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In the past, most comparison to control problems have dealt with comparing k test treatments
to either positive or negative controls. Dasgupta et al. [2006. Using numerical methods to
find the least favorable configuration when comparing k test treatments to both positive and
negative controls. Journal of Statistical Computation and Simulation 76, 251–265] enumerate
situations where it is imperative to compare several test treatments to both a negative as well
as a positive control simultaneously. Specifically, the aim is to see if the test treatments are
worse than the negative control, or if they are better than the positive control when the two
controls are sufficiently apart. To find critical regions for this problem, one needs to find the
least favorable configuration (LFC) under the composite null. In their paper, Dasgupta et al.
[2006. Using numerical methods to find the least favorable configuration when comparing k
test treatments to both positive and negative controls. Journal of Statistical Computation and
Simulation 76, 251–265] came up with a numerical technique to find the LFC. In this paper we
verify their result analytically. Via Monte Carlo simulation we compare the proposed method
to the logical single step alternatives: Dunnett's [1955. A multiple comparison procedure for
comparing several treatments with a control. Journal of the American Statistical Association
50, 1096–1121] or the Bonferroni correction. The proposedmethod is superior in terms of both
the Type I error and the marginal power.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since Dunnett's (1955) breakthrough paper, multiple comparisons to control (MCC) or many-to-one comparisons have been a
widely researched topic. A control is one of two types: “positive control” and “negative control”. A “positive control” is generally
the standard treatment. It could be the “ideal” treatment in some cases. A “negative control” generally implies no application
of treatment. Under some circumstances, this could be the least favorable treatment. Dunnett (1955) asserts when a control is
present in the study, it is of interest to compare several treatments to the control. He provided one- and two-sided confidence
intervals for this purpose. There has been a spate of work on the topic of comparing several treatments with one control. More
recently, still another aspect of MCC is being studied, the problem comparing multiple controls to multiple treatments. Some
papers on this topic include Shaffer (1997), Hoover (1991), and Solorzano and Spurrier (1999). The multiple controls studied by
the papers mentioned had multiple controls that were all in one group and did not differentiate between a positive control and
a negative control.

Literature differentiating both types of controls is not as prolific. D'Agostino and Hareen (1991) discuss a problem involving
both positive and negative controls for over-the-counter drugs. They discuss multiplicity and recommend control of family-wise
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Table 1
Data from the allergy testing example.

Treatments Saline (negative control) T1 T2 T3 T4 d farinae (positive control)

Means 0.522 2.522 2.565 1.783 10.304 20.609
Stan. dev. 1.755 3.175 2.936 3.444 3.655 10.701
Sample size 23 23 23 23 23 23

error as opposed to per-comparison-wise error. Dunnett and Tamhane (1992) discuss a problem in medical settings where one
compares both positive and negative controls to a single treatment. Bauer et al. (1998) discuss a situation involving both controls
for a multi-dose experiment. Hothrorn et al. (2000) discuss a situation involving both controls in a dose–response mutagenicity
study. Dasgupta et al. (2006) discuss a problemwhere themotivating examples required testing a composite hypothesis involving
multiple treatments. It was of interest to see if at least one treatment is either better than the positive control or worse than
the negative control (different directions). To find critical points, they established the least favorable configuration (LFC) for the
composite hypothesis numerically. In this paper we follow up on the problem and provide an analytical proof for the LFC.

In Section 2, we discuss in brief the data examples motivating this problem. We briefly describe an example related to allergy
testing. In Section 3, we set up notation and definitions used in thismanuscript. In Section 4we present ourmain result illustrated
with a numerical example. Section 5 details the results from a simulation study comparing ourmethod to both Dunnett's method
and the Bonferroni method. The conclusion, discussion and future research are given in Section 6.

