
{diag(S)}−1(X̄ − µ0)

= n
p

j=1

(X̄j − µ0j)
2/s2j .

To define the rejection region of the diagonal Hotelling’s tests, we rejectH0 if T 2
D1 > C1 for the one-sample case and T 2

D2 > C2
for the two-sample case, where C1 and C2 are two critical values.

Besides the aforementioned pooled components test, Srivastava and Du [28] proposed scalar transformation invariant
tests for both one-sample and two-sample cases, which essentially are the functions of the diagonal Hotelling’s test.
Srivastava [27] constructed the test statistic using the diagonal Hotelling’s test under non-normality. This test statistic is
similar to [28], and the only difference is that Srivastava [27] deleted the adjustment coefficient appearing in [28]. Park and
Nag Ayyala [22] proposed new scalar transformation invariant tests for both one-sample and two-sample cases. Their tests
modified the test statistic of Srivastava [27]. This test statistic still assumes that the covariancematrix is diagonal. Srivastava,
Katayama and Kano [29] proposed a two-sample test under the condition of unequal covariance matrices, which essentially
is also a function of the diagonal Hotelling’s test.

2.2. Shrinkage-based diagonal Hotelling’s tests

To establish the diagonal Hotelling’s tests, the aforementioned references used the diagonal matrix of sample variances
to estimate the covariance matrix. However, when the number of observations is limited, such as when there are fewer
than 10 observations, the sample variances are not reliable estimations anymore, and the diagonal Hotelling’s tests are thus
unreliable. This point has been demonstrated by the simulation studies of Srivastava et al. [29]. Therefore, it is necessary to
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find an improved variance estimation. Dinu et al. [7] made such an attempt. In this section, we use the optimal shrinkage
estimation in [32] to improve the variance estimation.

Let diag(6) = diag(σ 2
1 , . . . , σ 2

p ), and (σ 2
j )t = σ 2t

j , j = 1, . . . , p. The shrinkage estimator of σ 2t
j is

σ̃ 2t
j (α) = {hν,p(t)σ̂ 2t

pool}
α
{hν,1(t)σ̂ 2t

j }
1−α, (6)

where σ̂ 2t
j estimates σ 2t

j , σ̂ 2t
pool =

p
j=1(σ̂

2
j )t/p, ν = n − 1, Γ (·) is the gamma function, and

hν,p(t) =

ν

2

t  Γ (ν/2)
Γ (ν/2 + t/p)

p

.

This shrinkage estimator includes a shrinkage parameter α ∈ [0, 1]. The estimator degenerates to the unbiased estimation
of σ 2t

j if α = 0, and it shrinks to the pooled variance estimation if α = 1. Under the Stein loss function, L(σ 2, σ̃ 2) =

σ̃ 2/σ 2
− ln(σ̃ 2/σ 2)−1, Tong andWang [32] proved that there exists a unique optimal α in (0, 1], denoted by α∗, to achieve

the minimum average risk for any fixed p, ν and t > −ν/2. A two-step procedure, proposed by Tong andWang [32], can be
useful to estimate α∗.

Now, we move to the shrinkage-based diagonal Hotelling’s tests. For ease of distinction, let σ 2
j and σ 2

j,pool denote the
jth variance in diag(6) for one-sample and two-sample cases, respectively. Then, σ̂ 2

j = s2j and σ̂ 2
j,pool = s2j,pool. Moreover,

since the sample variances appear in the denominator of the diagonal Hotelling’s tests, we consider estimating σ−2
j = 1/σ 2

j

instead of σ 2
j , which is the case of t = −1. Pang, Tong and Zhao [21] found that results for t = 1 and t = −1 were similar

with the latter slightly better. Therefore, we focus on estimating σ−2
j in the remaining of the paper.

Let α̃∗ denote the estimated optimal shrinkage parameter. For the one-sample test, we define the shrinkage-based
diagonal Hotelling’s test statistic as

T 2
SD1(α̃

∗) = n(X̄ − µ0)
T S̃∗(X̄ − µ0)

= n
p

j=1

(X̄j − µ0j)
2σ̃−2

j (α̃∗), (7)

where S̃∗
= diag{σ̃−2

1 (α̃∗), . . . , σ̃−2
p (α̃∗)}. Similarly, for the two-sample test, the shrinkage-based diagonal Hotelling’s test

statistic is

T 2
SD2(α̃

∗) =
n1n2

n1 + n2
(X̄1 − X̄2)

T S̃∗

pool(X̄1 − X̄2)

=
n1n2

n1 + n2

p
j=1

(X̄1j − X̄2j)
2σ̃−2

j,pool(α̃
∗), (8)

where S̃∗

pool = diag{σ̃−2
1,pool(α̃

∗), . . . , σ̃−2
p,pool(α̃

∗)}.
Tong and Wang [32] showed that α̃∗

→ 0 for n → ∞ and fixed p. This property demonstrates that, when the sample
size is very large, on the one hand, our methods degenerate to the diagonal Hotelling’s tests and thus it is unnecessary to
borrow information from other genes. Our simulation studies indicate that our methods perform comparably to current
approaches, and the diagonal Hotelling’s tests are hence appropriate for testing the significance of gene sets. On the other
hand, the approximate null distributions in the diagonal Hotelling’s tests can also be used. However, when the sample size
is small, the above approximations may not be accurate. Hence, it is of great importance to derive the approximate null
distribution in the case of small sample sizes.

