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Abstract

The transmission of infectious diseases can be affected by many or even hidden factors, making it difficult to accurately
predict when and where outbreaks may emerge. One approach at the moment is to develop and deploy surveillance
systems in an effort to detect outbreaks as timely as possible. This enables policy makers to modify and implement
strategies for the control of the transmission. The accumulated surveillance data including temporal, spatial, clinical, and
demographic information, can provide valuable information with which to infer the underlying epidemic networks. Such
networks can be quite informative and insightful as they characterize how infectious diseases transmit from one location to
another. The aim of this work is to develop a computational model that allows inferences to be made regarding epidemic
network topology in heterogeneous populations. We apply our model on the surveillance data from the 2009 H1N1
pandemic in Hong Kong. The inferred epidemic network displays significant effect on the propagation of infectious
diseases.
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Introduction

Recent outbreaks of infectious diseases have stressed the

urgency of effective research on the dynamics of infectious disease

spread over geographical regions and in various populations [1].

The pandemic of influenza A (H1N1) in 2009 struck more than

208 countries and territories experienced the pandemic, collec-

tively causing at least 12,799 deaths [2]. Great benefits would be

gained from the rapid formulation of appropriate control policies

to contain the spread of the infectious disease and eliminate it from

the population. However, the complex dynamics of infectious

disease spread poses a significant challenge to the design of a realist

control strategy. Computational modeling has long been an

important tool for understanding spread patterns of infectious

diseases, predicting outbreak severity, evaluating the efficacy of

interventions, and optimizing the deployment of new control

policies. The majority of disease models are based on a

compartmental model called the Susceptible-Infected-Recovered

(SIR) model [3–6]. It studies the spread of infectious diseases by

tracking the number (S) of people susceptible to the disease, the

number (I) of people infected with the disease, and the number (R)

of people who have had the disease and are now recovered.

Assuming the population mixes at random, three ordinary

differential equations are defined for S(t), I(t), and R(t) at time t:

dS=dt~{aS(t)I(t) ð1Þ

dI=dt~aS(t)I(t){kI(t) ð2Þ

dR=dt~kI(t): ð3Þ

Here, a§0 is the effective transmission rate and k§0 is the

recovery rate. The value of a is a key indicator for the guidance of

implementing control and intervention policies.

The SIR model and its variants are appropriate for modeling

the temporal dynamics of epidemics in the randomly mixed

population [7–9]. However, it is difficult to use such models to

investigate complex social structures or mixing patterns that

depend on network structure. Network epidemic models represent

an alternative to compartmental models that can more easily

capture the effects of social structure. An epidemic network

consists of a set of nodes and a set of links that connect them,

where the nodes correspond to spatial locations with reported (or
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observed) disease incidences over time and the directional links

indicate the probability (or likelihood) of disease transmission from

one node to another over time. It can be used to characterize the

temporal-spatial patterns of disease transmission. Determining an

accurate epidemic network requires knowledge of every individual

(or host) and every relationship between individuals. A detailed

review [10] summarizes four major types of models, including

patch models [11–13], distance-transmission models [14], multi-

group models [15,16], and network models [17]. However, for all

but the smallest population, collecting individual-level data is an

impractically time-consuming task. To bypass the difficulties of

collecting data, researchers started to investigate several types of

computer-generated networks in the context of disease transmis-

sion in population-scale studies [18–22]. Given the mean-field

theory, they have proposed to model epidemic spread in scale-free

networks. However, it remains an open question whether real

networks are close to scale-free, or only scale-free over a finite

domain [23]. The dynamics of infectious disease spread rely

strongly on the structure of the epidemic network topology.

Related topics, such as social influence through networks, the

diffusion of innovations, and information propagation, have also

been studied in the context of various disciplines including

economics [24], public health [25], scientific publishing [26],

and virus propagation [27]. However, each of these models has

one or more aspects that are problematic in studying the temporal-

spatial dynamics of infectious disease spread. Some do not capture

the probabilistic nature of infection while others make assumptions

about the types of interactions occurring between individuals that

are often not valid in the context of disease transmission. How to

infer the epidemic network topology remains a challenging

research topic.