2. Data examples

Applications involving both positive and negative controls abound in clinical trials. Generally, a pharmaceutical company faces
two issues: passing the drug through the regulatory agency and marketing the drug. For a drug to pass the regulatory agency, it
must be as viable (at least as good) as the existing standard. For marketing purposes, it is desirable to show that the drug is better
than the “most effective” one in the market. The problem of interest is to allow both decisions to be made simultaneously while
controlling the overall Type I error rate.

Dasgupta et al. (2006) provide two examples to motivate their research. We, very briefly, discuss one other example to give
the reader a flavor of the real life application of this problem.

The allergy testing example: The presence of both positive and negative controls is common in allergy skin tests. Here various
allergens are administered through skin punctures along with a positive control (generally histamine or a common allergen) and
a negative control (saline/glycerin). The idea is: most people will react to the positive control and the skin will produce a wheal
or a hive, and few should show reaction to the negative control. Other controls, generally common allergens, are included along
with the suspected allergen(s) and the positive and negative controls. The response is the size of the wheal from the punctures.
The suspected allergen(s) is compared to the size of the controls for classification as negative, positive or intermediate results. The
data set used here was collected by a private Allergy Clinic in collaboration with the Department of Health Research Education
Center at Washington State University. It was a part of a larger data collection effort and came as a consulting problem to the
first author. The researchers were interested in identifying possible allergens that could be used as controls for future reference.
Here 23 subjects were exposed to six skin pricks, negative control (saline), positive control d farinae (dust mites), and four test
treatments. The four test treatments were all common allergens and it was of interest in this design study to compare the mean
wheal size of the four test treatments with both the negative and positive controls. If the mean wheal size was smaller than the
negative control it could be included in future tests as a potential negative control. If the mean wheal size was larger than the
positive control it could be used as a potential positive control. Since we only use the data set for illustration purposes, we ignore
the complications like the repeated measures/block design nature of the data and consider a one-way structure with four test
treatments and two controls. The means and standard deviations are given in Table 1.

3. Notation and hypothesis

We use the same notation as Dasgupta et al. (2006). We briefly define the terms required for the analytical result. We assume
a one-way layout with i.i.d. normal errors. Let Yij be the response for the j th observation of the i th treatment. The model is
given as

Yij = �i + �ij, i = 0, . . . , k + 1, j = 1, . . . ,ni (1)

with n0 = nk+1 = m�2 and ni = n for i = 1, . . . , k, where

�0: represents the mean effect for the negative control,
�i: represents the mean effect for the i th treatment, i = 1, . . . , k,
�k+1: represents the mean effects of the positive control,
�ij: the i.i.d. random errors.
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Our assumptions for this model are

(1) �ij ∼ i.i.d. N(0,�2);
(2) �k+1 − �0>3�.

We are assuming that the sample sizes associated with the two controls are equal but possibly different from the equal
sample sized k treatments. Having equal sample sizes for the controls and equal sample sizes for the treatments is routinely
done when the study encompasses multiple controls and multiple treatments for ease of exact critical point calculations. Both
Solorzano and Spurrier (1999) and Hoover (1991) made the same assumption. We also note that in assigning equal sample sizes
to the controls we are tacitly assuming that both the controls are of equal importance. Gupta et al. (2002) discuss the presence
of multiple controls of varying importance in the context of requiring different precisions for the comparison of treatments
with different controls. Dasgupta and SahaRay (2007) discuss optimally allocating observations when there are two controls of
unequal importance in the study. Here we are not considering these situations.

Assumption (1) follows from the usual set of ANOVA assumptions. Assumption (2) follows if we take into account the fact that
this problem only makes sense when there is considerable distance between the two controls. If the means of the two controls
are close to each other, it is not logical to compare the treatments for viability to the negative control and applicability to the
positive control. In that case, when the distance between the two controls is close to zero, the ideal critical value is Dunnett's
two-sided critical point.

