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When reporting the results of clinical studies, some researchers may choose

the five-number summary (including the sample median, the first and third

quartiles, and the minimum and maximum values) rather than the sample

mean and standard deviation (SD), particularly for skewed data. For these

studies, when included in a meta-analysis, it is often desired to convert the

five-number summary back to the sample mean and SD. For this purpose, sev-

eral methods have been proposed in the recent literature and they are increas-

ingly used nowadays. In this article, we propose to further advance the

literature by developing a smoothly weighted estimator for the sample SD that

fully utilizes the sample size information. For ease of implementation, we also

derive an approximation formula for the optimal weight, as well as a shortcut

formula for the sample SD. Numerical results show that our new estimator

provides a more accurate estimate for normal data and also performs favorably

for non-normal data. Together with the optimal sample mean estimator in Luo

et al., our new methods have dramatically improved the existing methods for

data transformation, and they are capable to serve as “rules of thumb” in

meta-analysis for studies reported with the five-number summary. Finally for

practical use, an Excel spreadsheet and an online calculator are also provided

for implementing our optimal estimators.
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1 | INTRODUCTION

Meta-analysis is becoming increasingly popular in the
past several decades, mainly owing to its wide range of
applications in evidence-based medicine.1-4 To statisti-
cally combine data from multiple independent studies,
researchers need to first conduct a systematic review and
extract the summary data from the clinical studies in the

literature. For continuous outcomes, for example, the
blood pressure level and the amount of alcohol con-
sumed, the sample mean and standard deviation (SD) are
the most commonly used summary statistics for evaluat-
ing the effectiveness of a certain medicine or treatment.
For skewed data, however, the five-number summary
(including the sample median, the first and third quar-
tiles, and the minimum and maximum values) has also
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been frequently reported in the literature. To the best of
our knowledge, there are few methods available in meta-
analysis that can incorporate the sample median and the
sample mean simultaneously. As an example, when
applying the fixed-effect model or the random-effects
model, the sample mean and SD are the must-to-have
quantities for computing the overall effect.5

This then yields a natural question as follows: when per-
forming a meta-analysis, how to deal with clinical studies in
which the five-number summary was reported rather than
the sample mean and SD? In the early stages, researchers
often exclude such studies from further analysis by claiming
them as “studies with no sufficient data” in the flow chart of
study selection. Such an approach is, however, often sub-
optimal as it excludes valuable information from the litera-
ture. And consequently, the final results are less reliable, in
particular when a large proportion of the included studies
are with the five-number summary. For this, there is an
increased demand for developing new methods that are able
to convert the five-number summary back to the sample
mean and SD. For ease of notation, let {a, q1, m, q3, b}
denotes the five-number summary, where a is the sample
minimum, q1 is the first quartile, m is the sample median,
q3 is the third quartile, and b is the sample maximum of the
data. We also let n be the sample size in the study.

Note that the five-number summary may not be fully
reported in clinical studies. In a special case with {a, m,
b} being reported, Hozo et al.6 was among the first to esti-
mate the sample mean and SD. It is noted, however, that
Hozo et al.6 did not sufficiently use the information of
sample size n so that their estimators are either biased or
non-smooth. Inspired by this, Wan et al.7 and Luo et al.8

further improved the existing methods by proposing
nearly unbiased and optimal estimators with analytical
formulas. In addition, we note that Walter and Yao9 had
also provided a numerical solution for estimating the
sample SD, while the lack of the analytical formula
makes it less accessible to practitioners. In another spe-
cial case with {q1, m, q3} being reported, Wan et al.7 pro-
posed a nearly unbiased estimator for the sample SD, and
Luo et al.8 proposed an optimal estimator for the sample
mean by fully using the sample size information. In Goo-
gle Scholar as of February 27, 2020, Hozo et al.,6 Wan
et al.7 and Luo et al.8 have been cited 3595, 1078, and
143 times, respectively. Without any doubt, these several
papers have been attracting more attentions and playing
an important role in meta-analysis.

When {a, q1, m, q3, b} was fully reported, Bland10

extended Hozo et al.'s method to estimate the sample
mean and SD from the five-number summary. As their
methods are essentially the same, it is noted that the esti-
mators in Bland10 are also suboptimal mainly because
the sample size information is again not sufficiently used.

To be more specific, the sample mean estimator in
Bland10 is

�X≈
a+2q1 + 2m+2q3 + b

8
=
1
4

a+ b
2

� �
+
1
2

q1 + q3
2

� �
+
m
4
:

According to Johnson and Kuby,11 given that the data
follow a symmetric distribution, the quantities (a + b)/2,
(q1 + q3)/2, and m can each serve as an estimate of the
sample mean. To have a final estimator, Bland10 applied
the artificial weights 1/4, 1/2, and 1/4 for the three com-
ponents, respectively. That is, the first and third compo-
nents are treated equally and both of them are only half
reliable compared to the second component. As this is
not always the truth, to improve the sample mean esti-
mation, Luo et al.8 proposed the optimal estimator as

�X≈w3,1
a+ b
2

� �
+w3,2

q1 + q3
2

� �
+ 1−w3,1−w3,2ð Þm, ð1Þ

where w3, 1 = 2.2/(2.2 + n0.75) and w3, 2 = 0.7 − 0.72/n0.55

are the optimal weights assigned to the respective compo-
nents. Specifically, they first derived the optimal weights
that minimize the mean squared error (MSE) of estimator
(1). Note however that the analytical forms of the optimal
weights, as shown in their formula (13), are rather com-
plicated and may not be readily accessible to practi-
tioners. They further derived the above w3, 1 and w3, 2 as
the approximated optimal weights for practical use.