To accurately catch when and where outbreaks emerge at the

first time, one approach at the moment is to implement

surveillance systems in regional or national health and medical

centers. The accumulated surveillance data including temporal,

spatial, clinical, and demographic information, can provide

valuable information with which to infer the underlying epidemic

network of infectious disease spread. In this work, we introduce a

new computational model that can discover the epidemic network

of infectious disease spread from the surveillance data. In our

proposed model, the dynamics modelled in the classical SIR model

is described by an inhomogeneous Poisson process characterized

by a piecewise rate function, and the spatial relationships are

characterized by interactions of multiple inhomogeneous Poisson

processes in a network. Our proposed model allows inferences to

be made regarding the progression patterns of infectious diseases

in heterogeneous populations. We apply our model on the

surveillance data from the 2009 H1N1 pandemic in Hong Kong.

The inferred epidemic network displays significant effect on the

propagation of infectious diseases, and is useful to public health

authorities in predicting the influence of future prevalence and the

implications of control polices.

Materials and Methods

Classic modeling of infectious diseases assumes that the

population is well-mixed. However, this assumption is unrealistic

for many diseases with spatial spread patterns. Here we first

describe the dynamics of classical SIR models through an

inhomogeneous Poisson process and then formulate a new

stochastic network model that explicitly considers the geographical

structure to capture the temporal-spatial dynamics of infectious

disease spread in heterogeneous populations.

Poisson process for modeling the dynamics of classical
SIR models

There is no analytic solution to solve SIR-type dynamics

without making approximations. To model the dynamics in

continuous time, the discrete-time models are often used with a

given time interval Dt. Let St, It, and Rt be discrete random

variables for the number of susceptible, infected, and recovered

individuals at time t. Using the Euler method, the SIR model for

the sub-population l can be rewritten as three equations:

StzDt~St{DtaStIt ð4Þ

ItzDt~ItzDtaStIt{DtkIt ð5Þ

RtzDt~RtzDtkIt: ð6Þ

In [28,29], the progression of disease spread is characterized by

tracking the number of St with a chain binomial model. The

number of susceptible members StzDt (Dt represents the infectious

period of the disease and is always chosen to be 1=k) at time tzDt
is a binomial random variable that depends on St and Ita,

StzDt*Bin(St,1{Ita), which provides a recursive relationship

between StzDt and St and produces a formal stochastic process.

We use an alternative approach to model the dynamics of

infectious disease spread. In an epidemic outbreak, the number of

new infections during a time interval is of major concern. Let

itzDt~St{StzDt be the number of new infections between time t

and time tzDt. Let p be the probability that a contact between a

susceptible and an infected individual results in a new infection

and c is the average number of susceptible members to whom an

infected individual may spread the disease at time t. The infectious

individuals It are assumed to infect susceptible members St only at

time t. After that time, they are no longer infectious. This is

reasonable because patients, once confirmed as infected, will have

much less possibilities to spread the disease since they may start the

treatment, take rest at home, adopt some measure to prevent the

disease spread (such as wearing a face mask outside), or be

quarantined. With this assumption, we have the following

proposition.

Proposition 1.

itzDt*Poisson (l(t)), l(t)~yit, y~cp: ð7Þ

Proof: Given one infected person and one person in the

population, the probability they meet each other is c=N. Then

the probability that the contact results in an infection is
cp

N
. Given

the infected person, the number of new infected people in S(t) is

Bin(S(t),
cp

N
). Since S(t) is large,

cp

N
is very small, and S(t)

cp

N
is

finite, we can approximate Bin(S(t),
cp

N
) with Poisson(

cpS(t)

N
).

