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a b s t r a c t

In the era of big data, there are many data sets recorded in equal intervals of time. To model the
change rate of such data, one often constructs a nonparametric regression model and then estimates
the first derivative of the mean function. Along this direction, we propose a symmetric two-sided
local constant regression for interior points, an asymmetric two-sided local polynomial regression for
boundary points, and a one-sided local linear forecasting model for outside points. Specifically, under
the framework of locally weighted least squares regression, we derive the asymptotic bias and variance
of the proposed estimators, as well as establish their asymptotic normality. Moreover, to reduce the
estimation bias for highly-oscillatory functions, we propose debiased estimators based on high-order
polynomials and derive their corresponding kernel functions. A data-driven two-step procedure for
simultaneous selection of the model and tuning parameters is also proposed. Finally, the usefulness
of our proposed estimators is demonstrated by simulation studies and two real data examples.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the nonparametric regression model

i = m(xi) + ϵi, i = 1, . . . , n, (1)

where Yi’s are the response variables, m(·) is an unknown mean
function, xi’s are equally spaced design points with xi = i/n, and
i’s are independent and identically distributed random errors
ith zero mean and variance σ 2. In this paper, we are interested

n estimating the first derivative of the mean function, denoted
y m(1)(·).
An accurate estimate of the first derivative is often desired and

as a wide range of applications in statistics and related areas.
t can be applied, for example, to the change point problems
or detecting the cellular morphology changes [1], the bump
unting [2], and the trend in time series [3]. Also in the field
f pattern recognition, the derivative estimation can be used for
ime series classification [4], texture classification [5], and word
potting [6]. While for more applications of the first derivative,
hey include, but not limited to, the following areas: cell biol-
gy [7], computer vision [8], medicine [9], machine learning [10],
nd effect evaluation [11].
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In nonparametric regression, the derivative estimate is often a
by-product of the nonparametric estimate for the mean function.
Taking the local polynomial regression (LPR) [12] as an example,
we first fit a local polynomial of degree p as

(β̂0, . . . , β̂p) = argmin
βj∈R

n∑
i=1

⎧⎨⎩Yi −

p∑
j=0

βj(xi − x0)j

⎫⎬⎭
2

Kh(xi − x0),

(2)

where Kh(·) is a kernel function with the bandwidth h. The first
derivative of the mean function at a fixed point x0 is then esti-
mated by m̂(1)(x0) = β̂1. In LPR, one is to minimize the mean
square errors (MSE) of {m̂(xi)}ni=1 for selecting the optimal h. For
the first derivative estimation, however, a better criterion is to
minimize the MSE of m̂(1)(xi) as follows:

MSE =
1
n

n∑
i=1

{m̂(1)(xi) − m(1)(xi)}2. (3)

o be more specific, minimizing Eq. (2) does not necessarily
uarantee that the first derivative of m(·) will also be optimally
stimated [13], mainly because the convergence rates of the
ean function estimator and the first derivative estimator can
e largely different. As a consequence, if we follow LPR, the first
erivative estimator may not achieve the same optimal rate of
onvergence as that for the mean function estimator [14].

https://doi.org/10.1016/j.knosys.2021.107781
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To obtain the optimal convergence rate for the first derivative
estimator, Charnigo et al. [13] and De Brabanter et al. [15] em-
ployed a variance-minimizing linear combination of symmetric
quotients called the empirical first derivative as

Y<1>
i =

k∑
l=1

wl

(
Yi+l − Yi−l

xi+l − xi−l

)
, (4)

where wl = 6l2/{k(k + 1)(2k + 1)} for l = 1, . . . , k. They
further showed that their proposed estimators provide a better
estimation efficiency compared to the single difference quotient
as in Härdle [16]. Wang and Lin [14] proposed a locally weighted
least squares regression and obtained accurate expressions for
the main term of bias and variance of their proposed derivative
estimators. Dai et al. [17] proposed a general differenced esti-
mation with a fixed bias-reduction level. More recently, Liu and
De Brabanter [18] extended the results from the equally spaced
design to random designs, and Wang et al. [10] proposed a robust
estimation for the derivatives with heavy-tailed errors.

Apart from the theoretical developments, it remains unknown
which of the above estimators will provide the best performance
in practical applications. To the best of our knowledge, there are
few studies in the literature on comparing the finite-sample per-
formance of the optimal estimators with different bias-reduction
levels. Moreover, we also note that the derivative estimation for
boundary points is less reliable compared to that for interior
points. To address those issues, we propose the locally weighted
polynomial regression to estimate the first derivative for both
interior and boundary points. Meanwhile, for the purpose of
forecasting, we propose a one-sided forecasting model for outside
points and investigate its statistical properties for the derivative
estimation.

The rest of this paper is organized as follows. In Section 2,
we propose two-sided high-order polynomial estimators for in-
terior points, and derive the theoretical results including the
asymptotic bias, asymptotic variance, and asymptotic normal-
ity. We also show that the least squares estimator is equiva-
lent to the variance-minimizing estimator. Under different bias-
reduction levels, a data-driven procedure for simultaneously se-
lecting the model and tuning parameters is also proposed. In
Section 3, we propose one-sided estimators and asymmetric two-
sided estimators for boundary points, which explains the reasons
why the two-sided estimators are more efficient than the one-
sided estimators. In Section 4, we further propose one-sided
local linear estimator for outside points, which can be used for
forecasting the variation tendency. In Section 5, we propose a
data-driven criterion for choosing the optimal estimator in the
sense of minimizing the mean absolute error, and conduct sim-
ulation studies to demonstrate its usefulness. Lastly, we apply
our new estimators to two real data examples in Section 6, and
conclude the paper in Section 7 with some discussions. Technical
results and supporting materials are provided in the Appendices.