Let �̂i, i=0, . . . , k+1, represent the corresponding samplemeans for the effects and s denote the overall pooled sample standard
deviation. Let � = k(n − 1) + 2(m − 1) be the corresponding degrees of freedom. The hypothesis of interest is given by

H0 : �0 ��i ��k+1, i = 1, . . . , k,

Ha : �i <�0 or �i >�k+1 for at least one i = 1, . . . , k. (2)

We define our usual t statistics as follows:

Ti =
�̂i − �̂0

s

√
1
m

+ 1
n

, Ui =
�̂i − �̂k+1

s

√
1
m

+ 1
n

for i = 1, . . . , k. (3)

In addition, we let � = s/� and

Zi =
�̂i − �i

�/
√
ni

for i = 0, . . . , k + 1. (4)

The hypothesis (2) is composite and to control overall Type I error strongly we need to calculate our critical points under the
least favorable configuration. Let us consider all the configurations that are possible under the null:

1. All k test treatment means are between the positive and negative control means.
2. Some of the test treatment means are equal to the negative control mean, some of the test treatment means are between the

negative and positive controls means, and the rest of the test treatment means are equal to the positive control mean.
3. Some of the test treatment means are equal to the negative control mean and the other test treatment means are equal to the

positive control mean.

4. Least favorable configurations and critical points

Our rejection criterion is: Reject H0 if

Ti <− t or Ui > t for at least one i, i = 1, . . . , k. (5)

As a result we define our “acceptance probability”

1 − P(Type I error) = P(Ti � − t and Ui � t for all i, i = 1, . . . , k). (6)

With (3) the right hand side of (6) reduces to

P

(
�̂0 − ts

√
1
m

+ 1
n

� �̂i � �̂k+1 + ts

√
1
m

+ 1
n
, i = 1, . . . , k

)
. (7)
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As in Dasgupta et al. (2006), for ease of notation, we define

B0 = t�
√
1 + n/m,

B1 =
√
n/m,

C = √
n(�k+1 − �0)/�,

�i = (�i − �0)/(�k+1 − �0), i = 1, . . . , k.

Using (3) and (4) and the notation defined above (7) reduces to

P(−B0 + B1Z0 − �iC � Zi �B0 + B1Zk+1 + (1 − �i)C, i = 1, . . . , k). (8)

Finally, let p(�i, z0, zk+1,�) = �(B0 + B1zk+1 + (1 − �i)C) − �(−B0 + B1z0 − �iC), where �(·) is the c.d.f. of the standard normal
distribution. Then (8) reduces to

G(d) =
∫ ∞

0

∫ ∫
	

k∏
i=1

p(�i, z0, zk+1,�) · 
(z0)
(zk+1)f (�)dz0 dzk+1 d�, (9)

where d = (�1, . . . ,�k), 
(·) is the p.d.f. of the standard normal distribution, f (·) is the p.d.f. of the chi distribution with � degrees
of freedom, and 	 = {(z0, zk+1,�) : z0 − zk+1 � (2B0 + C)/B1}.

To find the LFC we need to minimize G(d) in terms of d = (�1, . . . ,�k). At first we need to clarify that we are discounting the
possibility of having “Ti <0 and Ui >0 for at least one i”. This is a consequence of Assumption (2).

P(Ti <0 and Ui >0 for at least one i, i = 1, . . . , k) = 1 − P(�̂i > �̂0 or �̂i < �̂k+1 for all i)

= 1 − [P(�̂0 − �̂k+1 �0) + P(�̂i > �̂0 or �̂i < �̂k+1

for all i|�̂0 − �̂k+1>0)P(�̂0 − �̂k+1>0)]

= P(�̂0 − �̂k+1>0)[1 − P(�̂i > �̂0 or �̂i < �̂k+1 for all i|�̂0 − �̂k+1>0)]

� P(�̂0 − �̂k+1>0) = 1 − �

(
�k+1 − �0

�
√
2/m

)
. (10)

For any given k, under Assumption (2) when �k+1 − �0 �3�,

P(Ti <0 and Ui >0 for at least one i, i = 1, . . . , k|�k+1 − �0 �3�)�1 − �

(
3
√
m
2

)
�0.001.