Because
S(t)

N
&1, we get that given one infected person, the
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Figure 1. A toy example of infectious disease spread in a five node network. Each node represents a physical location associated with an
inhomogeneous Poisson process shown as an example for node 2. Each edge is associated with wij measuring the spreading trend from node i to
node j.
doi:10.1371/journal.pone.0100661.g001

Figure 2. The Markov network, reduced from the spreading network in Figure 1 with the independence assumption. The state of each
node il,t is the number of new infections at location l (node l in Figure 1) at time t. The states of nodes at time t are independent and only dependent
on the states of nodes at time {
doi:10.1371/journal.pone.0100661.g002

.
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number of new infected people follows Poisson(cp). Then given it
infections at time t, the number of new infections

itzDt*Poisson(cpit) (assume the social contacts of infected people

are independent of each other).

The above equation (Eq.(7)) defines an inhomogeneous Poisson

process - a stochastic counting process characterized by an

intensity function [30]. It has an advantage over the chain

binomial models in the dynamic modeling of infectious disease

spread. In the chain binomial models, varying the selection of Dt

can distort the dynamic patterns [31]. In contrast, the Poisson

distribution can be freely adjusted with respect to Dt without

affecting the stochastic process due to the Poisson property.

Motivated by this advantage, we propose a new stochastic network

model of infectious disease spread.

Network modeling of infectious disease spread
Consider the surveillance data I[RL|T

z from L locations. Each

element il,t of I l~½il,1, � � � ,il,T � corresponds to the number of new

infections between time t{Dt and time t at location l. Let I t

denote the transpose of I and then I t
t ~½i1,t, � � � ,iL,t� correspond

to the new infections at all locations between time t{Dt and time

t. Ignoring the effects of network structure, the dynamics of I l can

be modeled as the inhomogeneous Poisson process defined in

Eq.(7). In the network modeling, we need to capture both the

dynamics of the Poisson process at every location and the

dependency among multiple Poisson processes at different

locations linked in a geographic network.

We use a directed graph G(V ,W ) to represent a geographic

network, where V is the set of nodes and W~½wij �L|L (L~DV D) is

the adjacency matrix of the graph. Each node indicates a sub-

population in one location. Each wij[ f0,1g indicates the existence

Table 1. Genetic Algorithm.

1. Randomly generate an initial population M(0) of the network structure and for each Wi[M(0), estimate Yi and Wi using Eq.(9) and Eq.(10) and use the computed
maximum likelihood as the fitness of Wi .

2. Copy the top 10 percent of M(t) into M(tz1).

3. Randomly choose four network structures from M(t) as parents and use crossover operator to generate two child network structures.

4. Conduct the mutation for both generated child network structures.

5. Compute the fitness of two generated child network structures and save the better one in M(tz1).

6. Repeat Step 3–5 until the capacity of M(tz1) is full.

7. t~tz1.

8. Repeat Step 2 until the new generated population does not improve the fitness value.

9. Output the adjacency matrix with the best value of the fitness function in the last generation.

doi:10.1371/journal.pone.0100661.t001

Figure 3. Daily H1N1 epidemic curve in Hong Kong from May 1, 2009 to May 23, 2010. The epidemic curve of confirmed H1N1 cases
reaches its peak at the end of September, 2010.
doi:10.1371/journal.pone.0100661.g003
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of infection spread from node i to node j. Figure 1 provides a toy

example of a five node network. Each node l is associated with an

inhomogeneous Poisson process characterized by an intensity

function ll(t) and its own yl~clp (p is a constant for a specific

infectious disease). Let n(l)~fm1, � � � ,mkg, where wm[n(l),l~1,

represent the adjacent nodes of node l in the disease spread

network. The spatial interactions will change the intensity function

of each node. Thus ll(t) will not only depend on (il,t, yl) but also

be associated with (im[n(l),t, ym).

We consider a generalized linear model (GLM) for the intensity

function ll(t) with respect to (il,t, yl) and (imEn(l),t, ym). The rate of

the Poisson process defined in Eq.(7) is rewritten as

ll(t)~yl itzwl

X
wmlim,t: ð8Þ

The values of wml give rise to a transmission network of

infectious disease across different locations. For a specific location

l, the value of yl measures the speed of disease spread caused by

internal infections and the value of wl measures the speed of

disease spread caused by external infections (or imported

infections). Our goal is to estimate wml , yl , and wl using the

surveillance data I .