2. Derivative learning for interior points

In this section, we propose the local polynomial estimators
for the first derivative based on the least squares regression, and
investigate their theoretical properties. We have three interesting
results. First, the local constant estimator based on symmetric
difference sequence is equal to the first empirical derivative.
Second, the least squares estimator is equivalent to the variance-
minimizing estimator. Third, some high-order kernels can be
derived according to the local polynomial estimators.
 M

2

2.1. Local constant estimator

Assume that the mean function is one time continuously dif-
ferentiable on [0, 1]. For any positive integer k = o(n), by
Charnigo et al. [13] we define the symmetric difference quotients
as

Y (1)
il =

Yi+l − Yi−l

xi+l − xi−l

=
m(xi+l) − m(xi−l)

xi+l − xi−l
+

ϵi+l − ϵi−l

xi+l − xi−l
, 1 ≤ l ≤ k. (5)

Then by the first-order Taylor expansion of the mean function at
point xi, we have
m(xi+l) − m(xi−l)

xi+l − xi−l
= m(1)(xi) + o (1) , 1 ≤ l ≤ k.

Plugging this formula back to (5), the symmetric difference quo-
tients is expressed as

Y (1)
il = βi1 + δil,

where βi1 = m(1)(xi) and δil = n(ϵi+l − ϵi−l)/(2l) + o (1). Note
hat δil are independent random errors with mean nearly zero and
ariance n2σ 2/(2l2). We then apply the local constant regression
o estimate the first derivative as

ˆ i1 = argmin
βi1

k∑
l=1

wil(Y
(1)
il − βi1)2 = (DT

1WD1)−1DT
1WY (1)

i , (6)

where wil = σ 2/(2Var[δil]) = l2/n2, D1 = (1, . . . , 1)T1×k with T
the transpose of a matrix or a vector, Y (1)

i = (Y (1)
i1 , . . . , Y (1)

ik )T , and
W = n−2diag(12, . . . , k2).

In the following theorem, we derive the asymptotic bias and
variance for the first derivative estimator (6). The proof is given
in Appendix A.

Theorem 1. Assume that model (1) holds with the design points
equally spaced, and the mean function is one time continuously
differentiable on [0, 1]. Then the variance of estimator (6) is

Var[m̂(1)(xi)]
.
=

3σ 2

2
n2

k3
, k + 1 ≤ i ≤ n − k,

here .
= means that the higher-order terms are omitted. Further,

if the mean function is three times continuously differentiable on
[0, 1], then the bias of estimator (6) is

Bias[m̂(1)(xi)]
.
=

m(3)(xi)
10

k2

n2 , k + 1 ≤ i ≤ n − k.

Following Theorem 1, the mean square error (MSE) of the first
derivative estimator is given as

MSE[m̂(1)(xi)] =
3σ 2

2
n2

k3
+

(m(3)(xi))2

100
k4

n4 . (7)

To minimize the MSE with respect to k, we take the first deriva-
tive of Eq. (7) and yield the gradient as

d
dk

MSE[m̂(1)(xi)] =
(m(3)(xi))2

25
k3

n4 −
9σ 2

2
n2

k4
.

Then by letting the first derivative as zero, the optimal k that
inimizes the MSE is

opt =

(
225σ 2

2(m(3)(xi))2

)1/7

n6/7.

And consequently, the minimum MSE with the optimal k is

SE [m̂(1)(x )] ≈ 0.35
(
σ 8(m(3)(x ))6

)1/7
n−4/7.
kopt i i
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We also note that the variance and bias for the first derivative
estimator (6) require different assumptions on the smoothness of
the mean function. In addition, the first derivative estimator (6)
is the same as the first empirical derivative (4) in Charnigo et al.
[13] and De Brabanter et al. [15]. This shows that the newly pro-
posed estimator is optimal according to the variance-minimizing
criterion. Moreover, our method is also very convenient to de-
duce more accurate bias and variance terms by the least squares
theory. Lastly, the asymptotic normality for the first derivative
estimator (6) is also established in the following theorem.

Theorem 2 (Asymptotic Normality). Under the assumptions of
Theorem 1, if k = nα with 2/3 < α < 1 as n → ∞, then

k3/2

n

(
m̂(1)(xi) − m(1)(xi) −

m(3)(xi)
10

k2

n2

)
d

−→ N
(
0,

3σ 2

2

)
or k + 1 ≤ i ≤ n − k, where

d
−→ denotes the convergence in

istribution. Further, if k = nα with 2/3 < α < 6/7 as n → ∞,
then
k3/2

n

(
m̂(1)(xi) − m(1)(xi)

) d
−→ N

(
0,

3σ 2

2

)
.

By the least squares theory and the fact that {δil}
k
l=1 are inde-

endently distributed with asymptotical mean zeros and variance
n2σ 2/(2l2)}kl=1, it can be readily shown that Theorem 2 holds.
ith a suitable k, the first derivative estimator (6) is asymptoti-

ally normal and asymptotically unbiased. The error variance σ 2

an be estimated by a bias-corrected method [19], denoted by σ̂ 2.
his consequently yields an approximate 1−α confidence interval
or m(1)(xi) as

m̂(1)(xi) − zα/2

√
3n2σ̂ 2

2k3
, m̂(1)(xi) + zα/2

√
3n2σ̂ 2

2k3

)
,

here zα is the upper αth percentile of the standard normal
istribution.

.2. Local polynomial estimators

To further reduce the bias, we assume that the mean function
s p times continuously differentiable on [0, 1], where p is an odd
umber. By the pth-order Taylor expansion of the mean function
t point xi, we have

(1)
il = βi1 + βi3

l2

n2 + · · · + βip
lp−1

np−1 + δil, 1 ≤ l ≤ k,

here βiq = m(q)(xi)/q! for q = 1, 3, . . . , p, and δil = n(ϵi+l −

i−l)/(2l) + o(lp−1/np−1). Noting also that δil are independent
andom errors with a nearly zero mean and variance n2σ 2/(2l2),
e can estimate the coefficients as

ˆ i = (β̂i1, . . . , β̂ip)T

= arg min
βi1,...,βip

k∑
l=1

wil

(
Y (1)
il − βi1 − · · · − βip

lp−1

np−1

)2

= (DT
pWDp)−1DT

pWY (1)
i , (8)

where wil = l2/n2, W and Y (1)
i are the same as in Section 2.1, and

Dp =

⎛⎜⎜⎜⎝
1 12n−2

· · · 1p−1n−(p−1)

1 22n−2
· · · 2p−1n−(p−1)

...
...