The above derivation implies that under Assumption (2), the likelihood that a treatment will result in a negative Ti and a
positive Ui for at least one treatment will be very small and so is negligible. To verify our analytical result, we first set up some
definitions and present two lemmas.

Log-concavity: A non-negative real-valued function f on Rk is called log-concave, if, for each x1,x2 ∈ Rk and every � ∈ (0, 1),
we have f (�x1 + (1 − �)x2)� f �(x1)f 1−�(x2).

Convexity: Suppose that f is twice-differentiable function in the convex domain D. Then f is a convex function if and only if
the Hessian matrix

H =
(

�2
f (x)

�xi �xj

)
i,j=1,. . .,n

is positive semi-definite almost everywhere.

Lemma 1. Define h(x) = �(x) + 
(x)/x.We have

(a) h(x) is a decreasing function of x in (−∞, 0) and (0,∞);
(b) for any x<0, h(x)<0.

Proof. For any x�0,

h′(x) = 
(x) − 
(x)
x2

− 
(x) = −
(x)
x2

<0.

This implies that h(x) is a decreasing function of x in (−∞, 0) and (0,∞). Note that h(−∞)=0, therefore, h(x)<0 for any x<0. �
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Lemma 2. p(x)=�(x1−x3+x4)−�(x2−x3−x4) is a log-concave function ofx ∈ D,whereD is the convex domainD={(x1, x2, x3, x4) ∈
R4 : x1 + x4 � x2 − x4}.

Proof. To show p(x) is log-concave, it suffices to show that g(x) = − logp(x) is a convex function of x ∈ D, where “log” denotes
the natural logarithm. The Hessian matrix is given as

H(g) =
(

�2
g(x)

�xi �xj

)
i,j=1,. . .,4

,

where �2
g(x)/�xi �xj = �2

g(x)/�xj �xi for any i� j. For ease of notation, we denote 
1 = 
(x1 − x3 + x4), 
2 = 
(x2 − x3 − x4),
�1 = �(x1 − x3 + x4) and �2 = �(x2 − x3 − x4).

LetHi be the i th principal minor ofH(g) formed by the first i rows and columns ofH(g). Noting thatH(g) is a symmetric matrix,
to show H(g) is positive semi-definite, it suffices to show that the determinants, det(Hi), i = 1, . . . , 4, are all nonnegative. Simple
calculations lead to

det(H1) = (x1 − x3 + x4)
1(�1 − �2) + 
2
1

(�1 − �2)
2 ,

det(H2) = 
1
2[(x1 − x3 + x4)
2 − (x2 − x3 − x4)
1 − (x1 − x3 + x4)(x2 − x3 − x4)(�1 − �2)]

(�1 − �2)
3 ,

det(H3) = 0,

det(H4) = 0.

To show det(H1)�0, it suffices to show that

(x1 − x3 + x4)(�(x1 − x3 + x4) − �(x2 − x3 − x4)) + 
(x1 − x3 + x4)�0. (11)

Noting that �(x1 − x3 + x4) − �(x2 − x3 − x4)�0 for any x ∈ D, (11) holds when x1 − x3 + x4 �0. While for x1 − x3 + x4<0, by
Lemma 1 we have

(x1 − x3 + x4)(�(x1 − x3 + x4) − �(x2 − x3 − x4)) + 
(x1 − x3 + x4)� (x1 − x3 + x4)�(x1 − x3 + x4) + 
(x1 − x3 + x4)

= (x1 − x3 + x4)
(
�(x1 − x3 + x4) + 
(x1 − x3 + x4)

(x1 − x3 + x4)

)
� 0.