For the sample SD estimation from the five-number
summary, Bland10 also provided an estimator that follows
the inequality method as in Hozo et al.6 Then Wan et al.7

proposed a nearly unbiased estimator of the sample SD to
improve the literature. In Section 3, we will point out that
the sample SD estimator in Wan et al.7 may still not be
optimal due to the insufficient use of the sample size infor-
mation. For more details, see the motivating example in
Section 3. According to Higgins and Green5 and Chen and
Peace,12 the sample SD plays a crucial role in weighting
the studies in meta-analysis. Inaccurate weighting results
may lead to biased overall effect sizes and biased confi-
dence intervals, and hence mislead physicians to provide
patients with unreasonable or even wrong medications.
Inspired by this, we propose a smoothly weighted estima-
tor for the sample SD to further improve the existing liter-
ature. To promote the practical use, we have provided an
Excel spreadsheet to implement the optimal estimators in
the Supplementary Material. More importantly, we have
also incorporated the new estimator in this paper into our
online calculator at http://www.math.hkbu.edu.hk/~tongt/
papers/median2mean.html. From the practical point of
view, our proposed method will make a solid contribution
to meta-analysis and has the potential to be widely used.
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The rest of the article is organized as follows. In Section 2,
we review the existing methods for estimating the sample SD
under three common scenarios. In Section 3, we present a
motivating example, propose a smoothly weighted estimator
for the sample SD, and derive a shortcut formula of our new
estimator for practical use. In Section 4, we conduct numeri-
cal studies to assess the finite sample performance of our new
estimator, and meanwhile we demonstrate its superiority over
the existing methods. We then conclude the article in Sec-
tion 5 with a brief summary of the existing methods, and pro-
vide the theoretical results in Section 6.

2 | EXISTING METHODS

Needless to say, the sample size n provides an important
information and should be sufficiently used in the esti-
mation procedure. To incorporate it with the five-number
summary, we let S1 = a,m,b;nf g, S2 = q1,m,q3;nf g, and
S3 = a,q1,m,q3,b;nf g , that represent the three common
scenarios in the literature. Clearly, S1 and S2 are two spe-
cial cases of S3 . To further clarify, we also note that S1 ,
S2 , and S3 are the same as C1 , C3 , and C2 in Wan et al.,7

respectively. In this section, we briefly review the existing
estimators of the sample SD under the three scenarios.

2.1 | Estimating the sample SD from
S1= a,m,b;nf g

Under scenario S1 , Hozo et al.6 proposed to estimate the
sample SD by

S≈

1ffiffiffiffiffi
12

p b−að Þ2 + a−2m+ bð Þ2
4

" #1=2
n≤ 15,

b−a
4

15< n≤ 70,

b−a
6

n>70:

8>>>>>>>><
>>>>>>>>:

As shown in Google Scholar, Hozo et al.'s estimator is
very popular in the previous literature due to the huge
demand of data transformation in evidence-based medi-
cine. We note, however, that their estimator is a step func-
tion of the sample size n so that the final estimate may not
be optimal. For example, when n increases from 70 to
71, there is a sudden drop in the estimated value of the
sample SD, namely dropped by 33.3% if the 71st sample is
not an extreme value so that a and b remain the same in
both samples. On the other hand, the sample size informa-
tion is completely ignored within each of the three inter-
vals so that their estimator is biased and suboptimal.

In view of the above limitations, Wan et al.7 proposed
a nearly unbiased estimator of the sample SD as

S ≈
b−a
ξ

, ð2Þ

where ξ = ξ(n) = 2Φ−1[(n − 0.375)/(n + 0.25)], Φ is the
cumulative distribution function of the standard normal
distribution, and Φ−1 is the inverse function of Φ. Wan
et al.'s estimator not only overcomes the limitations of
Hozo et al.'s estimator by incorporating the sample size
information efficiently, but also is very simple in practice
for the given analytical formula. From a statistical point
of view, Wan et al.7 has provided the best method for esti-
mating the sample SD, given that the reported data
include only the four numbers in scenario S1.

2.2 | Estimating the sample SD from
S2= q1,m,q3;nf g
Under scenario S2 , Wan et al.7 proposed an estimator of
the sample SD as

S≈
q3−q1

η
, ð3Þ

where η = η(n) = 2Φ−1[(0.75n − 0.125)/(n + 0.25)]. Note
that the method for deriving estimator (3) is the same in spirit
as that for estimator (2). In particular, Wan et al.7 has incor-
porated the sample size information appropriately so that the
proposed estimator is nearly unbiased. When the reported
data include only q1, m, q3 and n, it can be shown that esti-
mator (3) is the best method for estimating the sample SD.