...
...

1 k2n−2
· · · kp−1n−(p−1)

⎞⎟⎟⎟⎠ .

By (8), we then define the first derivative estimator as m̂(1)(xi) =

β̂ .
i1

3

Table 1
Asymptotic variances and biases of the first derivative estimators for p = 1, 3, 5
p Bias Var kopt MSE kp/k1,opt

1 m(3)(xi)
10

k2

n2
3σ2

2
n2

k3
O(n6/7) O(n−4/7) 1.00

3 −
m(5)(xi)
504

k4

n4
75σ2

8
n2

k3
O(n10/11) O(n−8/11) 1.84

5 m(7)(xi)
61776

k6

n6
3675σ2

128
n2

k3
O(n14/15) O(n−12/15) 2.67

In the following theorem, we derive the asymptotic bias and
variance for the first derivative estimator, with the proof in Ap-
pendix B.

Theorem 3. Assume that model (1) holds with the design points
equally spaced, and the mean function is (p+ 2) times continuously
differentiable on [0, 1] with p an odd number. Then for any k+ 1 ≤

i ≤ n − k, the variance and bias of the first derivative estimator in
(8) are

Var[m̂(1)(xi)] =
σ 2

2
eT1,p(D

T
pWDp)−1e1,p,

ias[m̂(1)(xi)] = eT1,p(D
T
pWDp)−1DT

pW∆p,i,

where e1,p = (1, 0, . . . , 0)T((p+1)/2)×1 and ∆p,i =
m(p+2)(xi)
(p+2)!np+1

1p+1, . . . , kp+1
)T .

For comparison, we also list their variances and biases for
p = 1, 3, 5 in Table 1. It is evident that there is a relatively
large increase rate in the variance. For instance, when p increases
from 1 to 3, the variance will increase up to 625%. For large
σ 2, we suggest to use the lower order p expect that the bias is
larger. Empirically, the optimal k increases correspondingly as p
increases. We set the optimal k1,opt for p = 1, and list the kp/k1,opt
to attain the same variance without considering the bias. It is
easy to obtain that the ratios are 1.84 and 2.67 for p = 3 and 5,
respectively. To trade off between the bias and variance, we will
propose a criterion in Section 5 to choose p through simulation
study.

2.3. Selection of tuning parameters

For the three estimators with p = 1, 3, 5 in Sections 2.1
and 2.2, two questions still remain for practical use. The first
question is to choose the tuning parameter kp for a given p, and
the second question is to select the optimal estimator among the
three estimators.

For the first question, we can choose kp globally for interior
points by the averaged MSE (AMSE) criterion

AMSE(p, kp) =
1

n − 2k

n−k∑
i=k+1

MSE[m̂(1)(xi)], (9)

which was used and discussed by Wang and Lin [14]. Specifically
for p = 1, by (7) we have

AMSE(1, k1) =
1

n − 2k

n−k∑
i=k+1

MSE[m̂(1)(xi)]

=
1

n − 2k

n−k∑
i=k+1

[
3σ 2

2
n2

k3
+

(m(3)(xi))2

100
k4

n4

]
.

ote that the parameters σ 2 and {m(3)(xi)|1 ≤ i ≤ n} are
nknown. We estimate the error variance σ 2 by Hall et al. [20] as

ˆ
2

=
1

n − 2

n−2∑
(0.809Yi − 0.5Yi+1 − 0.309Yi+2)2,
i=1



W. Wang, J. Lu, T. Tong et al. Knowledge-Based Systems 236 (2022) 107781

a
t
b
A

A
b

1
p
a

r
d
s
a
p
s
o
r

2

e

m

w
f
k
c
t

K

Fig. 1. Kernel functions for the first derivative estimators for p = 1, 3, 5.
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nd estimate the third-order derivatives {m(3)(xi)|1 ≤ i ≤ n} by
he local polynomial regression of order p = 3, which can also
e implemented by the R package locpol [21]. By minimizing the
MSE, it yields the first derivative estimates {m̂(1)

k1,opt
(xi)|k + 1 ≤

i ≤ n − 2k} with optimal tuning parameter

k1,opt = arg min
k1≤n/2

AMSE(1, k1).

ccordingly, the first derivative estimates for p = 3 or 5 can
e obtained with the optimal tuning parameters k3,opt and k5,opt ,

respectively. To improve the estimation efficiency of the error
variance σ 2, the bias-reduced estimates are also available in the
literature [19,22]. The high-order derivatives {m(p+2)(xi)|k + 1 ≤

i ≤ n − 2k} can be estimated by the local (p + 2)-order or
(p + 4)-order polynomial regression.

For the three estimators, we can select the polynomial order

popt = arg min
p=1,3,5

AMSE(p, kp,opt ),

and obtain the optimal first derivative estimates {m̂(1)
popt ,opt (xi)|k+

≤ i ≤ n − 2k} for interior points. In fact, the above selection
rocedure can also be generalized to all the design points by
djusting the domain of AMSE. For more details, see Section 5.2.
In real data analysis, when the independent variable is xi = i

ather than xi = i/n, we cannot use the nonparametric method
irectly. For this scenario, to increase the scope of application, we
uggest to transform the independent and dependent variables
s x̃i = xi/ñ = i/ñ and Ỹi = Yi/ñ, where ñ is a standardized
arameter, e.g., ñ = 100, 200, 500. Moreover in Appendix C, we
how that the first derivative estimation remains the same before
r after the data transformation for the same k, and the AMSE also
emains unchanged as ñ changes.