To show det(H2)�0, it suffices to show that

(x1 − x3 + x4)
2 − (x2 − x3 − x4)
1 − (x1 − x3 + x4)(x2 − x3 − x4)(�1 − �2)�0. (12)

Note that D = {x2 − x3 − x4 �0� x1 − x3 + x4} ∪ {(x1 − x3 + x4)(x2 − x3 − x4)>0}. It is clear that (12) holds when x2 − x3 −
x4 �0� x1 − x3 + x4. Otherwise, to show (12) is equivalent to showing


(x2 − x3 − x4)
(x2 − x3 − x4)

− 
(x1 − x3 + x4)
(x1 − x3 + x4)

− (�(x1 − x3 + x4) − �(x2 − x3 − x4))

=
(
�(x2 − x3 − x4) + 
(x2 − x3 − x4)

(x2 − x3 − x4)

)
−
(
�(x1 − x3 + x4) + 
(x1 − x3 + x4)

(x1 − x3 + x4)

)
�0,

which is guaranteed by noting that h(x) = �(x) + 
(x)/x is a strictly decreasing function of x in (−∞, 0) and (0,∞). �

Theorem 1. The least favorable configuration of the null hypothesis is given under Configuration 3.

Proof. We first show that G(d) is log-concave on d ∈ [0, 1]k. By Theorem 2.16 of Dharmadhikari and Joag-dev (1988) it suffices to
show that the density

g(d, z0, zk+1,�) = c
k∏

i=1

p(�i, z0, zk+1,�) · 
(z0)
(zk+1)f (�)

is a log-concave density of (d, z0, zk+1,�) ∈ [0, 1]k × 	, where c is a constant to validate the density function g(d, z0, zk+1,�). By
Lemma 2, it is easy to see that p(�i, z0, zk+1,�) is log-concave function of (�i, z0, zk+1,�) ∈ [0, 1]×	, where X1=B1zk+1+C, X2=B1z0,
X3 = �iC and X4 = B0. Therefore, noting that both the normal distribution and the chi distribution are log-concave (see Table 1 of
Bagnoli and Bergstrom, 2005), by Theorem 2.7 of Dharmadhikari and Joag-dev (1988) we have g(d, z0, zk+1,�) is log-concave.
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Now since G(d) is log-concave on d ∈ [0, 1]k, for any d1 and d2 in [0, 1]k and for all � ∈ (0, 1), we have

G(�d1 + (1 − �)d2)� (G(d1))
�(G(d2))

1−� � (min(G(d1),G(d2)))
�(min(G(d1),G(d2)))

1−� = min(G(d1),G(d2)).

This indicates that G(d) is minimized under Configuration 3. Or equivalently, the Type I error, 1 − G(d), is maximized under
Configuration 3.

Theorem 1 implies that some (say r) of the test treatment means are equal to the negative control and the other k − r test
treatment means are equal to the positive control. To find the critical points it is thus necessary to find the optimal value of r,
where r = 0, . . . , k. �

Theorem 2. The Type I error of the null hypothesis is minimized under r = k/2 when k is even and (k + 1)/2 when k is odd.

Proof. Under Configuration 3 we define our “acceptance probability” as a function of r, G(r). We further define

V1 = B0 + B1zk+1 + C, V2 = −B0 + B1z0, V3 = B0 + B1zk+1 = V1 − C, V4 = −B0 + B1z0 − C = V2 − C (13)

and

p1 = [�(V1) − �(V2)], p2 = [�(V3) − �(V4)]. (14)

Now,

G(r) =
∫ ∞

0

∫ ∫
	
[p1]

r[p2]
k−r · 
(z0)
(zk+1)f (�)dz0 dzk+1 d�. (15)

By symmetry it is easy to verify that G(r) = G(k − r), hence, G(r) = 1
2 [G(r) + G(k − r)]. The integrand of G(r) can be written as

[�(V1) − �(V2)]
k/2 · [�(V3) − �(V4)]

k/2 ·
{[

�(V1) − �(V2)
�(V3) − �(V4)

](k/2)−r

+
[
�(V3) − �(V4)
�(V1) − �(V2)

](k/2)−r
}

(16)

which is of the form:

U(y,w) = � · (yw + y−w), (17)

where

y = [�(V1) − �(V2)]
[�(V3) − �(V4)]

, w = k
2

− r and � = [[�(V1) − �(V2)] · [�(V3) − �(V4)]]
k/2.