3. Null distributions of shrinkage-based diagonal Hotelling’s tests for small sample size

When the sample size is large, two types of distributions are derived to be the approximate null distributions. One is the
chi-squared distribution. Wu, Genton and Stefanski [35] considered a scaled chi-squared distribution as an approximation
for both p < n and p ≥ n. If (n, p) → ∞, the other possible choice, the normal distribution, is used as the asymptotic null
distribution [28,27,22,29]. This motivates us to derive approximate null distributions similarly when the sample size is very
small. In this section, we follow [35] and derive the scaled chi-squared null distribution, and the normal null distribution is
derived as p → ∞.

To obtain the null distributions of the shrinkage-based diagonal Hotelling’s tests, we first derive themeans and variances
for T 2

SD1(α) and T 2
SD2(α) in Lemmas 1 and 2, respectively.

Lemma 1. For any ν = n − 1 > 4 and α ∈ (0, 1], the mean and variance of the test statistic, T 2
SD1, under H0 are

E

T 2
SD1(α)


= C1σ

−2α
pool

p
j=1

σ 2α
j ,
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and

Var

T 2
SD1(α)


= (3C2 − C3)σ

−4α
pool

p
j=1

σ 4α
j + (C3 − C2

1 )σ−4α
pool


p

j=1

σ 2α
j

2

,

where

C1 =
hα

ν,p(−1)h1−α
ν,1 (−1)

hp−1
ν,1 (−α/p)hν,1{−α/p − (1 − α)}

,

C2 =
h2α

ν,p(−1)h2(1−α)
ν,1 (−1)

hp−1
ν,1 (−2α/p)hν,1{−2α/p − 2(1 − α)}

,

C3 =
h2α

ν,p(−1)h2(1−α)
ν,1 (−1)

hp−2
ν,1 (−2α/p)h2

ν,1{−2α/p − (1 − α)}
.

Lemma 2. For any ν = n1 + n2 − 2 > 4 and α ∈ (0, 1], the mean and variance of the test statistic, T 2
SD2, under H0 are

E

T 2
SD2(α)


= C1σ

−2α
pool

p
j=1

σ 2α
j,pool,

and

Var

T 2
SD2(α)


= (3C2 − C3)σ

−4α
pool

p
j=1

σ 4α
j,pool + (C3 − C2

1 )σ−4α
pool


p

j=1

σ 2α
j,pool

2

,

where

C1 =
hα

ν,p(−1)h1−α
ν,1 (−1)

hp−1
ν,1 (−α/p)hν,1{−α/p − (1 − α)}

,

C2 =
h2α

ν,p(−1)h2(1−α)
ν,1 (−1)

hp−1
ν,1 (−2α/p)hν,1{−2α/p − 2(1 − α)}

,

C3 =
h2α

ν,p(−1)h2(1−α)
ν,1 (−1)

hp−2
ν,1 (−2α/p)h2

ν,1{−2α/p − (1 − α)}
.

The proof of Lemma 1 is given in Appendix A. The proof of Lemma 2 is omitted since it is essentially the same as that for
Lemma 1. Both lemmas are however necessary for determining the parameters of the approximate null distributions.

3.1. Chi-squared approximation

For small p, the chi-squared distribution can be used as a good approximate null distribution. In this section, we approx-
imate the null distributions of the proposed test statistics as a scaled chi-squared distribution, cχ2

d , as in [35]. To determine
the scale parameter, c1, and the degrees of freedom, d1, for T 2

SD1(α̃
∗), we equate the mean and variance of c1χ2

d1
with the

mean and variance of T 2
SD1(α̃

∗). Specifically, we have

E{T 2
SD1(α̃

∗)} = c1d1 and Var{T 2
SD1(α̃

∗)} = 2c21d1.

For T 2
SD2(α̃

∗), we use the same approach to determine the corresponding scale parameter, c2, and the degrees of freedom,
d2. The following theorems describe the approximate null distributions for our test statistics.

Theorem 1. For any n > 5 and optimal shrinkage parameter estimation, α̃∗, under the null hypothesis, we have

T 2
SD1(α̃

∗) ∼ c1χ2
d1 ,

where

c1 =

(3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j

2

2C1σ
−2α̃∗

pool

p
j=1

σ 2α̃∗

j

,
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d1 =

2C2
1σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j

2

(3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j

2 .

Theorem 2. For any n1 + n2 > 6 and optimal shrinkage parameter estimation, α̃∗, under the null hypothesis, we have

T 2
SD2(α̃

∗) ∼ c2χ2
d2 ,

where

c2 =

(3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j,pool + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j,pool

2

2C1σ
−2α̃∗

pool

p
j=1

σ 2α̃∗

j,pool

,

d2 =

2C2
1σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j,pool

2

(3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j,pool + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1
σ 2α̃∗

j,pool

2 .