.4. Two-sided kernel learning

In the least squares regression framework, the first derivative
stimator is a linear combination of the responses as

ˆ
(1)(x) =

n∑
i=1

Kp(xi)Yi,

here Kp(·) is a kernel function with polynomial order p. Also
or the uniqueness of the assigned weights, we assume that the
ernel function is defined on the support [−1, 1] and satisfies the
ondition

∫ 1
−1 Kp(x)xdx = 1. Then by Wang and Yu [22], we have

he two-sided (TS) kernel functions as follows:

1(x) =
3
2
x,

K3(x) =
15

(5x − 7x3),

8

4

K5(x) =
105
512

(140x − 504x3 + 396x5).

ig. 1 displays the corresponding kernels for p = 1, 3 and 5,
espectively. It is evident that, as p increases, the kernel function
ill be more oscillatory. Finally, we refer to the corresponding
stimator in (8) as the TS estimator.

. Derivative learning for boundary points

In this section, we consider the first derivative estimation in
he boundary, where an important example can be seen in the
egression kink design [23]. For a fixed k, we denote the left and
ight boundary regions as {xi, 1 ≤ i ≤ k} and {xi, n − k + 1 ≤

≤ n}, respectively. Then depending on the range of observations,
e propose two new estimators: one is the one-sided (OS) local
olynomial regression and another is the asymmetric two-sided
ATS) local polynomial regression. Theoretical results show that
he ATS estimator is always better than the OS estimator under
ild conditions.

.1. One-sided local polynomial estimators

Assume that the mean function is (p + 1) times continuously
ifferentiable on [0, 1]. For the estimation at point xi with 1 ≤

≤ k, we apply the one-sided observations {(xj, Yj), i ≤ j ≤ i+ k}
o express model (1) as a local polynomial regression:

i+j = βi0 + βi1dj + · · · + βipd
p
j + δij, 1 ≤ j ≤ k,

here βiq = m(q)(xi)/q! for q = 0, 1, . . . , p, and δij = ϵi+j +

m(p+1)(xi)
(p+1)!

jp+1

np+1 + o( jp+1

np+1 ) are independent random errors. We then
estimate the coefficients as

β̂i = argmin
βi

k∑
j=1

(Yi+j − βi0 − βi1dj − · · · − βipd
p
j )

2

= (D̃T
p;1,kD̃p;1,k)−1D̃T

p;1,kỸ
(0)
i , (10)

where β̂i = (β̂i0, . . . , β̂ip)T , Ỹ
(0)
i = (Yi+1, . . . , Yi+k)T , and

D̃p;1,k =

⎛⎜⎜⎜⎝
1 11n−1

· · · 1pn−p

1 21n−1
· · · 2pn−p

...
...

...
...

1 k1n−1
· · · kpn−p

⎞⎟⎟⎟⎠ .

Finally by (10), we define the one-sided first derivative estimator
as m̂(1)(xi) = β̂i1.

Following Section 2, we present the asymptotic variance and
bias for p = 1, . . . , 5 in Table 2. From the results, it is clear that
the variance increases rapidly along with p. We set the optimal
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tatistical properties for the one-sided first derivative estimators for p =

, 2, 3, 4, 5.
p Bias Var kopt MSE kp/k1,opt

1 0.50m(2)(xi) k1

n1
12σ 2 n2

k3
O(n4/5) O(n−2/5) 1.00

2 −0.10m(3)(xi) k2

n2
192σ 2 n2

k3
O(n6/7) O(n−4/7) 2.52

3 1.19 × 10−2m(4)(xi) k3

n3
1200σ 2 n2

k3
O(n8/9) O(n−6/9) 4.64

4 −9.92 × 10−4m(5)(xi) k4

n4
4800σ 2 n2

k3
O(n10/11) O(n−8/11) 7.37

5 6.31 × 10−5m(6)(xi) k5

n5
14700σ 2 n2

k3
O(n12/13) O(n−10/13) 10.70

Table 3
Ratios of variances between the TS and OS estimators for p = 1, 2, 3, 4, 5.
p 1 2 3 4 5

Rp
1
8

1
128

1
128

1
512

1
512

k1,opt for p = 1, and list the kp/k1,opt to attain the same variance
ithout considering the bias. It is obtained that the ratios are
.52, 4.64, 7.37, 10.70 for p = 2, 3, 4, 5, respectively. In view
f the large difference, we recommend to use the lower-order
olynomials to estimate the first derivative in the boundary. The
orresponding kernels are computed in Appendix D.
To further compare the TS and OS estimators, we define the

atio of their variances as

p =
Var(m̂(1)

TS,p(xi))

Var(m̂(1)
OS,p(xi))

.

While for comparison, we list the ratios for p = 1, . . . , 5 in Ta-
ble 3. As p increases, the ratio of variances increases dramatically.
In particular for p = 1, the ratio of variances is 1/8, which is due
to that the TS estimator adopts double-sized data compared to
the OS estimator. Also by the symmetry of the data, the bias of
the TS estimator is of order O(k2/n2) which is smaller than the
order O(k/n) for the OS estimator.