2.3 | Estimating the sample SD from
S3= a,q1,m,q3,b;nf g

Under scenario S3, Bland
10 proposed to estimate the sam-

ple SD by

S≈
a2 + 2q21 + 2m2 + 2q23 + b2
� �

16
+

aq1 + q1m+mq3 + q3bð Þ
8

"

−
a+2q1 + 2m+2q3 + bð Þ2

64

#1=2
:

As mentioned in Section 1, Bland's estimator is inde-
pendent of the sample size and is less accurate for practi-
cal use. To improve the literature, Wan et al.7 proposed
the following estimator of the sample SD:
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S≈
1
2

b−a
ξ

+
q3−q1

η

� �
: ð4Þ

In essence, Wan et al.7 treated scenario S3 as a combi-
nation of scenario S1 and scenario S2 . By estimating the
sample SD from scenario S1 and scenario S2 separately,
they applied the average of estimators (2) and (3) as the
final estimator. In Section 3, we will show that (b− a)/ξ
and (q3− q1)/η may not be equally reliable for different
sample size n. As a consequence, the average estimator in
formula (4) is not the optimal estimator due to the insuf-
ficient use of the sample size information. This motivates
us to propose a smoothly weighted estimator for the sam-
ple SD to further improve Wan et al.'s estimator in this
paper.

3 | MAIN RESULTS

To present the main idea, we let X1, X2, …, Xn be a ran-
dom sample of size n from the normal distribution with
mean μ and variance σ2, and X(1) ≤ X(2) ≤ � � � ≤ X(n) be
the order statistics of X1, X2, …, Xn. Let also Xi = μ + σZi

for i = 1, 2, …, n. Then Z1, Z2, …, Zn follow the standard
normal distribution with Z(1) ≤ Z(2) ≤ � � � ≤ Z(n) as the
corresponding order statistics. Finally, by letting n = 4Q
+ 1 with Q a positive integer, we have a = μ + σZ(1),
q1 = μ + σZ(Q + 1), m = μ + σZ(2Q + 1), q3 = μ + σZ(3Q + 1),
and b = μ + σZ(n).

3.1 | Motivating example

To investigate whether the two components in esti-
mator (4) are equally reliable, we first conduct a sim-
ple simulation study. In each simulation, we generate
a random sample of size n from the standard normal
distribution, find the five-number summary {a, q1,
m, q3, b}, and then apply estimators (2) and (3) to
estimate the sample SD respectively. For Q = 1,
21, and 100, or equivalently, n = 5, 85, and 401, we
repeat the simulation 1 000 000 times and plot the
histograms of the sample SD estimates in Figure 1 for
both methods.

From Figure 1, it is evident that estimators (2) and
(3) may not be equally reliable when the sample size var-
ies. Note that the true SD equals one since the data are
generated from the standard normal distribution. When
the sample size is small (say n = 5), estimator (2) provides
a more accurate and less skewed estimate for the sample
SD. When the sample size is moderate (say n = 85), the
two estimators perform similarly and are about equally
reliable. When the sample size is large (say n = 401), esti-
mator (3) provides to be a more reliable estimator than
estimator (2). This hence shows that Wan et al.'s estima-
tor in formula (4) may not be the optimal estimator for
the sample SD when the five-number summary is fully
reported. We propose to further improve Wan et al.'s esti-
mator by considering a linear combination of estimators
(2) and (3), in which the optimal weight is a function of
the sample size.

3.2 | Optimal sample SD estimation

In view of the limitations of estimator (4), we propose the
following estimator for the sample SD:

Sw =w
b−a
ξ

� �
+ 1−wð Þ q3−q1

η

� �
, ð5Þ

where ξ and η are given in Section 2, and w is the weight
assigned to the first component. Note that the new esti-
mator is a weighted combination of estimators (2) and
(3). When w = 1, the new estimator reduces to estimator

(2). When w = 0, the new estimator reduces to estimator
(3). And when w = 0.5, the new estimator leads to esti-
mator (4) in Wan et al.7 Hence, the existing estimators of
the sample SD are all special cases of our new estimator.

To find the optimal estimator, we consider the com-
monly used quadratic loss function, that is, L
(Sw, σ) = (Sw − σ)2. We select the optimal weight by min-
imizing the expected value of the loss function L(Sw, σ),
or equivalently, by minimizing the mean squared error
(MSE) of the estimator. In Section 6, we show in Theo-
rem 1 that the optimal weight is, approximately,

We further show that the optimal weight will con-
verge to zero when the sample size tends to infinity. That

wopt =
Var q3−q1ð Þ=η2−Cov b−a,q3−q1ð Þ= ξηð Þ

Var b−að Þ=ξ2 +Var q3−q1ð Þ=η2−2Cov b−a,q3−q1ð Þ= ξηð Þ : ð6Þ
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is, estimator (3) will be more reliable than estimator
(2) when the sample size is large.