The proofs of Theorems 1 and 2 are simple and straightforward. They are thus omitted. Note that c1, d1, c2 and d2 involve
some unknown quantities. Take c1 and d1 for example. Then, b1(σ2) = σ−2α̃∗

pool
p

j=1 σ 2α̃∗

j and b2(σ2) = σ−4α̃∗

pool
p

j=1 σ 4α̃∗

j

are the unknown quantities. In practice, we suggest the following rules for estimating b1(σ2) and b2(σ2), according to the
different scenarios:

(i) For any fixed p but large n, by noting that σ̂ 2
j

a.s.
→ σ 2

j as n → ∞, where
a.s.
→ denotes the almost sure convergence, we have

the following consistent estimators:

b̂1(σ2) = σ̂−2α̃∗

pool

p
j=1

σ̂ 2α̃∗

j and b̂2(σ2) = σ̂−4α̃∗

pool

p
j=1

σ̂ 4α̃∗

j ;

(ii) For any fixed n but large p, by Lemma 2 of [32], we estimate

b̆1(σ2) = w(α̃∗)σ̂−2α̃∗

pool

p
j=1

σ̂ 2α̃∗

j and b̆2(σ2) = w(2α̃∗)σ̂−4α̃∗

pool

p
j=1

σ̂ 4α̃∗

j ,

whereΨ (t) = Γ ′(t)/Γ (t) andw(α) = (ν/2)−αhν,1(α) exp {αΨ (ν/2)}. More specifically, under somemild conditions,
we have b̆1(σ2)

a.s.
→ b1(σ2) and b̆2(σ2)

a.s.
→ b2(σ2) as p → ∞;

(iii) Otherwise, we estimate b1(σ2) and b2(σ2) by replacing σ 2
j with the estimated optimal shrinkage estimates σ̃ 2

j (α̃∗).
Specifically, we estimate them by

b̃1(σ2) = σ̃−2α̃∗

pool

p
j=1

σ̃ 2α̃∗

j (α̃∗) and b̃2(σ2) = σ̃−4α̃∗

pool

p
j=1

σ̃ 4α̃∗

j (α̃∗).

3.2. Normal approximation

For large p, the normal distribution can be a good approximation. The following content of this section can illustrate this
point.

Take the one-sample shrinkage-based diagonal Hotelling’s test for example. Consider the variances, σ 2
j , as random

variables and assume that they are i.i.d. from a common distribution, F , with E(σ 4
1 ) < ∞ and E


ln(σ 2

1 )


< ∞. Let
Uj(α) = n(X̄j − µ0j)

2
{hν,1(−1)σ̂−2

j }
1−α , where j = 1, . . . , p and α ∈ (0, 1]. Then,

T 2
SD1(α) = {hν,p(−1)σ̂−2

pool}
α

p
j=1

Uj(α). (9)
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In Appendix B, we show that

σ̂−2
pool

a.s.
−→ exp


−E


ln(σ 2

1 )


+ ln
ν

2


− Ψ

ν

2


as p → ∞. (10)

This implies that the first term in (9), {hν,p(−1)σ̂−2
pool}

α , converges to a constant when p is large. In addition, given that σ 2
j

are i.i.d. random variables, under H0, it is easy to see that Uj(α) are also i.i.d. random variables. Thus, by the central limit
theorem, for any ν > 4 and α ∈ (0, 1], we have

p
j=1

Uj(α) − pE{U1(α)}

√
pVar{U1(α)}

D
−→N(0, 1) as p → ∞, (11)

where
D

−→ denotes the convergence in distribution, E{U1(α)} = E

E

U1(α)|σ 2

1


= h1−α

ν,1 (−1)E(σ 2α
1 )/hν,1{−(1−α)} and

Var{U1(α)} = E

Var


U1(α)|σ 2

1


+ Var


E

U1(α)|σ 2

1


=


3h2(1−α)

ν,1 (−1)

hν,1{−2(1 − α)}
−

h2(1−α)
ν,1 (−1)

h2
ν,1{−(1 − α)}


E(σ 4α

1 ) +
h2(1−α)

ν,1 (−1)

h2
ν,1{−(1 − α)}

Var(σ 2α
1 )

=
3h2(1−α)

ν,1 (−1)

hν,1{−2(1 − α)}
E(σ 4α

1 ) −
h2(1−α)

ν,1 (−1)

h2
ν,1{−(1 − α)}


E(σ 2α

1 )
2

.

By (10) and (11), together with Slutsky’s Theorem, we can claim that the test statistic T 2
SD1(α̃

∗) is approximately normally
distributed when p is large. The same conclusion can also be obtained for T 2

SD2(α̃
∗).

Now as in Section 3.1, to have the normal approximation, we equate the mean and variance of N(ξ1, τ1) with the mean
and variance of T 2

SD1(α̃
∗). Similarly, for the two-sample comparison, we use the same method to determine the mean, ξ2,

and the variance, τ2, of T 2
SD2(α̃

∗). The results are summarized as the following theorems.

Theorem 3. For any n > 5 and optimal shrinkage parameter estimation α̃∗, under the null hypothesis, we have

T 2
SD1(α̃

∗) ∼ N(ξ1, τ1), as p → ∞,

where

ξ1 = C1σ
−2α̃∗

pool

p
j=1

σ 2α̃∗

j ,

τ1 = (3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1

σ 2α̃∗

j

2

.