3.2. Asymmetric two-sided local polynomial estimators

Recall that for the one-sided estimator, only data from xi to
i+k are used so that the information in the left side is completely
gnored. To fully use the information, we propose to use the two-
ided data from x1 to xi+k in this section. Specifically for the
estimation at point xi with 1 ≤ i ≤ k, we consider the following
asymmetric two-sided local polynomial estimator:

m̌(1)(xi) = eT2,p(D̃
T
p;−(i−1),kD̃p;−(i−1),k)−1D̃T

p;−(i−1),kY̌
(0)
i , (11)

where e2,p = (0, 1, . . . , 0)T(p+1)×1, Y̌ (0)
i = (Y1, . . . , Yi+k)T , and

D̃p;−(i−1),k is defined similarly as in D̃p;1,k.
To investigate the variation tendency of the ATS estimators

from the OS estimator to the TS estimator, we let α = i/k with
0 ≤ α ≤ 1 as the tuning parameter. We then present in Fig. 2
the variance and bias functions for different values of α, and
present the bias and variance values in Table 5 in Appendix D
for p = 1, 2, 3, 4, 5 with α = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1. It is
readily known that for p = 1, the variance decreases smoothly
by a factor of 8, while the bias O(k/n) disappears slowly and
ecreases to the order O(k2/n2) with α from 0 to 1; and for p = 2,

the variance decreases dramatically by a factor of 128, while the
bias O(k2/n2) increases from negative value to positive value.

4. Derivative forecasting for outside points

In this section, we are interested to forecast the first derivative
at points {x } outside the given observations {(x , Y )}n .
l n<l≤n+k i i i=1

5

And for ease of presentation, we only consider p = 1 in what
follows. The results for the large p values can be derived accord-
ingly.

Assume that the mean function is one time continuously dif-
ferentiable on [0, 1 + δ] with δ = k/n. Then for the outside
point xl > 1, we consider the following local linear forecasting
estimator:

m̆(1)(xl) = eT2,p(D̃
T
1;−k,−(l−n)D̃1;−k,−(l−n))−1D̃T

1;−k,−(l−n)Y̆
(0)
l , (12)

where Y̆ (0)
l = (Yl−k, . . . , Yn)T .

Theorem 4. Assume that model (1) holds with the design points
equally spaced, and the smooth function is two times continuously
differentiable on [0, 1 + δ]. Then for 1 < l/n ≤ 1 + δ, the variance
and bias of the first derivative estimator in (12) are

Var[m̆(1)(xl)]
.
= 12σ 2 n2

(k − t)3
,

ias[m̆(1)(xl)]
.
=

m(2)(xi)
2n

k3 + 4k2t + 4kt2 + t3

(k − t)2
,

here t = l − n with 0 < t ≤ k.

The proof of Theorem 4 is given in Appendix E. This theorem
hows that the bias and variance both increase along with t . As
approaches to k, the order of variance varies from O(n2/k3) to
(n2), and thus the variance diverges to the infinity; and for the
rder of bias, it varies from O(k/n) to O(k3/n). From the tendency
f bias and variance, it is also clear that the forecasting will
ecome worse when xl is far above xn.

. Simulation study

In this section, we conduct two simulation studies to evaluate
he finite-sample performance of our new method. Specifically,
he first study is to show that the debiased estimators with
racle tuning parameters have a better performance for highly-
scillatory functions, and the second study is to compare our
ethod with two existing works in the literature.

.1. Debiased estimators are better for highly-oscillatory functions

For the mean function, we consider the sine function:

(x) = A sin(2πx), x ∈ [0, 1],

here A ∈ [0, 10] controls the magnitude of oscillation. The error
istribution is N(0, 0.12) and the sample size is n = 100. We
enerate a total of 100 data sets. For each data set, we obtain
hree oracle first derivative estimators with p = 1, 3, 5 as follows.
ssume that the true first derivative function is known, we obtain
he oracle parameter kp by minimizing the mean absolute error
MAE), which is to illustrate the possible best performance of each
stimator [17]. Specifically, the oracle parameter kp is chosen as

p = argmin
k

MAE(k) = argmin
k

1
n

n∑
i=1

|m̂(1)
p,k(xi) − m(1)(xi)|,

where m̂p,k(xi) depends on the polynomial order p and the tuning
parameter k. Note that this version of MAE includes the estimates
at interior and boundary points.

In Table 4, we apply ¯mean(s̄d, k̄p) to denote the finite-sample
performance, where ¯mean and s̄d denote the mean and standard
deviation of the 100 MAEs, and k̄p denotes the mean of the
corresponding optimal kp. It can be shown that the MAE increases
and the optimal kp decreases as A increases with a fixed p, and the
optimal k increases as p increases. We can choose the optimal p
p
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Fig. 2. Variance and bias functions for p = 1 (the top two panels) and p = 2 (the bottom two panels) with α ∈ [0, 1].
able 4
inite-sample performance of the first derivative estimators for p = 1, 3, 5.
n p\A 0 0.1 0.2 0.5

100 1 0.04 (0.02, 49) 0.15 (0.05, 21) 0.19 (0.05, 17) 0.28 (0.07, 13)
3 0.15 (0.05, 47) 0.18 (0.06, 45) 0.20 (0.05, 44) 0.24 (0.07, 34)
5 0.31 (0.10, 46) 0.31 (0.08, 47) 0.33 (0.12, 47) 0.32 (0.10, 48)

p\A 1 2 5 10

1 0.36 (0.07, 11) 0.48 (0.08, 9) 0.71 (0.09, 7) 0.95 (0.10, 6)
3 0.30 (0.07, 27) 0.35 (0.10, 24) 0.42 (0.08, 20) 0.50 (0.13, 18)
5 0.31 (0.08, 46) 0.33 (0.10, 46) 0.35 (0.09, 43) 0.42 (0.12, 36)

as popt = argminp MAE(kp). To summarize, the estimator with
= 1 is the best for A ∈ [0, 0.5), the estimator with p = 3 is the
est for A ∈ [0.5, 2), and the estimator with p = 5 is the best for
∈ [2, 10]. These results demonstrate that the estimation bias

ncreases rapidly as A increases, and the debiased estimators are
eeded for the mean function with a high-level oscillation.