Note that the optimal weight in formula (6) has a
complicated form and may not be readily accessible to
practitioners. To promote the practical use of the new
estimator, we also develop an approximation formula for
the optimal weight. Recall that a = μ + σZ(1),
q1 = μ + σZ(Q + 1), q3 = μ + σZ(3Q + 1), and b = μ + σZ(n).
We have b − a = σ(Z(n) − Z(1)) and q3 − q1 = σ(Z(3Q

+ 1) − Z(Q + 1)). Then by formula (6) and the symmetry of
the standard normal distribution, we can rewrite the opti-
mal weight as

wopt nð Þ= 1
1+ J nð Þ , ð7Þ

where

Note that Z(1), Z(Q + 1), Z(3Q + 1), and Z(n) are the order
statistics of the standard normal distribution, and there-
fore their variances and covariances do not depend on μ
and σ2. In addition, by formulas (2) and (3), ξ and η are
both the functions of the sample size n only. This shows
that J(n) is independent of μ and σ2, and consequently,
the optimal weight wopt is also a function of n only. For
clarification, we have expressed the optimal weight as
wopt = wopt(n) in formula (7).

3.3 | An approximation formula

To have an approximation formula for the optimal
weight, we numerically compute the true values of J(n)
and wopt(n) for different values of n using formulas (7)
and (8). We then plot J(n) and wopt(n) in Figure 2 for
n varying from 5 to 401, respectively. Observing that J(n)
is an increasing and concave function of n, we consider
the simple power function c1nc2 + c0 to approximate J(n)
with 0< c2 < 1 so that the approximation curve is also
concave. With the true values of J(n), the best values of
the coefficients are approximately c1 = 0.07, c2 = 0.6, and
c0 = 0. Finally, by plugging J(n)≈ 0.07n0.6 into formula
(7), we have the approximation formula for the optimal
weight as

~wopt nð Þ≈ 1
1+ 0:07n0:6

: ð9Þ

From the right panel of Figure 2, it is evident that the
approximation formula provides a perfect fit to the true
optimal weight values for n up to 401. By formulas (5)
and (9), our proposed estimator of the sample SD from
the five-number summary is

S nð Þ≈ 1
1+ 0:07n0:6

� �
b−a
ξ

+
0:07n0:6

1+ 0:07n0:6

� �
q3−q1

η
: ð10Þ

By formula (9) and the fact that n = 4Q + 1, we note
that the nearest integer for Q such that ~wopt nð Þ≈0:5 is
Q = 21. In other words, estimators (2) and (3) will be

about equally reliable when n = 85. This coincides with
our simulation results in Figure 1 that estimators (2) and
(3) perform very similarly when n = 85. This, from
another perspective, demonstrates that our approxima-
tion formula can serve as a “rule of thumb” for estimat-
ing the sample SD from the five-number summary.

Recall that ξ = ξ(n) = 2Φ−1[(n − 0.375)/(n + 0.25)]
and η = η(n) = 2Φ−1[(0.75n − 0.125)/(n + 0.25)], where
Φ−1(z) is the upper zth quantile of the standard normal
distribution. We have the shortcut formula of estima-
tor (10) as

S≈
b−a
θ1

+
q3−q1
θ2

, ð11Þ

where

θ1 = θ1 nð Þ= 2+0:14n0:6
� � �Φ−1 n−0:375

n+0:25

� �
,

θ2 = θ2 nð Þ= 2+
2

0:07n0:6

� �
�Φ−1 0:75n−0:125

n+0:25

� �
:

For ease of implementation, we also provide the
numerical values of θ1 and θ2 in Table 1 for Q up to

J nð Þ= Var Z nð Þ−Z 1ð Þ
� �

=ξ2−Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ
� �

= ξηð Þ
Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

=η2−Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ
� �

= ξηð Þ : ð8Þ
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100, or equivalently, for n up to 401. For a general sample
size, one may refer to our Excel spreadsheet for specific
values in the Supplementary Material, or compute them
using the command “qnorm(z)” in the R software.

4 | NUMERICAL STUDIES

To evaluate the practical performance of the new
method, we conduct numerical studies to compare our
proposed estimator with the three estimators in Wan

et al.7 The robustness of the estimators will also be
examined.

In the first study, we generate the data from the nor-
mal distribution with mean 50 and SD 17, for which we
follow the same settings as in Hozo et al.6 and Wan et al.7

Then for the simulated data with sample size n, we com-
pute the sample SD, denoted as SSam, and also record the
five-number summary {a, q1, m, q3, b}. To apply the pro-
posed method, we assume that all the available data are
the five-number summary and the sample size, and apply
estimators (2), (3), (4), and (11) to estimate the sample
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FIGURE 1 The histograms of the sample SD estimates (the true SD is 1 as shown in the vertical dashed lines) with the sample sizes

5, 85, and 401, with a total of 1 000 000 simulations. The red and green histograms represent the frequencies of the estimates by estimators

(2) and (3), respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Values of θ1 and θ2 in estimator (11) for 1 ≤ Q ≤ 100, where n = 4Q + 1