Theorem 4. For any n1 + n2 > 6 and optimal shrinkage parameter estimation α̃∗, under the null hypothesis, we have

T 2
SD2(α̃

∗) ∼ N(ξ2, τ2), as p → ∞,

where

ξ2 = C1σ
−2α̃∗

pool

p
j=1

σ 2α̃∗

j,pool,

τ2 = (3C2 − C3)σ
−4α̃∗

pool

p
j=1

σ 4α̃∗

j,pool + (C3 − C2
1 )σ−4α̃∗

pool


p

j=1

σ 2α̃∗

j,pool

2

.

The practical rules for estimating the unknown quantities are the same as those in Section 3.1.

4. Monte Carlo simulation studies

In this section, we compare the shrinkage-based diagonal Hotelling’s tests, including the chi-squared null distribution
(SDchi) and the normal null distribution (SDnor), with some current methods in the aforementioned three categories:

• One unscaled Hotelling’s test: [5] (CQ ).
• One regularized Hotelling’s test: [4] (RHT ).
• Two diagonal Hotelling’s tests: [35] (PCT ) and [29] (SR).
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For RHT , we use the function ‘‘RHT.2samp’’ in the R package ‘‘RHT’’ provided by Chen et al. [4]. In our simulation studies,
we simulate both the type I error rate and the power to assess the performances of all approaches. Moreover, we compare
all methods by plotting the receiver operating characteristic (ROC) curves. The ROC curve describes the performance of the
true positive rate (TPR) as the false positive rate (FPR) varies. The area under the curve (AUC) values are also provided. We
mainly focus on small sample sizes in this section; but moderate to large sample sizes are also considered. Note that most
existing methods were proposed for the two-sample case. For ease of comparison, we consider only the two-sample test in
the simulation studies.

4.1. Simulation design

In our simulation, we generate data from the multivariate normal distribution with a common covariance matrix 6. To
assess the type I error rate, the data are generated for both groups from Np(0, 6). To assess the power, one group of data is
generated from Np(0, 6) and the other one from Np(µ, 6), where µj = cσ 2

j for j = 1, . . . , p with c being the effect size,
and σ 2

j is randomly drawn from the scaled chi-squared distribution (1/5)χ2
5 .

The structure of the common covariance matrix is 6 = D1/2RD1/2, where D = diag(6) = diag(σ 2
1 , . . . , σ 2

p ) and R is the
correlation matrix. We use the following block-diagonal matrix as the correlation matrix:

R =



6ρ 0 · · · · · · 0

0 6−ρ 0
. . .

...
... 0 6ρ 0

...
...

. . . 0 6−ρ

. . .

0 · · · · · ·
. . .

. . .


p×p

,

where 6ρ is a q × qmatrix and q ≤ p. We consider the following two settings for 6ρ :

• 6ρ = (σij)q×q, where σij = ρ|i−j| for 1 ≤ i, j ≤ q. Let 6AR denote this type of common covariance matrix.
• 6ρ = (σij)q×q, where σij = 1 for i = j and σij = ρ for 1 ≤ i ≠ j ≤ q. Let 6CS denote this type of common covariance

matrix.

For 6AR, the correlation matrix is autoregressive of the order-1 structure [12,31]. For 6CS , the correlation matrix takes the
compound symmetry structure.

In our simulation, we set n1 = n2 = n from 5 to 10, and the effect sizes are c = 0.55, 0.52, 0.50, 0.47, 0.43, 0.39 and
0.35. For different correlations, we set ρ = 0, 0.2 and 0.4. Note that 6CS is not positive if both ±0.4 are included in the
block-diagonal correlation matrix. For the case of ρ = 0.4, we set all correlations in 6CS to be positive. The type I error rate
and power are obtained by running 1000 simulations under the settings of p = 50, q = 5 and α = 0.05, where α is the
significance level.

4.2. Simulation results

We first focus on the performances of all approaches for small sample sizes. The type I error rate and power are reported
in Tables 1 and 2, respectively. Two different structures of the correlation are considered, and we find that the results are
similar for both 6AR and 6CS . From the results in Tables 1 and 2, we observe that the shrinkage-based diagonal Hotelling’s
tests outperform the other methods for different ρ. When the correlation is weak, our methods control the type I error rate
well and at the same time maintain high power. As the correlation increases, the type I error rate of our methods becomes
higher but it is still better than those of the other methods. PCT and SR have high type I error rates when the sample size is
smaller than 10. CQ selects the null hypothesis too often; RHT tends to be conservative; and both of their powers are low.
For higher correlations, these four approaches perform similarly.

The superiority of the shrinkage-based diagonal Hotelling’s tests is also demonstrated in Fig. 1 and Table 3. Fig. 1 shows
the plots of the ROC curves and their respective AUC values are shown in Table 3. As in [26], we plot ROC curves with a range
of FPR values from 0 to 0.1. AUC values are also calculated in the same range as the FPR values.Without loss of generality, we
plot the ROC curves for n = 6 in Fig. 1 to assess the overall performances of all approaches for small sample sizes. The figure
shows that our methods, SDchi and SDnor , have the largest AUC values and highest ROC curves for all three correlations.
Additionally, we observe a very interesting and important result from Fig. 1 and Table 3. The six curves appearing in Fig. 1 can
be divided into three groups, and these three groups clearly represent the aforementioned three categories. We can see that
diagonal Hotelling’s tests, including our shrinkage-based methods, have the highest ROC curves. The unscaled Hotelling’s
test has the second highest ROC curves and the regularized Hotelling’s test has the lowest ROC curves. This demonstrates
that with limited numbers of observations, the diagonal Hotelling’s tests are the best options.