.2. Comparison with related methods

For further evaluation, we also compare our new method with
wo related methods including the local polynomial regression
LPR) and the penalized smoothing spline. For the local polyno-
ial regression, we adopt the R package locpol with p = 3 [21];
nd for the penalized smoothing spline, we adopt the R package
spline with norder = 2 (cubic smoothing spline) and method = 4
the ordinary cross-validation for tuning parameter) [24]. For our
ethod, we minimize the adjusted AMSE including all the design
oints

MSE(p, kp) =
1
n

n∑
i=1

MSE[m̂(1)(xi)],

and choose the optimal tuning parameters

k1,opt = 1.96
(

σ̂ 2∑n
i=1(m̂(3)(xi))2/n

)1/7

n6/7,

3,opt = 3.84
(

σ̂ 2∑n
i=1(m̂(5)(xi))2/n

)1/11

n10/11,

5,opt = 4.96
(

σ̂ 2∑n
i=1(m̂(7)(xi))2/n

)1/15

n14/15,
6

Fig. 3. MAEs for the proposed debiased estimator, the local polynomial
estimator, and the penalized smoothing spline estimator.

Fig. 4. Monthly house prices of the four first-tier cities in China with size 123
from January 2009 to March 2019.

where σ̂ 2 and m̂(3)(xi) can be obtained by the methods in Sec-
tion 2.3. Furthermore, we select the optimal polynomial order

popt = arg min
p=1,3,5

AMSE(p, kp,opt ).

Also for simplicity, we consider the mean function

m(x) = 10 sin(2πx), x ∈ [0, 1].
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Fig. 5. Monthly (the left four panels) and Yearly (the right four panels) growth rates of house prices in the four first-tier cities of China.
he sample size is n = 500, and the repetition number is 100.
ased on our procedure, we compute the optimal tuning param-
ters (mean, standard deviation) for p = 1, 3, 5: k1,opt (26.4, 1.4),
3,opt (83.6, 11.9), and k5,opt (169.7, 12.9). And we then select the
ptimal polynomial order p = 5 for all 100 repetitions and the
orresponding optimal first derivative estimation, which matches
he oracle estimator in Section 5.1. Simulation results show that
ur new method does have the ability to select the optimal first
erivative estimation, and that the debiased estimator selected
y our procedure has a better performance for highly-oscillatory
unctions in Fig. 3, which thus demonstrates the main advantage
f our new method.

. Real data analysis

In this section, we apply our proposed method to analyze two
eal data sets for estimating and forecasting the first derivatives.
he first data set is the housing price data in the four first-tier
 y

7

cities of China in the past ten years, and the second data set is the
daily return data of stock market index in USA and Hong Kong.

6.1. House price of first-tier cities in China

In the past ten years, China’s economy has been developed
rapidly. With the increased income, there is a huge demand for
a higher housing quality, and consequently, it also increased the
house price dramatically. We collect the monthly data of house
price from the webpage: http://www.anjuke.com, from January
2009 to March 2019 for the four first-tier cities of China: Beijing,
Shanghai, Guangzhou and Shenzhen. Fig. 4 indicates that the
house prices have grown about five times in the past ten years,
and are currently 50,000 RMB/m2 or above except for Guangzhou.

There are two definitions for describing the growth trend: the
monthly growth rate and the yearly growth ratio. Specifically, the
monthly growth rate is defined as MRi = (Yi −Yi−1)/Yi−1, and the

early growth rate is YRi = (Yi − Yi−12)/Yi−12.

http://www.anjuke.com
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Fig. 6. The estimated average monthly growth prices with p = 1 (the left four panels) and with p = 3 (the right four panels) in the four first-tier cities of China.
The monthly growth rate in Fig. 5 shows that the house
price increases very rapidly, and the largest monthly growth rate
reaches up to 15% for Beijing, Shanghai and Shenzhen, and up to
10% for Guangzhou. The yearly growth rate in Fig. 5 shows that
the house price goes through three cycles with the largest yearly
growth rate more than 50% except for Guangzhou.

We apply our method to estimate the average monthly growth
prices. First, we normalize the month variable into the domain
[0, 1], that is xi = i/n with n = 123. Second, we consider two
cases, p = 1 with tuning parameter k1 = 6 and p = 3 with
tuning parameter k3 = 12, and obtain two first derivative esti-
mates under different bias-reduction levels. Third, we compute
the monthly growth prices using the first derivative estimates
divided by n.

Fig. 6 shows that the two new estimators have a very similar
overall performance, which indicates that the house price data
set is with low-level oscillation. The averaged monthly growth
8

price in China goes through three times fast-increasing and slow-
decreasing. In the past three circles, Beijing was the leader of
the price growth that had the largest growth amplitude (over
1500 RMB/m2) and had the three obvious oscillation periods;
Guangzhou was smooth and steady in the price growth, the
largest growth amplitude of which was just a half of the other
three major cities (about 750 RMB/m2). It is also noteworthy that
Guangzhou has recently achieved the highest growth price in the
past ten years, which would have the biggest growth potential
among the four first-tier cities.

6.2. Stock market index

The second data set contains the daily returns of two stock
market indexes from 02 January 2008 to 30 June 2016, both for
the S&P 500 index (SPI) and the Hang Seng index (HSI) [25]. As
a routine approach, one often applies the time series model to
analyze the daily log returns. Following this, we plot the time plot
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Fig. 7. The top panel shows the daily log returns of SPI data with n = 2139. The middle panel shows the SPI data and its ADR with the optimal tuning parameters
= 3 and k = 95. The bottom panel provides a comparison between the ADR and OS-ADR for SPI data with p = 1 and k = 100.
T
C

f the log returns {log(Yi) − log Yi−1} in the top panel of Fig. 7.
owever, it does not present a clear pattern for the variation
endency of the stock market index using the daily log returns.