Parameter estimation
In principle, it is intractable to infer the parameters in Eq.(8) on

an arbitrary network because the conditional distribution

P(I DW ,Y,W) is computationally too expensive to obtain. To

make the inference tractable, the P(I DW ,Y,W) is factorized with

an independence assumption, which is that the states of nodes at

time t are independent and only dependent on the states of nodes

at time t{Dt. This assumption has been widely applied in the area

of machine learning to factorize an exact joint probability

distribution into a multiplication of many marginal probability

distributions [32]. Then the dependency graph shown in Figure 1

is reduced into the Markov network shown in Figure 2.

Consequently, the P(I DW ,Y,W) is defined as

p(I t
0, I t

1, � � � ,I t
T DW ,Y,W)~p(I t

0)P
T

t~1
p(I t

t DI t
t{Dt,W ,Y,W)

~p(I t
0)P

T

t~1
P

L

l~1

ll(t)
il,t e{ll (t)

il,t!
:

ð9Þ

Our target is to find the following maximum likelihood estimators:

½ŴW ,ŶY,ŴW�~ arg max
W ,Y,W

P(I DW ,Y,W): ð10Þ

It can be easily proven that the negative log P(I DW ,Y,W) is a

biconvex function of W , Y, and W, which means that the negative

log P(I DW ,Y,W) is a convex function of W if Y and W is fixed,

and vice versa. Given W , it is straightforward to estimate Y and

W. However, it is still challenging to infer W for the given Y and

W. Although there are many popular optimization approaches for

bi-convex problems, they can not be applied in our work because

our model is non-continuous and non-differential while most

available approaches are gradient based methods. Here we use the

genetic algorithm to solve this issue.

Figure 4. Computed spreading network of 2009 H1N1 in Hong Kong.
doi:10.1371/journal.pone.0100661.g004
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Genetic Algorithms (GAs) are adaptive heuristic search algo-

rithm based on the evolutionary ideas of natural selection. They

have many advantages to solve problems where candidate

solutions can be described with the chromosome encoding.

Finding the network topology is one such problem where one

network topology can be viewed as the chromosome of one

individual in a generation. The basic concept of GAs is to simulate

processes of survival of the fittest. They represent an intelligent

exploitation of a random search within a defined search space to

solve a problem. Experiments show that many such problems,

which prove difficult for traditional methods, are ideal for GAs

[33]. We design a genetic algorithm (please see Table 1) to infer

the network structure W . The only input to the GA algorithm is

the surveillance data (the number of new incidences in a sub-

population during a time interval). The GA algorithm starts from

the first generation - a pool of randomly generated adjacency

matrix. Based on the evolutionary theory, individuals in subse-

quent generations can be generated using the typical GA operators

(crossover and mutation) and be selected in a way that resembles

the natural selection. The crossover (also called recombination)

operator is to produce a child individual of the next generation

from two parent individuals of the current generation. The

mutation operator is to randomly change some parts of the new

generated individual. Please check [33] for more details about

genetic algorithms. The output is the adjacency matrix with the

best value of the fitness function in the last generation.

Results and Discussion

Case study
In the case study, we apply our model on the surveillance data

from the 2009 H1N1 pandemic in Hong Kong. We have acquired

the time series data of daily number of confirmed H1N1 cases with

symptom onset from May 1, 2009 to May 23, 2010. The database

includes 36,547 confirmed cases with demographic information on

location, age, and sex along with the laboratory-confirmation

dates. The epidemic curve of confirmed H1N1 cases (see Figure 3)

reaches its peak at the end of September, 2009, after which the

intervention procedure comes into effect and the curve goes down.

We use the data up to Sept 30, 2009 including 27,898 cases (more

than 2=3 of all cases).The infectious period Dt of H1N1 is set 3

days.

Hong Kong is geographically divided by 18 political areas

(districts). Each district is considered as one node in the epidemic

network. The learned epidemic network in Figure 4 show how the

H1N1 spreads in the geographical network of Hong Kong. To

examine the effect of epidemic network topology in the spread of

H1N1, we compare the following models:

N M1: ll(t)~yit
lz".