Finally, we keep an eye on the case of the large sample size; for example, n = 50. The type I error rates and powers of all
approaches are also reported in Tables 1 and 2.We find that the shrinkage-based diagonal Hotelling’s tests perform similarly
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Table 1
Type I error rates for p = 50 under the null case.

ρ 6 n SDchi SDnor PCT SR CQ RHT

0 6AR = 6CS 5 0.049 0.060 0.228 0.356 0.000 0.042
6 0.044 0.059 0.132 0.250 0.000 0.039
7 0.045 0.056 0.108 0.178 0.000 0.038
8 0.052 0.056 0.072 0.148 0.000 0.040
9 0.050 0.051 0.056 0.128 0.000 0.032

10 0.046 0.053 0.047 0.120 0.000 0.023
50 0.052 0.054 0.045 0.059 0.067 0.020

0.2 6AR 5 0.054 0.086 0.181 0.217 0.000 0.042
6 0.051 0.075 0.135 0.253 0.000 0.026
7 0.052 0.072 0.147 0.202 0.000 0.028
8 0.050 0.076 0.105 0.154 0.000 0.034
9 0.054 0.070 0.072 0.149 0.000 0.034

10 0.055 0.068 0.049 0.140 0.000 0.016
50 0.054 0.068 0.043 0.055 0.065 0.012

6CS 5 0.055 0.090 0.273 0.338 0.000 0.044
6 0.052 0.089 0.136 0.257 0.000 0.040
7 0.052 0.094 0.110 0.204 0.000 0.038
8 0.051 0.085 0.094 0.160 0.000 0.031
9 0.056 0.085 0.060 0.156 0.000 0.023

10 0.054 0.075 0.046 0.125 0.000 0.019
50 0.059 0.076 0.044 0.064 0.070 0.008

0.4 6AR 5 0.069 0.106 0.280 0.257 0.000 0.063
6 0.067 0.092 0.136 0.223 0.000 0.053
7 0.073 0.087 0.110 0.175 0.000 0.033
8 0.070 0.088 0.102 0.151 0.000 0.032
9 0.069 0.083 0.070 0.116 0.000 0.020

10 0.067 0.081 0.064 0.113 0.000 0.019
50 0.068 0.083 0.046 0.058 0.064 0.010

6CS 5 0.081 0.119 0.270 0.252 0.000 0.038
6 0.085 0.119 0.136 0.214 0.000 0.036
7 0.091 0.116 0.110 0.176 0.000 0.034
8 0.085 0.114 0.106 0.143 0.000 0.034
9 0.091 0.105 0.096 0.127 0.000 0.027

10 0.092 0.106 0.063 0.113 0.000 0.015
50 0.089 0.103 0.033 0.061 0.056 0.007

to when the small sample size is small. However, the other approaches obtain satisfactory results that differ greatly from
the small sample size case. This demonstrates that for large sample sizes, it is unnecessary to borrow information across all
variables.

4.3. Robustness of the proposed tests

To investigate the robustness of the shrinkage-based diagonal Hotelling’s tests, we also conduct two more simulation
studies with non-normal data and with unequal covariance matrices, respectively.

4.3.1. With non-normal data
We generate data from the multivariate t-distribution tυ(µ, 6s), where υ is the degrees of freedom and 6s is the scale

matrix. Note that the covariancematrix6 = {υ/(υ−2)}6s forυ > 2 andwe conduct simulation studies under the common
covariancematrix assumption. To assess the type I error rate, the data are generated for both groups from tυ(0, 6s). To assess
the power, one group of data is generated from tυ(0, 6s) and the other one from tυ(µ, 6s).We follow the simulation settings
in Section 4.1 and set υ = 4. Also for simplicity, we only present the simulation results with the covariance matrix 6AR. The
simulation results with multivariate t data are shown in Tables 4 and 5, respectively. We observe that our proposed tests
still performwell when the data are generated from themultivariate t distribution. Ourmethods can control the type I error
rate and have higher powers than the other four methods. Overall, our methods are robust in practice.

4.3.2. With unequal covariance matrices
Wegenerate data frommultivariate normal distributionswith unequal covariancematrices61 and62. Tomake61 ≠ 62,

we add the randomerror εj to the component varianceσ 2
1j in61. Specifically,we setσ 2

2j = σ 2
1j+εj, whereσ 2

2j is the component
variance in 62, and σ 2

1j is randomly drawn from the scaled chi-squared distribution (1/5)χ2
5 . In our simulations, we follow

the simulation settings in Section 4.1 and εj follows the uniform distribution U[0, 0.2]. Accordingly, we only present the
simulation results with the covariance matrix 6AR. The simulation results with unequal covariance matrices are shown in
Tables 6 and 7, respectively. We can see that the simulation results are similar to those under the common covariance
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Table 2
Powers for p = 50 under the alternative case.