For the SPI data, we adopt the TS estimator in (8) and the ATS
stimator in (11) to understand the past. To evaluate the per-
ormance, we compare our estimator with the empirical deriva-
ive [15] and the LowLS estimator [14] by the AMSE criterion, in
hich the standardized parameter is set as ñ = 100, 200, 500. By
omparison, we have three interesting findings as summarized
n Table 5. The first finding is that the standardized parameter
as little effect on the selection of the optimal estimator, which
oincides with the theoretical result in Appendix C that the AMSE
emains nearly unchanged as ñ varies. The second finding is that
he optimal estimator with p = 5 selected by our procedure has
he least AMSE among the three estimators, which supports the
onclusion about the data set low-or-high-level oscillation. The
hird finding is that the information of 9 days observations should
e used in the tendency analysis of the SPI data, which serves as
useful result for the security analysis.
To learn the long-term variation tendency, we choose the

uning parameters p = 3 and k3 = 95. We obtain the average
aily returns (ADR) in the middle panel of Fig. 7, which provides
more accurate pattern of the variation tendency for the ADR.

n the past eight years, the ADR goes through four stages: de-
cending dramatically stage, oscillatory ascending stage, robust
ncreasing stage, and periodic oscillatory stage, which matches
he variation tendency of the SPI. Furthermore, we adopt the OS
ethod to forecast the future. Based on the OS method with
= 1 and k1 = 100, we obtain the one-step average daily

eturns forecasting (OS-ADR). For comparison, we also plot the
9

able 5
omparison of AMSEs among the three estimators for ñ = 100, 200, 500.
ñ Method kopt Bias2 Variance AMSE popt
100 Empirical 3 4.70 11.44 16.14

LowLS 6 3.97 8.94 12.91
Proposed 9 1.74 8.11 9.85 5

200 Empirical 3 12.34 11.44 23.78
LowLS 6 3.93 8.94 12.87
Proposed 9 3.06 8.11 11.17 5

500 Empirical 3 4.74 11.44 16.18
LowLS 6 3.87 8.94 12.81
Proposed 9 1.76 8.11 9.87 5

ADR and OS-ADR in the bottom panel of Fig. 7. It is evident that
the both estimators have a similar variation tendency, which can
be a valuable information for the investigation of the future, even
though the OS-ADR is delayed for a few days. Finally, for the HSI
data, we also perform a similar analysis and plot the average daily
returns with p = 1 and k = 100 in Appendix F.

7. Discussion

In this paper, we proposed several new estimators for the
first derivative of the mean function. For interior points, the local
constant estimator based on the difference sequence in essence
is the same as the first empirical derivative in Charnigo et al.
[13]. To solve the peak-valley problem caused by the estima-
tion bias, we proposed local polynomial estimators and com-
puted their corresponding two-sided kernels, which are equiv-
alent to the variance-minimizing kernels in Gasser et al. [26].
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or boundary and outside points, we proposed the asymmetric
wo-sided estimators for reducing the bias and variance, and
roposed one-sided estimator for forecasting the variation ten-
ency in the future. The debiased estimators are optimal under
ifferent bias-reduction levels, and are fully boundary adaptive
nd automatic without requiring specific data modification. Also
o increase the scope of application, the data transformation can
e recommended for real data analysis.
Recall that all results in this paper were derived under the

qually spaced design with independent and identically dis-
ributed random errors. In the areas of machine learning and
rtificial intelligence, more and more data sets are nowadays
ecorded in equal intervals of time, e.g., the monthly house price
nd the daily return of stock market index as in our real data
nalysis. This indicates that our method may have the potential
o be widely used. From another perspective, we note that the
qually spaced data may not necessarily be independent, but
ather be correlated with each other [27]. Some recent advances
n this direction include, for example, the study of regression
unction with correlated errors in De Brabanter et al. [28], and
he study of continuous-time regression models with correlated
rrors in Dette et al. [29]. To our knowledge, there is little the-
retical development on the derivative learning with correlated
rrors, and hence it may warrant further research.
Besides the first derivative of the mean function, it is note-

orthy that the density functions are also widely applied to
lustering in pattern recognition. To name a few, Xie et al. [30]
pplied the density methodology to analyze the extended-range
lectric city bus. Ikonomakis et al. [31] proposed a content driven
lustering algorithm by combining density and distance func-
ions. Li et al. [32] further provided a nearest neighbor graph
lgorithm. Now since the density function can be interpreted
nd estimated as the first derivative of the empirical distribution
unction [33], we expect that our newly proposed methods may
lso be readily applied in the density function estimation to
urther improve the estimation efficiency.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

WenWu Wang was supported by National Natural Science
oundation of China (No. 12071248), National Bureau of Statistics
f China (No. 2020LZ26).

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.knosys.2021.107781.

eferences

[1] T. Duong, B. Goud, K. Schauer, Closed-form density-based framework for
automatic detection of cellular morphology changes, Proc. Natl. Acad. Sci.
USA 109 (2012) 8382–8387.

[2] J. Chacón, T. Duong, Data-driven density derivative estimation, with appli-
cations to nonparametric clustering and bump hunting, Electron. J. Stat. 7
(2013) 499–532.

[3] M. Khismatullina, M. Vogt, Multiscale inference and long-run variance
estimation in non-parametric regression with time series errors, J. R. Stat.
Soc. Ser. B Stat. Methodol. 82 (2020) 5–37.

[4] T. Górecki, Using derivatives in a longest common subsequence dissimilar-
ity measure for time series classification, Pattern Recognit. Lett. 45 (2014)
99–105.
10
[5] K. Wang, C. Bichot, Y. Li, B. Li, Local binary circumferential and radial
derivative pattern for texture classification, Pattern Recognit. 67 (2017)
213–229.

[6] T. Mondal, N. Ragot, J. Ramel, U. Pal, Comparative study of conventional
time series matching techniques for word spotting, Pattern Recognit. 73
(2018) 47–64.

[7] P.S. Swain, K. Stevenson, A. Leary, L.F. Montano-Gutierrez, I.B.N. Clark, J.
Vogel, T. Pilizota, Inferring time derivatives including cell growth rates
using Gaussian process, Nature Commun. 7, 13766 (2016).