We note that � is a constant with respect to w. First we need to show, ��0 and y�0. From (13) we can write,

� = [[�(V1) − �(V2)] · [�(V1 − C) − �(V2 − C)]]k/2. (18)

It is easy to show ��0, specifically note that [�(V1) − �(V2)] and [�(V1 − C) − �(V2 − C)] are both positive or both negative.
Therefore the product is always non-negative. To show y�0, we note that the numerator and denominator of y are the two
terms in �, and the result follows. Now

�U
�w

= � ln(y)(yw − y−w). (19)

Now, if w>0, then �U/�w�0 and if w<0, then �U/�w�0, y�0,w ∈ R. So for any y�0, U(y,w) is non-increasing as |w|
decreases. Hence, G(r) is non-increasing in as |r − k/2| decreases. Therefore the least favorable configuration is the middle value
of the treatments: r = k/2 when k is even or r = (k + 1)/2 when k is odd.

We establish analytically the LFC found numerically in Dasgupta et al. (2006) which implies that our critical points will be the
same as theirs. To find the critical points we need to equate Eq. (15) to 1 − � and then solve for t�, where r = k/2 for even k and
r = (k + 1)/2 for odd k. Recall by Assumption (2), C = (�k+1 − �0)/�>3. For conservative estimates C = 3 should be used. A table
of critical points appears in Dasgupta et al. (2006). Other critical values and the program finding critical values are available from
the authors upon request. �

Example revisited: In the allergy example (see Table 1), we were interested in comparing the four test treatments to both the
positive control (d farinae) and the negative control (saline). Here the pooled standard deviation is 5.188. The computed critical
point for k=4,m=n=23 is t� =2.230. The corresponding test statistics are T1=1.307, T2=1.335, T3=0.824, T4=6.39,U1=−11.82,
U2 = −11.79, U3 = −12.30 and U4 = −6.73. Thus, Ti >− t and Ui < t for i = 1, 2, 3, 4 and we do not reject the null hypothesis.



186 N. Dasgupta et al. / Journal of Statistical Planning and Inference 140 (2010) 180 -- 188

5. Simulation results

We now conduct a simulation study to show the method proposed by Dasgupta et al. (2006) which we analytically examine,
is an improvement over its single-step competitors (Dunnett's method and the Bonferroni correction) in terms of the Type I error
and the power. For comparing the Type I error, we assume negative control mean, �0 = 1, positive control mean �k+1 = 5 and
�=1. Treatments i=1, . . . , (k+1)/2 (or k/2) were generated with a mean of 1 and the remaining treatments were generated with
a mean of 5. We calculated our Ti and Ui and found the number of cases with at least one rejection. The proportion of times there
was at least one rejection is given as the first lines (corresponding to  = 0) in Table 2.

We use Spurrier's (1992) definition of marginal power and define the marginal power for treatment i as the probability of
declaring it smaller (larger) than the negative (positive) control. Without loss of generality, let us assumewe are interested in the
marginal power of Treatment 1. Like the simulation for the Type I error, other than Treatment 1, all treatments were generated
with a mean of �0 or �k+1. Treatment 1 was generated with a mean that equaled �0 −  (for negative marginal power) or �k+1 + 
(for positive marginal power), where the effect size  is ranging from 0.4 to 2. The simulation was repeated 10,000 times. The
nominal error rate was kept at 0.05. It is to be noted that the standard error of simulation was 0.002 for the computation of
the Type I error. For sample size consideration we noted that minimizing the sum of variances of all elementary contrast yields
m/n =

√
k/2. In Table 2 we consider two different numbers of treatments (k = 3, 6) and three different combinations of sample

sizes with m/n =
√
k/2, with n = 5, 10, and 17. Results for equal sample sizes (m = n) and other values of k do not show any

appreciable departure from these findings and are not included for space considerations. These are available from the authors. It
must bementioned that Dasgupta et al. (2006) used simulation to verify the LFC in their numerical technique but did not perform
a simulation for comparison with competitors.