Q θ1 θ2 Q θ1 θ2 Q θ1 θ2 Q θ1 θ2

1 2.793 6.403 26 10.780 2.495 51 14.848 2.124 76 18.178 1.962

2 3.770 5.514 27 10.967 2.470 52 14.992 2.115 77 18.302 1.958

3 4.437 4.895 28 11.151 2.447 53 15.135 2.107 78 18.425 1.953

4 4.969 4.466 29 11.333 2.425 54 15.276 2.099 79 18.548 1.949

5 5.423 4.150 30 11.512 2.404 55 15.417 2.091 80 18.670 1.944

6 5.826 3.906 31 11.689 2.385 56 15.557 2.083 81 18.791 1.940

7 6.192 3.712 32 11.863 2.366 57 15.695 2.075 82 18.912 1.935

8 6.531 3.553 33 12.036 2.348 58 15.833 2.068 83 19.033 1.931

9 6.848 3.419 34 12.206 2.331 59 15.970 2.061 84 19.152 1.927

10 7.147 3.305 35 12.374 2.314 60 16.106 2.054 85 19.272 1.923

11 7.432 3.206 36 12.540 2.299 61 16.241 2.047 86 19.391 1.919

12 7.704 3.120 37 12.705 2.284 62 16.375 2.040 87 19.509 1.915

13 7.966 3.044 38 12.867 2.269 63 16.509 2.034 88 19.627 1.912

14 8.218 2.975 39 13.028 2.256 64 16.642 2.028 89 19.744 1.908

15 8.462 2.914 40 13.188 2.242 65 16.774 2.021 90 19.861 1.904

16 8.699 2.859 41 13.345 2.230 66 16.905 2.015 91 19.977 1.901

17 8.929 2.808 42 13.502 2.217 67 17.035 2.010 92 20.093 1.897

18 9.153 2.762 43 13.656 2.205 68 17.165 2.004 93 20.208 1.893

19 9.371 2.719 44 13.810 2.194 69 17.294 1.998 94 20.323 1.890

20 9.585 2.680 45 13.962 2.183 70 17.422 1.993 95 20.438 1.887

21 9.793 2.644 46 14.113 2.172 71 17.550 1.987 96 20.552 1.883

22 9.998 2.610 47 14.262 2.162 72 17.677 1.982 97 20.666 1.880

23 10.199 2.578 48 14.410 2.152 73 17.803 1.977 98 20.779 1.877

24 10.396 2.549 49 14.558 2.143 74 17.929 1.972 99 20.892 1.874

25 10.589 2.521 50 14.703 2.133 75 18.054 1.967 100 21.004 1.871
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FIGURE 2 The left panel

displays the true and

approximated values of J(n), and

the right panel displays the
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SD, denoted by S1, S0, S0.5, and S~wopt , respectively. Finally,
for a fair comparison, we compute the relative mean
squared errors (RMSE) of the four estimators as follows:

RMSE S1ð Þ=
PT

i=1 S1,i−σð Þ2PT
i=1 SSami −σ
� �2 ,

RMSE S0ð Þ=
PT

i=1 S0,i−σð Þ2PT
i=1 SSami −σ
� �2 ,

RMSE S0:5ð Þ=
PT

i=1 S0:5,i−σð Þ2PT
i=1 SSami −σ
� �2 ,

RMSE S~wopt

� �
=

PT
i=1 S~wopt,i−σ
� �2

PT
i=1 SSami −σ
� �2 ,

where T is the total number of simulations, σ = 17 is the
true SD, and SSami is the sample SD in the ith simulation.

With T = 2,000,000 and n ranging from 5 to 801, we
compute the natural logarithm of the RMSE values for
the four estimators and plot them in Figure 3. From the
numerical results, it is evident that our new estimator
has a smaller RMSE value than the three existing estima-
tors in all settings, which demonstrates that our new esti-
mator does provide the optimal estimate for the sample
SD. Specifically, for estimator (2) that only applies the
minimum and maximum values, it performs well only
when the sample size is extremely small (n < 9). For esti-
mator (3) that only applies the first and third quartiles, it

does not perform well for any sample size. While for the
equally weighted estimator (4), we note that it performs
better than estimators (2) and (3) in a wide range of set-
tings. Nevertheless, we also note that estimator (4) is not
as good as estimator (2) when n is relatively small
(n < 21), and is not as good as estimator (3) when n is rel-
atively large (n > 521). This shows, from another per-
spective, that estimator (4) does not provide an optimal
weight between the two elementary estimators and hence
is still suboptimal. In fact, compared to our new estima-
tor, estimator (4) is capable to provide an optimal esti-
mate only when the sample size is about 85, which
coincides with our analytical results in Section 3.3. It is
also interesting to point out that the numerical results
for large sample sizes are also consistent with the
asymptotic results in Theorem 2, in which we demon-
strated that our new estimator has the smallest asymp-
totic RMSE among the four estimators. To conclude,
from both practical and theoretical perspectives, our
new estimator is superior to the existing estimators in
all settings, and it deserves as the optimal estimator of
the sample SD for the studies reported with the five-
number summary.