[8] D. Chen, J.M. Mirebeau, L.D. Cohen, Global minimum for a finsler elastica
minimal path approach, Int. J. Comput. Vis. 122 (2017) 458–483.

[9] A.J. Simpkin, M. Durban, D.A. Lawlor, C. MacDonald-Wallis, M.T. May, C.
Metcalfe, K. Tilling, Derivative estimation for longitudinal data analysis: Ex-
amining features of blood pressure measured repeatedly during pregnancy,
Stat. Med. 37 (2018) 2836–2854.

[10] W. Wang, P. Yu, L. Lin, T. Tong, Robust estimation of derivatives using
locally weighted least absolute deviation regression, J. Mach. Learn. Res.
20 (60) (2019) 1–49.

[11] G.L. Page, M.X. Rodrí guez Álvarez, D.J. Lee, BayesIan hierarchical modelling
of growth curve derivatives via sequences of quotient differences, J. R. Stat.
Soc. Ser. C. Appl. Stat. 69 (2020) 459–481.

[12] J. Fan, I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman
& Hall, London, 1996.

[13] R. Charnigo, B. Hall, C. Srinivasan, A generalized Cp criterion for derivative
estimation, Technometrics 53 (2011) 238–253.

[14] W. Wang, L. Lin, Derivative estimation based on difference sequence via
locally weighted least squares regression, J. Mach. Learn. Res. 16 (2015)
2617–2641.

[15] K. De Brabanter, J. De Brabanter, B. De Moor, I. Gijbels, Derivative
estimation with local polynomial fitting, J. Mach. Learn. Res. 14 (2013)
281–301.

[16] W. Härdle, Applied Nonparametric Regression, Cambridge University Press,
Cambridge, 1990.

[17] W. Dai, T. Tong, M.G. Genton, Optimal estimation of derivatives in
nonparametric regression, J. Mach. Learn. Res. 17 (164) (2016) 1–25.

[18] Y. Liu, K. De Brabanter, Derivative estimation in random design, in: the
32nd Conference on Neural Information Processing Systems, Montréal,
Canada, 2018.

[19] W. Wang, L. Lin, L. Yu, Optimal variance estimation based on lagged
second-order difference in nonparametric regression, Comput. Statist. 32
(2017) 1047–1063.

[20] P. Hall, J. Kay, D. Titterington, Asymptotically optimal difference-based
estimation of variance in nonparametric regression, Biometrika 77 (1990)
521–528.

[21] J.L.O. Cabrera, Locpol: Kernel local polynomial regression, 2018, R packages
version 0.7-0. https://cran.r-project.org/web/packages/locpol.

[22] W. Wang, P. Yu, Asymptotically optimal differenced estimators of error
variance in nonparametric regression, Comput. Statist. Data Anal. 105
(2017) 125–143.

[23] D. Card, D.S. Lee, Z. Pei, A. Weber, Inference on causal effects in a
generalized regression kink design, Econometrica 83 (2015) 2453–2483.

[24] J.O. Ramsay, B. Ripley, Pspline: Penalized smoothing splines, 2017, R
packages version 1.0-18. https://cran.r-project.org/web/packages/pspline.

[25] Y. Zheng, Q. Zhu, G. Li, Z. Xiao, Hybrid quantile regression estimation for
time series models with conditional heteroscedasticity, J. R. Stat. Soc. Ser.
B Stat. Methodol. 80 (2018) 975–993.

[26] T. Gasser, H.G. Müller, V. Mammitzsch, Kernels for nonparametric curve
estimation, J. R. Stat. Soc. Ser. B Stat. Methodol. 47 (1985) 238–252.

[27] G. Wang, W. Li, K. Zhu, New HSIC-based tests for independence between
two stationary multivariate time series, Statist. Sinica 31 (2020) 269–300.

[28] K. De Brabanter, F. Cao, I. Gijbels, J. Opsomer, Local polynomial regression
with correlated errors in random design and unknown correlated structure,
Biometrika 105 (2018) 681–690.

[29] H. Dette, A. Pepelyshev, A. Zhigljavsky, The BLUE in continuous-
time regression models with correlated errors, Ann. Statist. 47 (2019)
1928–1959.

[30] H. Xie, G. Tian, H. Chen, J. Wang, Y. Huang, A distribution density-
based methodology for driving data cluster analysis: A case study for an
extended-range electric city bus, Pattern Recognit. 73 (2018) 131–143.

[31] E.K. Ikonomakis, G.M. Spyrou, M.N. Vrahatis, Content driven clustering
algorithm combining density and distance functions, Pattern Recognit. 87
(2019) 190–202.

[32] H. Li, X. Liu, T. Li, R. Gan, A novel density-based clustering algorithm using
nearest neighbor graph, Pattern Recognit. 102 (2020) 107206.

[33] M.D. Cattaneo, M. Jansson, X. Ma, Simple local polynomial density
estimators, J. Amer. Statist. Assoc. 115 (2020) 1449–1455.

https://doi.org/10.1016/j.knosys.2021.107781
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb20
https://cran.r-project.org/web/packages/locpol
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb23
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb23
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb23
https://cran.r-project.org/web/packages/pspline
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb26
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb26
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb26
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00995-3/sb33

	Debiased learning and forecasting of first derivative
	Introduction
	Derivative learning for interior points
	Local constant estimator
	Local polynomial estimators
	Selection of tuning parameters
	Two-sided kernel learning

	Derivative learning for boundary points
	One-sided local polynomial estimators
	Asymmetric two-sided local polynomial estimators

	Derivative forecasting for outside points
	Simulation study
	Debiased estimators are better for highly-oscillatory functions
	Comparison with related methods

	Real data analysis
	House price of first-tier cities in China
	Stock market index

	Discussion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