ρ 6 n SDchi SDnor PCT SR CQ RHT

0 6AR = 6CS 5 0.859 0.904 0.910 0.978 0.000 0.070
6 0.912 0.927 0.925 0.969 0.000 0.059
7 0.887 0.953 0.830 0.952 0.000 0.060
8 0.818 0.950 0.842 0.928 0.000 0.076
9 0.855 0.873 0.756 0.915 0.002 0.062

10 0.788 0.810 0.713 0.869 0.003 0.045
50 0.771 0.798 0.739 0.776 0.804 0.406

0.2 6AR 5 0.866 0.848 0.878 0.884 0.000 0.056
6 0.823 0.853 0.824 0.941 0.000 0.038
7 0.839 0.950 0.896 0.936 0.000 0.040
8 0.842 0.888 0.752 0.914 0.000 0.036
9 0.867 0.859 0.724 0.902 0.002 0.040

10 0.789 0.847 0.668 0.823 0.002 0.033
50 0.761 0.772 0.696 0.734 0.744 0.572

6CS 5 0.843 0.864 0.963 0.965 0.000 0.061
6 0.847 0.908 0.950 0.961 0.000 0.050
7 0.897 0.874 0.796 0.924 0.000 0.053
8 0.849 0.893 0.736 0.913 0.000 0.046
9 0.876 0.855 0.800 0.892 0.002 0.042

10 0.747 0.825 0.750 0.818 0.003 0.033
50 0.750 0.838 0.733 0.728 0.750 0.690

0.4 6AR 5 0.793 0.868 0.834 0.824 0.000 0.051
6 0.836 0.902 0.910 0.866 0.000 0.034
7 0.873 0.940 0.713 0.889 0.000 0.040
8 0.784 0.880 0.729 0.846 0.000 0.041
9 0.859 0.861 0.730 0.823 0.003 0.040

10 0.728 0.782 0.714 0.725 0.003 0.036
50 0.713 0.697 0.589 0.588 0.571 0.668

6CS 5 0.792 0.789 0.847 0.884 0.000 0.038
6 0.882 0.837 0.732 0.841 0.000 0.038
7 0.875 0.886 0.715 0.861 0.000 0.041
8 0.770 0.783 0.690 0.782 0.000 0.033
9 0.778 0.796 0.700 0.710 0.000 0.031

10 0.726 0.685 0.570 0.694 0.002 0.037
50 0.664 0.689 0.522 0.636 0.556 0.470

Table 3
AUC values for n = 6 and p = 50.

ρ 6 SDchi SDnor PCT SR CQ RHT

0 6AR 0.0823 0.0822 0.0711 0.0707 0.0351 0.0076
0.2 6AR 0.0772 0.0771 0.0680 0.0656 0.0429 0.0074
0.4 6AR 0.0698 0.0706 0.0558 0.0581 0.0353 0.0070
0.4 6CS 0.0668 0.0683 0.0528 0.0579 0.0350 0.0071

matrix assumption. Our methods can control the type I error rates and have a comparable power compared to the other
four methods.

5. Case studies

A real gene expression data set, whose sample size is smaller than 10, is not uncommon. In addition to the references in
Section 1, the following data sets also demonstrate this point:

• Kuster et al. [15]. The data set includes two groups: the sham control group (n1 = 8) and themyocardial infarction group
(n2 = 8). The total number of probes is 24,123.

• Bchetnia et al. [2]. The data set includes two groups: the control group (n1 = 6) and the epidermolysis bullosa simplex
group (n2 = 6). The total number of transcripts is 32,321.

• Kaur et al. [14]. The data set includes two groups: the control group (n1 = 3) and the polycystic ovary syndrome group
(n2 = 7). The total number of probes is 54,675.

• Mokry et al. [18]. The data set includes two groups: the Ls174T-L8 group (n1 = 6) and the Ls174T-pTER-β-catenin group
(n2 = 6). The total number of probes is 54,675.

• Searcy et al. [24]. The data set includes two groups: the control group (n1 = 8) and the Pioglitazone group (n2 = 8). The
total number of probes is 45,101.
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Table 4
Type I error rates under the null case with multivariate t data.

ρ n SDchi SDnor PCT SR CQ RHT

0 5 0.034 0.060 0.101 0.120 0.000 0.025
6 0.027 0.048 0.034 0.066 0.000 0.017
7 0.024 0.049 0.016 0.040 0.002 0.015
8 0.032 0.042 0.009 0.026 0.001 0.013
9 0.030 0.042 0.013 0.025 0.003 0.010

10 0.039 0.055 0.010 0.025 0.001 0.012
0.2 5 0.036 0.058 0.093 0.123 0.000 0.014

6 0.032 0.055 0.038 0.066 0.002 0.025
7 0.033 0.056 0.018 0.042 0.001 0.019
8 0.033 0.045 0.015 0.030 0.001 0.014
9 0.035 0.042 0.016 0.028 0.001 0.008

10 0.046 0.061 0.014 0.027 0.001 0.013
0.4 5 0.040 0.073 0.091 0.115 0.002 0.020

6 0.042 0.068 0.039 0.068 0.000 0.019
7 0.051 0.066 0.022 0.050 0.001 0.009
8 0.039 0.057 0.013 0.031 0.002 0.014
9 0.045 0.061 0.019 0.035 0.001 0.010

10 0.051 0.067 0.014 0.029 0.000 0.007

Table 5
Powers under the alternative case with multivariate t data.