To check the robustness of our proposed estimator,
we conduct another numerical study with data generated
from non-normal distributions. Specifically, we consider
four skewed distributions including the log-normal distri-
bution with location parameter μ = 4 and scale parame-
ter σ = 0.3, the chi-square distribution with 10 degrees of
freedom, the beta distribution with parameters α = 9 and
β = 4, and the Weibull distribution with shape parameter
k = 2 and scale parameter λ = 35. Other settings and the
estimation procedure remain the same as in the previous
study. Finally, for estimators (2), (3), (4), and (11), we
simulate the data for each non-normal distribution with
500 000 simulations, and then report the natural loga-
rithm of their RMSE values in Figure 4 for n up to
801, respectively. From the numerical results, it is evident
that our new estimator is still able to provide a smaller
RMSE value than the existing estimators in most settings.
This shows that our new estimator is quite robust to the
violation of the normality assumption. In particular, we
note that estimator (2) performs even worse when the
sample size is large, with the possible reason that the
minimum and maximum values are more likely to be the
outliers when they are simulated from heavy-tailed distri-
butions. In contrast, our new estimator has a slowly
increased RMSE as the sample size increases, which also
demonstrates that our new estimator has better asymp-
totic properties compared to the existing estimators.
Together with the comparison results in the previous
study, we conclude that our new estimator not only pro-
vides an optimal estimate of the sample SD for normal
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data, but also performs favorably compared to the exis-
ting estimators for non-normal data.

5 | CONCLUSIONS

For clinical trials with continuous outcomes, the sample
mean and SD are routinely reported in the literature.
While in some other studies, researchers may instead
report the five-number summary including the sample
median, the first and third quartiles, and the minimum
and maximum values. For these studies, when included
in a meta-analysis, it is often desired to convert the five-
number summary back to the sample mean and SD. As
reviewed in Section 2, a number of studies have emerged

recently to solve this important problem under three
common scenarios. It is noted, however, that the existing
methods, including Wan et al.7 and Bland,10 are still sub-
optimal for estimating the sample SD from the five-
number summary.

To further advance the literature, we have proposed
an improved estimator for the sample SD by considering
a smoothly weighted combination of two available esti-
mators. In addition, given that the analytical form of the
optimal weight is complicated and may not be readily
accessible to practitioners, we have also derived an
approximation formula for the optimal weight, and that
yields a shortcut formula for the optimal estimation of
the sample SD. As confirmed by the theoretical and
numerical results, our new methods are able to
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dramatically improve the existing methods in the litera-
ture. Together with Luo et al.,8 we hence recommend
practitioners to estimate the sample mean and SD from
the five-number summary by formulas (1) and (11),
respectively.

To summarize, we have also provided the optimal
estimators of the sample mean and SD under the three
common scenarios in Table 2. To be more specific, the
optimal sample mean estimators under all three scenar-
ios are from Luo et al.,8 the optimal sample SD estimators
under scenarios S1 and S2 are from Wan et al.,7 and the
optimal sample SD estimator under scenario S3 is pro-
vided in (11) which makes Table 2 a whole pie for data
transformation from the five-number summary to the
sample mean and SD. To promote the practical use, we
have also provided an Excel spreadsheet to implement the
optimal estimators in the Supplementary Material. And
more importantly, we have also incorporated the new esti-
mator in this paper into our online calculator at http://
www.math.hkbu.edu.hk/~tongt/papers/median2mean.
html. According to Table 2, if the five-number summary is
reported for a certain study, estimators (1) and (11) will be
adopted to estimate the sample mean and SD, respec-
tively. Specifically, one can input the five-number sum-
mary and the sample size information into the
corresponding entries under scenario S3 , and then by
clicking the “Calculate” button, the optimal estimates of
the sample mean and SD will be automatically displayed
in the result entries.

Finally, we note that all the estimators in Table 2 are
established under the normality assumption for the clini-
cal trial data. In practice, however, this normality
assumption may not hold, in particular when the five-
number summary is reported rather than the sample
mean and SD. In view of this, researchers have also been
proposing different approaches for analyzing the studies
reported with the five-number summary. They include,
for example, extending the data transformation methods
from normal data to non-normal data,13-15 or developing
new meta-analytical methods to directly synthesize the

data with the five-number summary.16,17 We note that
the proposed method in this article can also be readily
extended to non-normal data, yet further work is needed
to assess the effectiveness of these new estimators when
included in a meta-analysis.

6 | THEORETICAL RESULTS

We present the theoretical results of the proposed
method in this section. Specifically, we will have 2 theo-
rems. And to prove them, we need 2 lemmas as follows.

Lemma 1 Let Φ(x) and ϕ(x) be the cumulative distribu-
tion function and the probability density function of
the standard normal distribution, respectively.
Let also Φ−1 be the inverse function of Φ. Then,

lim
x!0+

Φ−1 1−xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln xð Þp =1: ð12Þ

Proof. Since Φ−1(1 − x) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln xð Þp

are both posi-
tive as x! 0+, to prove formula (12) it is equivalent to
showing that

lim
x!0+

Φ−1 1−xð Þ½ �2
−2ln xð Þ =1:

Let y = Φ−1(1 − x). Then, x = 1 − Φ(y). Noting that
y ! ∞ as x ! 0+, by L'Hôpital's rule, we have

lim
x!0+

Φ−1 1−xð Þ½ �2
−2ln xð Þ = lim

y!∞

y2

−2ln 1−Φ yð Þð Þ

= lim
y!∞

1−Φ yð Þ
y−1ϕ yð Þ

= lim
y!∞

ϕ yð Þ
ϕ yð Þ+ y−2ϕ yð Þ

=1,

where the second last equality follows by the Stein prop-
erty of the standard normal distribution, that is, dϕ(y)/
dy = (−y)ϕ(y).