The simulation indicates that the proposed method controls the Type I error at levels close to the nominal level for finite
sample sizes. Dunnett's method, tailor made for comparing k treatments to a single control, is somewhat liberal when being used
for two controls. The Bonferroni correction works reasonably well when the number of test treatments is small (k=3). However,
as the number of test treatments increases, the Bonferroni correction becomes conservative.

Table 2
Type I error and marginal power comparison.

k n m  Negative Negative Negative Positive Positive Positive
ours Dunnett Bonferroni ours Dunnett Bonferroni

3 5 6 0.0 0.0500 0.0046 0.0558
0.4 0.0693 0.0642 0.0772 0.0737 0.0695 0.0804
0.8 0.1969 0.1880 0.2124 0.2041 0.1936 0.2185
1.2 0.4164 0.4041 0.4378 0.4206 0.3992 0.4319
1.6 0.6558 0.6432 0.6741 0.6466 0.6426 0.6727
2.0 0.8506 0.8406 0.8662 0.8489 0.8416 0.8626

10 12 0.0 0.0509 0.0438 0.0540
0.4 0.1207 0.1120 0.1311 0.1224 0.1129 0.1320
0.8 0.3920 0.3757 0.4109 0.3883 0.3704 0.4056
1.2 0.7384 0.7207 0.7531 0.7453 0.7294 0.7588
1.6 0.9358 0.9295 0.9422 0.9419 0.9357 0.9486
2.0 0.9928 0.9923 0.9943 0.9935 0.9931 0.9941

17 21 0.0 0.0508 0.0460 0.0558
0.4 0.1886 0.1774 0.1996 0.1874 0.1764 0.1995
0.8 0.6209 0.6041 0.6394 0.6249 0.6098 0.6412
1.2 0.9351 0.9301 0.9416 0.9336 0.9282 0.9388
1.6 0.9967 0.9965 0.9971 0.9964 0.9961 0.9967
2.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

6 5 9 0.0 0.0486 0.0453 0.0586
0.4 0.0494 0.0449 0.0568 0.0507 0.0470 0.0596
0.8 0.1675 0.1585 0.1878 0.1698 0.1609 0.1906
1.2 0.3909 0.3753 0.4193 0.3902 0.3789 0.4262
1.6 0.6587 0.6454 0.6901 0.6588 0.6430 0.6873
2.0 0.8674 0.8591 0.8845 0.8626 0.8540 0.8822

10 17 0.0 0.0501 0.0458 0.0590
0.4 0.0822 0.0768 0.0984 0.0863 0.0805 0.1004
0.8 0.3457 0.3343 0.3760 0.3435 0.3303 0.3747
1.2 0.7315 0.7483 0.7570 0.7233 0.7108 0.7470
1.6 0.9453 0.9410 0.9540 0.9450 0.9402 0.9542
2.0 0.9942 0.9938 0.9956 0.9946 0.9875 0.9958

17 29 0.0 0.0511 0.0473 0.0607
0.4 0.1404 0.1326 0.1565 0.1499 0.1428 0.1678
0.8 0.5872 0.5744 0.6121 0.5983 0.5855 0.6271
1.2 0.9976 0.9973 0.9982 0.9366 0.9317 0.9448
1.6 1.0000 1.0000 1.0000 0.9980 0.9976 0.9983
2.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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In terms of power, the same trend is evident. Using Dunnett's method would result in higher power, but as noted in the
previous paragraph, the Type I error is not controlled at the nominal level for this procedure and so this alternative should be
discounted. The Bonferroni method, which is conservative, has lower power. Due to the symmetric nature of the procedure, the
negative marginal power and the positive marginal power are about the same for the same , n and k. The power calculation also
shows that our procedure is quite sensitive to departures from the null. For example, for a departure of 0.4�, for comparing three
treatments to the positive and negative controls (Table 2), for a sample size of n=5,m=6, we have amarginal power of 7 percent.
For a sample size of n= 17,m= 21 this power increases to 19 percent. The power depends upon the number of treatments k, the
sample size n, and the degree of departure . The marginal power increases with n and  and decreases with k.