M1 is an independent homogeneous model where the

infectious disease spreads independently and at the same

internal growth rate in different locations.

N M2: ll(t)~yl i
t
lz".

M2 is an independent heterogeneous model where the

infectious disease spreads independently but at the different

internal growth rates in different locations.

N M3: ll(t)~yit
lzw

P
wmli

t
mz".

M3 is a dependent homogeneous model with uniform network

effect where the infectious disease spreads dependently with

the same external effect and at the same internal growth rate in

different locations.

N M4: ll(t)~yl i
t
lzw

P
wmli

t
mz".

M4 is a dependent heterogeneous model with uniform network

effect where the infectious disease spreads dependently with

the same external effect but at the different internal growth

rates in different locations.

N M5: ll(t)~yit
lzwl

P
wmli

t
mz".

M5 is a dependent homogeneous model with non-uniform

network effect where the infectious disease spreads dependent-

ly with the different external effects but at the same internal

growth rate in different locations.

N M6: ll(t)~yl i
t
lzwl

P
wmli

t
mz".

M6 is a dependent heterogeneous model with non-uniform

network effect where the infectious disease spreads dependent-

ly with the different external effects and at the different internal

growth rates in different locations.

Table 2 summarizes the results for different model formulations.

In this paper, the model selection is conducted mainly based on

the likelihood ratio test, which is often used to compare the fits of

two nested models, one of which (a reduced model) is a special case

of the other (the full model). The likelihood ratio of two models

can be used to compute a p-value which is then compared to a

critical value to decide whether to reject the reduced model in

favour of the full model. However, for two models which are not

nested (for instances, M4 and M5), we have to use other

assessments. AIC [34] and BIC [35] are two popular choices.

AIC denotes Akaike Information Criterion that deals with the

trade-off between the goodness of fit of the model and the

complexity of the model. BIC denotes Bayesian Information

Criterion (BIC) that is closely related to the AIC but penalizes the

complexity of the model (the number of free parameters in the

model) more strongly. Both assessments in the model selection

have advantages and disadvantages. Therefore, we report both

Table 2. Results of the analysis of 2009 H1N1 epidemic in Hong Kong.

AIC BIC Log { likelihood Compared model Benefit (P { value)

M1 5191.36 5205.39 22592.58

M2 5222.34 5315.83 22591.17 M1 1.00

M3 5177.47 5196.17 22584.73 M1 0.005

M4 5150.36 5284.53 22554.18 M2 1:19|10{9

M5� 4821.7 4916.86 22389.85 M3 &0:0

M6 4841.49 5019.12 22382.74 &0:0

The P { value is computed by performing the likelihood ratio test between two models in comparison. M5 is the best model that fits the data.
doi:10.1371/journal.pone.0100661.t002
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Figure 5. The comparison of different effects in 2009 H1N1 spread in Hong Kong. The internal effect is the exponential value of y or yl .
The network effect is the exponential value of w or wl . The random effect is the exponential value of e .
doi:10.1371/journal.pone.0100661.g005
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AIC and BIC in Table 2. In most of the times, two assessments

agree on the preferred model.