Lemma 2 Let Z1, Z2, …, Zn follow the standard normal
distribution with Z(1) ≤ Z(2) ≤ � � � ≤ Z(n) being the
corresponding order statistics. As n ! ∞, we have

TABLE 2 Summary table of the optimal estimators of the

sample mean and SD under the three common scenarios, where

w1 = 4/(4 + n0.75) and w2 = 0.7 + 0.39/n

Scenario
Sample mean
estimator

Sample SD
estimator

S1 = a,m,b;nf g w1(a + b)/2 + (1
− w1)m

formula (2)

S2 = q1,m,q3;nf g w2(q1 + q3)/2 + (1
− w2)m

formula (3)

S3 = a,q1,m,q3,b;nf g formula (1) formula (11)
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Var Z nð Þ−Z 1ð Þ
� �

≈
π2

6 ln nð Þ ,

Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

≈
2:4758

n
, ð13Þ

Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ
� �

=O
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nln nð Þp
 !

: ð14Þ

Proof. Since Z(1) and Z(n) are asymptotically indepen-
dent (see Theorem 8.4.3 in Arnold et al.18), then as
n ! ∞, Var(Z(n) − Z(1)) ≈ Var(Z(1)) + Var(Z(n)). Note
also that the limiting distribution of Yn = (Z(n) − an)/bn
follows a Gumbel distribution as

lim
n!∞

P
Z nð Þ−an

bn
< x

� �
=H xð Þ=exp −e−xð Þ,

where an = (2ln(n))1/2 − 0.5(ln(ln(n)) + ln(4π))/(2ln
(n))1/2 and bn = (2ln(n))−1/2. In addition, for the Gumbel
distribution, the mean value is the Euler-Mascheroni
constant γ ≈ 0.5772 and the variance is π2/6. Therefore,
E(Yn) ≈ γ and Var(Yn) ≈ π2/6 as n ! ∞, and conse-
quently, Var Z nð Þ

� �
= b2nVar Ynð Þ≈π2= 12ln nð Þð Þ . Further

by symmetry, we have Var(Z(1)) = Var(Z(n)). Hence,
as n!∞,

Var Z nð Þ−Z 1ð Þ
� �

≈Var Z 1ð Þ
� �

+Var Z nð Þ
� �

≈
π2

6ln nð Þ :

By Theorem 2 in Luo et al.,8 as n ! ∞, Var(Z(Q

+ 1)) = Var(Z(3Q + 1)) ≈ 1.8568/n and Cov(Z(Q + 1), Z(3Q

+ 1)) ≈ 0.6189/n. This shows that formula (13) holds.
By the Cauchy-Schwartz inequality, we have

Cov Z 1ð Þ,Z Q+1ð Þ
� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Z 1ð Þ
� �

Var Z Q+1ð Þ
� �q

=O
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nln nð Þp
 !

:

Similarly, we can show that Cov(Z(1), Z(3Q + 1)), Cov
(Z(n), Z(Q + 1)), and Cov(Z(n), Z(3Q + 1)) are all of order
O 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nln nð Þp� �

. Combining the above results, it is readily
known that formula (14) holds.

Theorem 1 For the proposed estimator Sw in formula (5),
we have the following properties.

(i) E(Sw) ≈ σ for any weight w.
(ii) The optimal weight is, approximately,
(iii) wopt = O(n−1/2ln(n)) as n ! ∞.
Proof. (i) The expected value of the proposed estima-

tor is

E Swð Þ=wE
b−a
ξ

� �
+ 1−wð ÞE q3−q1

η

� �
:

Since E((b − a)/ξ) ≈ σ and E((q3 − q1)/η) ≈ σ, we
have E(Sw) ≈ σ for any weight w.

(ii) By part (i), we have Bias(Sw) ≈ 0. Hence, to mini-
mize the MSE of the estimator, it is approximately equiva-
lent to minimizing the variance of the estimator. Note that

Var Swð Þ=w2Var
b−a
ξ

� �
+ 1−wð Þ2Var q3−q1

η

� �

+2w 1−wð ÞCov b−a
ξ

,
q3−q1

η

� �
:

The first derivative of the variance with respect
to w is

d
dw

Var Swð Þ= 2wVar
b−a
ξ

� �
−2 1−wð ÞVar q3−q1

η

� �

+ 2−4wð ÞCov b−a
ξ

,
q3−q1

η

� �
:

Setting the first derivative equal to zero, we have
Also by the Cauchy-Schwartz inequality, the second

derivative is always non-negative,

wopt =
Var q3−q1ð Þ=η2−Cov b−a,q3−q1ð Þ= ξηð Þ

Var b−að Þ=ξ2 +Var q3−q1ð Þ=η2−2Cov b−a,q3−q1ð Þ= ξηð Þ :
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This shows that the weight in formula (15) is, approx-
imately, the optimal weight of the estimator.