ρ n SDchi SDnor PCT SR CQ RHT

0 5 0.848 0.889 0.792 0.799 0.019 0.039
6 0.890 0.921 0.778 0.806 0.036 0.057
7 0.926 0.946 0.793 0.816 0.086 0.044
8 0.913 0.924 0.764 0.803 0.130 0.042
9 0.910 0.928 0.728 0.770 0.161 0.041

10 0.890 0.903 0.667 0.719 0.162 0.040
0.2 5 0.843 0.891 0.719 0.793 0.017 0.068

6 0.895 0.919 0.765 0.803 0.036 0.058
7 0.927 0.945 0.786 0.819 0.076 0.055
8 0.907 0.928 0.755 0.800 0.115 0.061
9 0.914 0.930 0.728 0.764 0.155 0.037

10 0.888 0.901 0.654 0.705 0.146 0.037
0.4 5 0.839 0.883 0.787 0.789 0.014 0.061

6 0.869 0.908 0.765 0.791 0.034 0.050
7 0.915 0.935 0.769 0.806 0.070 0.055
8 0.897 0.920 0.740 0.781 0.101 0.041
9 0.895 0.915 0.718 0.744 0.141 0.031

10 0.874 0.895 0.635 0.678 0.112 0.041

Table 6
Type I error rates under the null case with unequal covariance matrices.

ρ n SDchi SDnor PCT SR CQ RHT

0 5 0.041 0.073 0.220 0.327 0.000 0.047
6 0.051 0.084 0.110 0.269 0.000 0.043
7 0.046 0.070 0.076 0.197 0.000 0.037
8 0.045 0.063 0.050 0.165 0.000 0.027
9 0.043 0.057 0.043 0.136 0.000 0.033

10 0.041 0.053 0.030 0.125 0.000 0.020
0.2 5 0.047 0.080 0.190 0.301 0.000 0.030

6 0.052 0.081 0.137 0.272 0.000 0.060
7 0.054 0.079 0.070 0.196 0.000 0.040
8 0.050 0.063 0.063 0.167 0.000 0.036
9 0.051 0.069 0.040 0.153 0.000 0.030

10 0.047 0.067 0.050 0.115 0.000 0.030
0.4 5 0.062 0.102 0.256 0.297 0.000 0.036

6 0.059 0.087 0.123 0.203 0.000 0.034
7 0.065 0.088 0.080 0.180 0.000 0.044
8 0.066 0.089 0.076 0.161 0.000 0.035
9 0.066 0.087 0.053 0.131 0.000 0.031

10 0.067 0.086 0.050 0.123 0.000 0.028
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Fig. 1. ROC curves for n = 6 and p = 50. ‘‘AR’’ represents 6AR and ‘‘CS’’ represents 6CS .

In this section, we assess the performances of the shrinkage-based diagonal Hotelling’s tests when they are applied to
real gene expression data sets. The following four gene expression data sets are used in our case studies.

I. Sarcoma data [19].
In this data set, there are ten types of soft tissue tumors based on 105 samples and 22,283 probe sets. Without loss

of generality, we use the first two types of soft tissue tumors: synovial sarcoma (SS) and myxoid/round cell liposarcoma
(MRCL), and the sample sizes are 16 and 19, respectively. All samples are log-transformed as described by Nakayama
et al. [19]. This data set has been analyzed by Witten and Tibshirani [34], who discussed the classification problem, and
it can be downloaded from Gene Expression Omnibus (GEO) Data sets using accession number GDS2736.

II. Myeloma data [36].
This data set includes two therapy groups who have multiple myeloma: Therapy 2 (TH2) with 351 samples and

Therapy 3 (TH3) with 208 samples. The total number of probes is 54,675. This data set has been analyzed by [21], and it
can be downloaded from GEO Data sets using series number GSE2658.

III. Glioma data [30].
There are four classes of data in this data set: one non-tumor class and three glioma classes. Totally, the data include

54,613 probes and 180 samples. We use the non-tumor (NON) class and the astrocytomas (AS) class, and the sample
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Table 7
Powers under the alternative case with unequal covariance matrices.

ρ n SDchi SDnor PCT SR CQ RHT

0 5 0.827 0.871 0.913 0.959 0.000 0.076
6 0.920 0.878 0.883 0.962 0.000 0.050
7 0.930 0.946 0.880 0.983 0.000 0.053
8 0.949 0.978 0.866 0.987 0.000 0.043
9 0.910 0.975 0.780 0.962 0.004 0.047

10 0.937 0.871 0.730 0.971 0.007 0.060
0.2 5 0.846 0.891 0.913 0.990 0.000 0.067

6 0.875 0.934 0.886 0.964 0.000 0.064
7 0.872 0.935 0.853 0.966 0.000 0.046
8 0.911 0.970 0.856 0.971 0.000 0.044
9 0.877 0.952 0.790 0.940 0.001 0.047

10 0.857 0.912 0.733 0.955 0.003 0.040
0.4 5 0.833 0.923 0.923 0.955 0.000 0.079

6 0.871 0.860 0.823 0.951 0.000 0.068
7 0.912 0.910 0.803 0.952 0.000 0.066
8 0.850 0.967 0.815 0.943 0.001 0.058
9 0.849 0.827 0.744 0.924 0.002 0.045

10 0.914 0.903 0.667 0.871 0.003 0.047

Table 8
AUC values for all data sets when p = 50 and n = 5.