The comparison between M2 and M1 indicates that if the

network effect is ignored, the disease spreads at the same growth

rates for different locations in Hong Kong. Hong Kong is one of

the most densely populated places in the world. Although

population varies in different districts, the concentration of people

is high in all districts due to the fact that more than 75 percent of

Hong Kong area comprises no-built-up areas. Therefore, if each

district is examined individually, the density of population in the

living space will be the main factor to affect the spread rate of

infectious disease. However, once the network topology is taken

into consideration in disease spread, different locations show

different spreading patterns. Both M4 and M3 provide a better

fitness over M2 and M1. The significant benefit of M5 over M3

and M6 over M4 indicates that the network effect, which measures

the imported infection, varies between locations. This is mainly

due to people’s daily travels. Hong Kong possesses a heavy

heterogeneous traffic pattern. Therefore, the imported infections

vary significantly among different locations. Figure 5 illustrates the

effect of different components of all models. We can see that if the

network effect is considered for each location, the models M5 and

M6 can explain the data very well. The random effect only

accounts for a small portion in the explanation of disease

propagation within the different locations, which indicates that

our approach is an empirically feasible solution in the analysis of

future epidemic in Hong Kong. There is no benefit of choosing

M6 over M5 (P { value = 0.982). We can see in Figure 5 that in

comparison with the network effects, the internal effects play a

very small role in explaining the data in both M5 and M6. In

Hong Kong, there are intensive transits between districts and as a

result, the network effects dominate the epidemic and already

explains most variations in the disease spread. Therefore, there is

little benefit gained by looking detailed into the internal

differences.

How to verify the inferred network topology remains an

unresolved issue because the true epidemic network topology is

unknown. To our knowledge, the best way to do so is to use the

contact data among some infected patients to verify the results.

However, such data is not always available and sometimes difficult

to collect due to many issues (such as privacy). In our work, we

infer the epidemic network topology based on model selection and

make the decision from the statistical point of view. Researchers

have shown that the spatial spread of infectious diseases has a high

correlation with the human mobility both on a large and short

scale [36–39]. The inferred epidemic network topology in our

work displays such correlations. Some locations that have high

connectivity in Figure 4, such as Kowloon City, Central&West,

and Eastern, are transit centers in the public transportation

network of Hong Kong.

Conclusion

In this paper, we have developed and demonstrated a

computational model that extracts the epidemic network topology

from the surveillance data of infectious diseases. Especially for

disease spread in non-random mixing populations, heterogeneity is

very likely exist and should be accounted for. This is done by

including region-specific spreading patterns in a stochastic network

model. The proposed model distinguishes itself from previous

studies in fundamental ways:

N The dynamics of the classical infectious disease model are

described by an inhomogeneous Poisson process characterized

by a piecewise rate function.

N The spatial dynamics among multiple locations are character-

ized by interactions of multiple inhomogeneous Poisson

processes in a network.

N With one reasonable assumption, the dynamic network is

approximated with a Markov network so that the parameters

describing the temporal and spatial dependence can be

estimated in a tractable computational complexity.

N An efficient genetic algorithm is designed to infer the epidemic

topology.

We apply our model on the surveillance data from the 2009

H1N1 pandemic in Hong Kong. It is generally very difficult to

verify the inferred network topology from real data because the

true epidemic network topology is unknown and it may vary for

different types of infectious diseases for the same population. In

this work, we propose a new method based on model selection.

Our intuition is that if the epidemic network plays an important

role in the disease spread, then the heterogenous network model

will describe the data better than the homogenous model without

considering the epidemic network. Furthermore, the more similar

is the network topology to the true one, the better does the model

fit the data. Both inferred epidemic networks display significant

effects on the propagation of infectious diseases. Therefore, our

findings may help policy makers reduce the risk of future

epidemics. Besides the study of epidemics, the model developed

in this project can be extended to study a wide range of

propagation patterns in other complex systems such as the

Internet and World Wide Web (WWW), where individuals form

multiple communities through which information can propagate

in a similar way as the infectious disease does. We believe our work

can contribute theoretically and empirically to both computing

science and epidemiology.

There are some limitations in our proposed network model.

First, our model only focuses on the disease spread within the

network and does not consider the imported cases. The

parameters may be over-estimated if the number of imported

cases is large. One possible solution is to create a pseudo node in

our stochastic network model, which imports some infected cases

to the network from time to time. Second, the network structure in

our model is static - the connections remain constant over time.

This may be a problem for the long-term disease spread because

the behaviour of a sub-population may change markedly as a

consequence of an outbreak. The possible solution is to design a

new online optimization algorithm that progressively estimates the

network topology over time. Third, our SIR-based model is only

suitable for the situation where the susceptible population

maintains a relatively constant size and structure. To model

malaria transmission where asymptomatic infection plays a central

role, the SIR-based model is not a good candidate. We will

investigate them in our future work.
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