It must be noted that the data in Table 2 was generated under Assumption (2) that �k+1 − �0>3�. We looked at several
situations, varying the distance between the two controls. If Assumption (2) is satisfied our proposed method is superior.
However, when the distance between the controls is less than 3�, ourmethod can be conservative. In that case, the set “Ti <0 and
Ui >0 for at least one i” is not negligible anymore. Specifically, if we ignore this set, we reject less often than we should. When
the distance between the two controls is 0, the ideal critical value is the Dunnett's two-sided method. Exact power calculations
can be done for our method, and therefore, the simulation here is only for the purpose of comparison of the three methods.

6. Discussion and continuing work

In this manuscript, we analytically prove a result that was established numerically in the literature. In terms of the analytical
result it is interesting to note that P(�̂i > �̂0 or �̂i < �̂k+1 for all i|�̂0 − �̂k+1>0) is a decreasing function of k, which reduces to
zero when k is sufficiently large. While for small k, this conditional probability can be large. Another point we would like to make
to clarify our procedure is that our test statistics Ti and Ui are not linearly independent. For example, for k = 2,

U1 − U2 + T2 = �̂1 − �̂k+1

s

√
1
m

+ 1
n

− �̂2 − �̂k+1

s

√
1
m

+ 1
n

+ �̂2 − �̂0

s

√
1
m

+ 1
n

= T1.

This implies that the covariance matrix of {Ti,Ui, i = 1, . . . , k} is singular. This makes the standard logconcavity results of the non-
central multivariate t distribution that require non-singularity inapplicable, see for example Lemma 3.2 of Giani and Strassburger
(2000).

We show via Monte Carlo simulation that the proposed method has an advantage over both Dunnett's method and the
Bonferroni correction. Two of the configurations (r = 0, k) lead us to Dunnett's critical points. However, since these are not
the least favorable configurations, the overall Type I error is not maintained. The Bonferroni method, which would be a logical
alternative, is quite conservative as the number of test treatments becomes large. This research is based on equal sample sizes
for the test treatments and equal sample sizes for both positive and negative controls. The next step would be to investigate
the problem when the sample sizes are different. This would make finding the least favorable configuration a more challenging
problem. Investigating optimal design issues with both a positive and a negative control is another interesting open question.
There is a fairly large body of literature on optimal design when there is a control group and a treatment group (see for example,
Hedayat et al., 1988; Jacroux, 2001, 2002). The question of two controls (positive and negative or equal or varying importance)
was studied by Dasgupta and SahaRay (2007) in terms of A and MV-optimality. There are various open problems in optimal
design stemming from this problem. Due to the composite nature of the null, there is some ambiguity in inverting the test to
form one-sided confidence intervals. It may be possible to derive confidence sets for the problem at hand in a stepwise fashion,
as in Hayter and Hsu (1994). Another immediate problem stemming from our example is the problem of two controls in block
design/repeated measures. Hence, we believe that this manuscript opens up possibilities for various directions of new research.
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Shaffer, J.P., 1977. Multiple comparisons emphasizing selected contrasts: an extension and generalization of Dunnett's procedure. Biometrics 33, 293–303.
Solorzano, E., Spurrier, J.D., 1999. One-sided simultaneous comparisons with more than one control. Journal of Statistical Computation and Simulation 63, 37–46.
Spurrier, J.D., 1992. Optimal designs for comparing variances of several treatments with that of a standard treatment. Technometrics 34, 332–339.


	Comparing multiple treatments to both positive and negative controls
	Introduction
	Data examples
	Notation and hypothesis
	Least favorable configurations and critical points
	Simulation results
	Discussion and continuing work
	Acknowledgments
	References