Dataset SDchi SDnor PCT SR CQ RHT

Sarcoma 0.0942 0.0941 0.0899 0.0880 0.0255 0.0668
Myeloma 0.0174 0.0165 0.0148 0.0148 0.0088 0.0780
Glioma 0.0868 0.0856 0.0831 0.0781 0.0276 0.0399
Leukemia 0.0484 0.0479 0.0435 0.0382 0.0434 0.0291

sizes are 23 and 26, respectively. The data set has also been analyzed by [34], and it can be downloaded from GEO Data
sets with accession number GDS1962.

IV. Leukemia data [11].
There are two different groups in this data set: the acute lymphoblastic leukemia (ALL) patients group and the acute

myeloid leukemia (AML) patients group. The data contain 7,129 genes and 72 samples. We follow the method of [9] to
threshold, filter, logarithmically (base 10) transform and standardize the data. Finally, we obtain leukemia data with
3,571 genes, 47 ALL patients and 25 AML patients, which are used in our analysis. The data set is available from the
package ‘‘golubEsets’’ in Bioconductor.

To plot the ROC curves and calculate the AUC values, we first randomly select p probes or genes from each data set for
further analysis. Throughout this section, we consider p = 50 and n = 5. We then choose one class from each data set to
calculate FPR. Specifically, they are SS, TH2, NON and ALL in our analysis. Now we use the first data set (SS and MRCL) for
illustration to describe how the FPR and TPR are calculated. For the FPR, we randomly sample two distinct groups (eachwith
size n) from SS and then use them to assess the type I errors. Instead, for the TPR, we sample one group (with size n) from
SS and the other group (with size n) fromMRCL and use them to assess the power. The FPR and TPR are calculated based on
1000 simulations.

Fig. 2 shows the ROC curves for all four data sets, and AUC values are provided in Table 8. Similar to Fig. 1, the ROC curves
in Fig. 2 are also generatedwith a range of FPR values from0 to 0.1, and the same for AUC values. In Fig. 2 and Table 8, our pro-
posed approaches have the highest ROC curves and largest AUC values. This illustrates the advantage of the shrinkage-based
diagonal Hotelling’s tests. Additionally, the same result as in Section 4 can also be obtained; that is, the diagonal Hotelling’s
tests perform better than the unscaled Hotelling’s tests and the regularized Hotelling’s tests when the sample size is small.

6. Discussion

The Hotelling’s T 2 test is an important and useful tool for testing multivariate differences in means. However, its
requirement that the sample size must be larger than the number of variables is violated in gene expression data analysis.
Testing the significance of gene sets would be impossible with the Hotelling’s T 2 test due to the difficulty of estimating 6−1.
It is therefore necessary to develop newmethods to tackle ‘‘large p small n’’ multivariate testing problems. Currently, many
statisticians have devoted themselves to solving this problem and some available approaches have been discovered, such as
the unscaled Hotelling’s tests, the regularized Hotelling’s tests and the diagonal Hotelling’s tests. However, because of cost
or rarity of samples, a small sample size is a very common case. Current available approaches encounter difficulties while
testing high-dimensional small sample size data. Our Monte Carlo simulation studies have demonstrated these issues.

In this paper, we proposed a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. For
high-dimensional small sample size data, the diagonal Hotelling’s tests are better than the unscaled Hotelling’s tests and
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Fig. 2. ROC curves for all data sets when p = 50 and n = 5.

the regularized Hotelling’s tests. However, sample variance is an unreliable variance estimator for limited observations.
Therefore, we use optimal shrinkage variance estimations to improve the performance of the diagonal Hotelling’s test. The
improvements are shown in our simulation studies. Consequently, we suggest using shrinkage-based diagonal Hotelling’s
tests to test the significance of gene sets with small sample sizes. Furthermore, if the number of genes in the gene sets is not
large, the scaled chi-squared null distribution is recommended.

Nevertheless, from our simulation studies, we find that when the correlation becomes high, our methods have higher
type I error rates, although higher ROC curves and larger AUC values than those of other methods can be obtained. This phe-
nomenon is likely because the approximate null distributions in this paper are not accurate enough. In addition, real data
might not come from a multivariate normal distribution. Some heavy-tailed distributions or even discrete distributions are
possible in real data. For example, RNA-seq data, obtained by next-generation sequencing technologies, have better cov-
erage than microarray data have and such data have already been applied in medical science. RNA-seq data from typical
high-dimensional small sample size discrete data sets and thus the shrinkage-based diagonal Hotelling’s tests, based on
multivariate normal distributions, are not suitable for testing the significance of RNA-seq gene sets.
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Appendix A. Proof of Lemma 1

For any non-zero t > −ν/2, by Lemma 1 of [32], we have

E(σ̂ 2t
j ) = σ 2t

j /hν,1(t), j = 1, . . . , p.

This leads to
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Further, noting that X̄j and σ 2
j are independent of each other, we have
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To find the variance of T 2
SD1(α), it suffices to compute the second moment of T 2

SD1(α). For any j ≠ k, by similar algebra as
above, we have
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In addition, by the fact that E(X̄j − µoj)
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Finally, we have
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Appendix B. Derivation of formula (10)

Note that
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Given that σ 2
j are i.i.d. random variables with E
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< ∞, by the strong law of large numbers,
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In addition, noting that νσ̂ 2
j /σ 2

j are i.i.d. chi-squared distributed with ν degrees of freedom, we have
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which leads to (10). �
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