(iii) Recall that, by formulas (7) and (8), the optimal
weight can be rewritten as

where ξ = 2Φ−1[(n − 0.375)/(n + 0.25)] and
η = 2Φ−1[(0.75n − 0.125)/(n + 0.25)]. By Lemma 1, as
n ! ∞, we have

ξ=2Φ−1 1−
0:625

n+0:25

� �

≈2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln

0:625
n+0:25

� �s
=O

ffiffiffiffiffiffiffiffiffiffiffi
ln nð Þ

p� �
: ð17Þ

It is also clear that

η=2Φ−1 0:75n−0:125
n+0:25

� �
≈2Φ−1 0:75ð Þ=O 1ð Þ: ð18Þ

Then together with Lemma 2, as n ! ∞, the numera-
tor of wopt in formula (16) is of order O(n−1/2ln(n)). In
addition, it can be shown that the denominator of wopt is,
approximately, π2[48ln(n)ln(n/0.625 + 0.4)]−1. Finally, by

combining the above results, we have wopt = O(n−1/2ln
(n)) as n ! ∞.

Theorem 2 For the relative mean squared errors (RMSE)
of the four differently weighted estimators, as n ! ∞,
we have

where S1, S0, and S0.5 are Wan et al.'s estimators (2),
(3), and (4), respectively, S~wopt is our new estimator
(11), and SSam is the sample SD.

Proof. By Holtzman,19 the expected value of the sam-
ple SD is E(SSam) = cσ, where c = 1 − 0.25/n + o(1/n).
Note also that (SSam)2 is the sample variance and so is an
unbiased estimator for σ2. Then,

MSE SSam
� �

=E SSam
� �2−2σE SSam

� �
+ σ2

= 2σ2−2cσ2 = 0:5σ2=n+ o 1=nð Þ: ð19Þ

w=
Var q3−q1ð Þ=η2−Cov b−a,q3−q1ð Þ= ξηð Þ

Var b−að Þ=ξ2 +Var q3−q1ð Þ=η2−2Cov b−a,q3−q1ð Þ= ξηð Þ : ð15Þ

d2

dw2Var Swð Þ=2Var
b−a
ξ

� �
+2Var

q3−q1
η

� �
−4Cov

b−a
ξ

,
q3−q1

η

� �
≥0:

wopt =
Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

=η2−Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ
� �

= ξηð Þ
Var Z nð Þ−Z 1ð Þ

� �
=ξ− Z 3Q+1ð Þ−Z Q+1ð Þ

� �
=η

	 
 , ð16Þ

RMSE S1ð Þ= MSE S1ð Þ
MSE SSam

� � =O
n

ln nð Þð Þ2
 !

RMSE S0ð Þ= MSE S0ð Þ
MSE SSam

� �≈2:721
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For the existing estimators, by Wan et al.,7 we have E
(Sw) ≈ σ for w = 0, 0.5 and 1. Further by Lemma 2 and
formulas (17)-(18), as n ! ∞,

MSE S1ð Þ≈Var Z nð Þ−Z 1ð Þ
� �

4ξ2
σ2 =O

1

ln nð Þð Þ2
 !

,

MSE S0ð Þ≈Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

4η2
σ2

≈
2:4758σ2=n

4 Φ−1 0:75ð Þ½ �2
+ o

1
n

� �
≈
1:3605σ2

n
+ o

1
n

� �
,

MSE S0:5ð Þ≈ σ2½Var Z nð Þ−Z 1ð Þ
� �

4ξ2
+
Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

4η2

+
Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ

� �
2ξη

�

= O
1

ln nð Þð Þ2
 !

+O
1
n

� �
+O

1
n1=2ln nð Þ
� �

= O
1

ln nð Þð Þ2
 !

,

where Φ−1(0.75) ≈ 0.6745. Then together with formula
(19), we have RMSE(S1) = O(n/(ln(n))2), RMSE
(S0) = 2.721, and RMSE(S0.5) = O(n/(ln(n))2) as n ! ∞.

For our new estimator, by Theorem 1, we have
E S~wopt

� �
≈σ . Note also that θ1 = (1+ 0.07n0.6)ξ and

θ2 = [1+n−0.6/0.07]η. Then by Lemma 2 and formulas
(17)-(18), as n!∞,

MSE S~wopt

� �
≈ σ2½Var Z nð Þ−Z 1ð Þ

� �
1+ 0:07n0:6ð Þ2ξ2 +

Var Z 3Q+1ð Þ−Z Q+1ð Þ
� �

1+ 1= 0:07n0:6ð Þ½ �2η2

+
2Cov Z nð Þ−Z 1ð Þ,Z 3Q+1ð Þ−Z Q+1ð Þ

� �
1+ 0:07n0:6ð Þ 1+ 1= 0:07n0:6ð Þ½ �ξη �

≈ O
1

n1:2 ln nð Þð Þ2
 !

+
2:4758σ2=n

4 Φ−1 0:75ð Þ½ �2
+O

1
n1:1ln nð Þ
� �

=
1:3605σ2

n
+ o

1
n

� �
:

Finally, together with formula (19), we have
RMSE S~wopt

� �
≈2:721 as n!∞.
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